博碩士論文 963204026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:18.220.187.178
姓名 郭昌容(Chang-Jung Kuo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米碳管成長於新穎矽奈米結構之場發射特性
(Field emission properties of carbon nanotubes grown on novel silicon nanostructures)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗利用E-beam電子束直寫系統在六吋矽晶圓上定義各種不同間距之奈米柱,隨後經過顯影及蝕刻等技術,製作出不同間距的柱子,並利用掃描式電子顯微鏡觀察其樣貌。在確定其間距無誤後,以真空電性量測系統測量其場發射性質。根據實驗結果發現,柱子在不同間距下之場發射性質隨著間距越大,其場發射性質會漸漸提升,但是過密之柱子,場發射電之電流密度相對之下,過於微小,之後利用高密度電漿化學氣相沉積系統在低溫下介由通入氫氣、氬氣等,使氫電漿均勻蝕刻在六吋矽晶圓不同的間距的柱子上使其成為奈米草結構,目的是使不同間距柱子能夠更佳的銳化,同樣的經過真空電性量測系統之測量,我們發現,在蝕刻奈米草結構之後,對於此雙層結構之場發射性質的改善並不顯著,且其效果還未達到單純奈米碳管之場發射能力,我們更進一步要在此雙層結構上成長奈米碳管,首先利用F13TCS, E-gun電子束蒸鍍7 nm Ni, 以及CHF3電漿等處理,以酒精為碳源成長奈米碳管,經過掃描式電子顯微鏡觀察,我們發現,以金屬鎳成長奈米碳管之方式能夠使碳管均勻分佈在奈米草之表面,對進一步的場發射量測來說較不容易造成誤差。我們以此為基板,利用熱化學氣相沉積系統在不同間距之間距奈米柱上生長奈米碳管,觀察不同結構之場發射特性。
我們發現製造出不同間距之碳管生長於間距奈米柱蝕刻奈米草之後,整體結構之場發射能力,比奈米碳管還要好,而我們所創造之一系列結構亦符合F-N方程式,顯示其發射電流是由場發射機制所致。
摘要(英) Leica E-beam lithography and etching were used to create nanopillars array with different spaces from 2 ?m to 100 ?m. We used scanning electronic microscope to observe the morphology of the pillars and check the distance between the pillars. We measured the field emission characteristic and found that the field emission had lower turn-on field with increasing distance. Comparing to other samples with different distance, we found that 2 ?m pillar had the lowest current density.
We also observed that the nanopillars did not exceed carbon nanotubes in the field emission performance. To improve the field emission performance, we used high density plasma chemical vapor deposition system to create another nanostructure on nanopillar. RF power was used to generate hydrogen and argon plasma to evenly etch the nanopillar on 6 inch wafer. Through this process, we got nanograss, which may be the smallest silicon nanostructure in the world. This two-tier nanograss-on-nanopillar structure had better characteristic of field emission than nanopillar array, but still not exceeded carbon nanotubes.
Finally we tried to grow carbon nanotubes on top of this two-tier nanostructure. We adopted three methods to grow carbon nanotubes on nanograss, which were F13TCS evaporation, 7 nm nickel coating, and CHF3 plasma treatment. The scanning electronic microscope showed that only the sputtering methods would lead to uniform carbon nanotubes on the nanograss, so we chose the sputtering as the growing methods for catalyst layer. After we grew carbon nanotubes on the two-tier nanostructures, we found that their field emission characteristic exceeded carbon nanotube successfully. F-N plot of all the structure shows that the measured current originated from the tunneling mechanism.
關鍵字(中) ★ 場發射
★ 奈米碳管
關鍵字(英) ★ Field emission
★ CNT
論文目次 碩博士論文電子檔授權書……………………………………………..…………….II
論文指導教授推薦書………………………………………………………………..III
論文口試委員審定書…………………………………….……………….………….V
中.文摘要…………………………………………………………………..…………V
英文摘要……………………………………………………………………………VII
誌謝……………………………………………………………………………..….VIII
圖目錄…………………………………………………………………………..……II
表目錄…………………………………………………………………………….XVII
第一章 緒論…………………………………………………………………………1
1-1 前言……………………………………………………………………………..1
1-2 研究動機………………………………………………………………………..9
第二章 理論與文獻回顧…………………………………………………………..12
2-1 準直矽奈米結構形成機制……………………………………………………12
2-2 奈米碳管結構與特性…………………………………………………………15
2-3 奈米碳管製備方法……………………………………………………………20
2-4 順向成長原理與方法…………………………………………………………23
2-4.1. 纖維間凡得瓦力…………………………………………………………23
2-4.2. 模板輔助成長……………………………………………………………24
2.4.3. 電場………………………………………………………………………24
2-5 奈米碳管氣相成長機構………………………………………………………27
2-5.1. 碳原子的擴散路徑:……………………………………………………27
2-5.2. 催化劑中碳原子的擴散驅動力…………………………………………29
2-5.3. 成長起源:頂部成長模式及底部成長模式……………………………29
2-5.4. 氫氣對奈米碳管生長的影響……………………………………………33
2-6 奈米結構上生長奈米碳管……………………………………………………33
2-6.1 金屬催化劑沉積的方法…………………………………………………33
2-6.2 於親水性奈米草上生長奈米碳管………………………………………36
2-6.3 以PTFE 薄膜生長奈米碳管 ……………………………………………38
2-7 電子場發射特性………………………………………………………………40
2-7.1 場發射增強因子β……………………………………………………….42
2-8 場發射如今之發展與比較…………………………………………………....44
第三章 實驗方法與流程………………………………………………………..…47
3-1 實驗材料與設備………………………………………………………………47
3-1.1. 基版材料與化學品………………………………………………………47
3-1.2. 製程設備…………………………………………………………………48
3-1.3. 分析儀器…………………………………………………………………49
3-2 實驗流程………………………………………………………………………49
3-3 實驗步驟……………………………………………………………………….50
3-3.1 製作多種間距之奈米柱………………………………………………….50
3-3.2 準直矽奈米草的製作…………………………………………………….52
3-3.3 成長奈米碳管之催化劑製程…………………………………………….52
3-3.4 成長奈米碳管之生長…………………………………………………….53
3-3.5 奈米碳管與基板的分析………………………………………………….54
3-3.6 場發射載台之架設……………………………………………………….54
3-3.7 真空電性量測步驟…………………………………………………….…56
第四章 結果與討論…………………………………………………………………57
4-1 奈米柱之分析……………………………………………………………….…57
4-1.1 奈米柱的表面形貌……………………………………………………….57
4-4.1. 奈米柱的電性量測結果………………………………………………….61
4-4.2. 奈米柱場發射之結果與討論…………………………………………….64
4-2 奈米柱上蝕刻奈米草之分析………………………………………………….66
4-2.1 奈米柱上蝕刻奈米草之表面形貌……………………………………….66
4-2.2 米柱上蝕刻奈米草之電性量測………………………………………….68
4-2.3 奈米柱上蝕刻奈米草之結果與討論…………………………………….71
4-3 碳管成長於奈米柱上蝕刻奈米草之分析…………………………………….72
4-3.1 使用不同方式成長奈米碳管之結果…………………………………….72
4-3.2 碳管成長於奈米柱上蝕刻奈米草之分析………………….……………76
4-3.3 碳管成長於奈米柱上蝕刻奈米草之電性量測…………….……………80
4-4 不同間距結構之電性比較…………………………………………….………83
4-5 FOWLER-NORDHEIM 方程式之計算…………………….…………………90
第五章 結論………………………………………………………………….……94
參考文獻………………………………………………………………….…………96
參考文獻 [1] Shoulders K R. Microelectronics using electron beam activated machining techniuques [J]. Adv. Comput.,1961,2:135-138
[2] Spindt C A. A thin film field emission catode [J]. J.Appl,Phys.,1968,39:3505.
[3] Ghis A,Meyer R,Rambaud P, et al, Sealed vaccum devices:fluorescent microtip displays [J].IEEE.trans.Electron.,1993,38:2320-2322.
[4] G. Wang, Y. Li and Y. Huang, “Structures and electronic properties of peanut-shaped dimers and carbon Nanotubes”, Journal of Physical Chemistry B, 109 (2005) 10957.
[5] Rice University:Rick Smalley’s Group Home Page-Image Gallery
[6] T. W. Ebbesen, Carbon Nanotube-Preparation and Properties, CRC Press, New York,(1997), p.37.
[7] S. Iijima,“Helical microtubules of graphitic carbon,”Nature, 354 (1991) 56.
[8] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Saroy, J. Vazquez, and R.Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, 363 (1993) 605.
[9] M. J. Yacaman, M. M. Yoshida, L. Rendon, and J. G. Santiesteban, “Catalyticgrowth of carbon microtubules with fullerene structure”, Appl. Phys. Lett., 62 (1993)202.
[10] M. Endo, K. Takeuchi, K. Takahashi, H. W. Kroto, and A. Sarkar,“Pyrolytic carbon nanotubes from vapor-grown carbon fibers,”Appl. Phys. Lett. 33[7] (1995) 873.
[11] S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, 386 (1997) 474.
[12] Z.B. Li, S.Z. Deng and N.S. Xu, ”Mechanism of field electron emission from carbon nanotubes”, Frontiers of Physics in China, 3 (2006) 305.
[13] Y. Huh, J.Y. Lee, J.H. Lee, T.J. Lee, S.C. Lyu and C.J. Lee, “Selective growth and field emission of vertically well-aligned carbon nanotubes on hole-patterned silicon substrates”, Chemical Physics Letters, 375 (2003) 388.
[14] A.K.M. Fazle Kibria, Y.H. Mo, K.S. Park, K.S. Nahm and M.H. Yun, “Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH medium”, International Journal of Hydrogen Energy, 26 (2001) 823.
[15] G.E. Froudakis, “Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake”, Nano Letters, 1 (2001) 531.
[16] H. Tang, J. Chen, S. Yao, L. Nie, Y. Kuang, Z. Huang, D. Wang and Z. Ren, “Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube (CNT) arrays for methanol oxidation”, Materials Chemistry and Physics, 92 (2005) 548.
[17] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民 編著, “奈米科技導論”, 全華科技圖書股份有限公司, (2003).
[18] Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J.M. Kim,“Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enchanced chemical vapordeposition,”Appl. Phys. Lett., 76 (2000) 2367.
[19] Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H.. Lee, and D. C. Chung,“Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes bymicrowave plasma-enhanced chemical vapor deposition,”J. Appl. Phys., 88 (2000)4898.
[20] Z. F. Ren, Z. P. Huang, D. Z. Wang, J. G. Wen, J. W. Xu, J. H. Wang, L. E. Calvet, J.Chen, J. F. Klemic, and M. A. Reed,“Growth of a single freestanding multiwall carbon nanotube on each nickel dot,”Appl. Phys. Lett., 75 (1999) 1086.
[21 ] V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, E. Voelkl,“Patterned growth of individual and multiple vertical aligned carbon nanotubes,” Appl. Phys. Lett., 76(2000) 3555.
[22] 陳秉賢, “Antireflection, hydrophilicity and hydrophobicity of well-aligned silicon nanograss”, 中華大學碩士論文, (2006).
[23] http://www.laogu.com/wz_34630.htm.
[24] B. Chapman, “Glow Discharge processes: sputtering and plasma etching”, New York: Wiley, 8 (1980).
[25] 黃俊凱、楊忠諺, “微機電蝕刻製程氣體的選擇”, NDL Nano Communications, 9 (2002) 33.
[26] M.C. Yang, J. Shieh, C.C. Hsu and T.C. Cheng, ”Well-aligned silicon nanograss fabricated by hydrogen plasma dry etching”, Electrochemical and Solid-State Letters, 8 (2005) C131.
[27] Hong Xiao 著, 張鼎張、羅正忠 譯, “半導體製程技術導論”, 台灣培生教育出版, 台北市 (2002).
[28] T.W. Odom﹐J.L. Huang﹐P. Kim and C.M. Lieber﹐“Structure and electronic properties of carbon nanotubes”, Journal of Physical Chemistry B, 104 (2000) 2794.
[29] http://ipn2.epfl.ch/CHBU/NTproduction1.htm .
[30] Harris, J. F. Peter, Carbon nanotubes and related structures: new materials for the twenty-first century, Cambridge University Press, (1999), p.115.
[31]S. Frank, P. Poncharal, Z. L. Wang, Walt A. de Heer,“Carbon nanotube quantumresistors,”Science, 280 (1998) 1744.
[32] H. Dai,“Carbon nanotubes: opportunities and challenges,”Surface Science, 500 (2002) 218.
[33] Y.S. Park, K.S. Kim, H.J. Jeong, W.S. Kim, J.M. Moon, K.H. An, D. J. Bae, Y.S. Lee, G.S. Park and Y.H. Lee, “Low pressure synthesis of single-walled carbon nanotubes by arc discharge”, Synthetic Metals, 126 (2002) 245.
[34] T.W. Ebbesen, P.M. Ajayan, H. Hiura and K. Tanigaki, “Purification of nanotubes”, Nature, 367 (1994) 519.
[35] 成會明著, “奈米碳管”, 五南出版社, (2004).
[36] J. I. Sohn, S. Lee, Y. H. Song, S. Y. Choi, K. L. Cho, and K. S. Nam,”Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays,” Appl. Phys. Lett., 78 (2001) 901.
[37] C. J. Lee, and J. Park,“Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition,” Appl. Phys. Lett., 77 (2000) 3397.
[38] G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son, and D. J. Kim,“Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition,” J. Appl. Phys., 91 (2002) 3847.
[39] D. C. Li, L. Dai, S. Huang, A. W. H. Mac, and Z. L. Wang,”Structure and growth of aligned carbon nanotube films by pyrolysis,” Chem. Phys. Lett., 316 (2000) 349.
[40] J. C. Hulteen, and C. R. Martin,“A general template-based method for the preparation of nanomaterials,”J. Mater. Chem., 7(7) (1997) 1075.
[41] J. S. Suh, and J. S. Lee,“Highly ordered two-dimensional carbon nanotubearrays,” Appl. Phys. Lett., 75 (1999) 2047.
[42] Z. H. Yuan, H. Huang, H. Y. Dang, J. E. Cao, B. H. Hu, and S. S. Fan,“Field emission property of highly ordered monodispersed carbon nanotube arrays,” Appl.Phys. Lett., 78 (2001) 3127.
[43 ]X. Y. Zhang, L. D. Zhang, M. J. Zheng, G. H. Li, and L. X. Zhao,“Template synthesis of high-density carbon nanotube arrays,” Journal of Crystal Growth, 223 (2001) 306.
[44] E. J. Bae, W. B. Choi, K. S. Jeong, J. U. Chu, G. S. Park, S. Song, and I. K. Yoo,“Selective growth of carbon nanotubes on pre-patterned porous anodic aluminum oxide,” Adv. Mater. 14 (2002) 277.
[45] G. Zheng, H. Zhu, Q. Luo, Y. Zhou, and D. Zhao,“Chemical vapor deposition of well-aligned carbon nanotube patterns on cubic mesoporous silica films by soft lithography,”Chem. Mater., 13[12] (2001) 4416 .
[46] S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai,“Self-oriented regular arrays of carbon nanotubes and their field emissionproperties,”Science, 283 (1999) 512.
[47] N. Wang, Z. K. Tang, G. D. Li, J. S. Chen,“Single-walled 4Å carbon nanotube arrays,”Nature, 408 (2000) 50.
[48] Y. C. Sui, D. R. Acosta, J. A. Gonzalez-Leon, A. Bermudez, J. Feuchtwanger, B. Z. Chi, J. O. Flores, and J. M. Saniger, “Structure, thermal, stability, and deformation of multibranched carbon nanotubes synthesized by CVD in the AAO template”, J. Phys. Chem. B, 105 (2000) 1523.
[49] G. Che, B. B. Lakshmi, C. R. Martin, and E. R. Fisher,“Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method,” Chem. Mater, 10 (1998) 260.
[50] C. Bower, W. Zhu, S. Jin, and O. Zhou,“Plasma-induced alignment of carbon nanotubes”, Appl. Phys. Lett., 77 (2000) 830.
[51] Y. Avigal and R. Kalish,“Growth of aligned carbon nanotubes by biasing during growth”, Appl. Phys. Lett., 78 (2001) 2291.
[52]Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenlimez, J. Kong, and H. Dai, “Electric-field-directed growth of aligned single-walled carbon nanotubes”, Appl. Phys. Lett., 79 (2001) 3155.
[53] Y. H. Wang, J. Lin, C. H. A. Huan, and G. S. Chen,“Synthesis of large area aligned carbon nanotube arrays from C2H2-H2 mixture by rf plasma-enhanced chemical vapor deposition”, Appl. Phys. Letts., 79 (2001) 680.
[54] M. Tanemura, K. lwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, and V. Filip,“Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition : Optimization of growth parameters,”J. Appl. Phys., 90 (2001) 1529.
[55]V. I. Merkulov, A. V. Melechko, M.l A. Guillorn, D. H. Lowndes, and Michael L. Simpson, “ Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition”, Appl. Phys. Lett., 79 (2001) 2970.
[56] A. P. Burden, and S. R. P. Silva,“Fullerene and nanotube formation in cool terrestrial ”dusty plasmas””, Appl. Phys. Lett., 73 (1998) 3082.
[57] Y. Chen, D. T. Shaw, and L. Guo,“Field emission of different oriented carbon nanotubes”, Appl. Phys. Lett., 76 (2000) 2469.
[58]R. T. K. Baker, P. S. Harris, R. B. Thomas, R. J. Waite, “Formation of filamentous carbon from iron, cobalt, and chromium catalyzed decomposition of acetylene,”J.Catal., 30 (1973) 86.
[59] http://students.chem.tue.nl/ifp03/synthesis.html.
[60] A. Oberlin, M. Endo, T. Koyama, “High resolution electron microscopy ofgraphizable carbon fiber prepared by benzene decomposition”, Jap. J. Appl. Phys.,16 (1997) 1519.
[61] R. T. K. Barker, J. R. Alonzo, and J. A. Dumesic, “Effect of the surface state of iron on filamentous carbon formation”, J. Catal., 771 (1982) 74.
[62] W. L. Holstein, and M. Boudart, “The temperature difference between a supported catalyst particle and its support during exothermic and endothermic catalytic reaction”, Rev. Latinoam Ing. Quim. Quim. Apl., 132 (1983) 107.
[63] O. A. Louchev, Y. Sato, and H. Kanda,“Growth mechanism of carbon nanotube forests by chemical vapor deposition,”Appl. Phys. Lett., 80 (2002) 2752.
[64] R. T. K. Baker, “Catalytic growth of carbon filaments,”27(3) (1989) 315.
[65] A. V. Melechko, V. I. Merkulov, D. H. Lowndes, M. A. Guillorn, and M. L.Simpson, “Transition between base and tip carbon nanofiber growth modes”, Chem.Phys. Lett., 356 (2002) 527.
[66]失宏偉、吴德海、徐才录著, “碳納米管”, 機械工業出版社, (2003).
[67] Y.T. Jang, J.H. Ahn, Y.H. Lee and B.K. Ju, “Effect of NH3 and thickness of catalyst on growth of carbon nanotubes using thermal chemical vapor deposition”, Chemical Physics Letters, 372 (2003) 745.
[68] A. Okita, Y. Suda and A. Oda, ” Effects of hydrogen on carbon nanotube formation in CH4/H2 plasmas”, Carbon, 45 (2007) 1518.
[69] http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch3.htm.
[70] http://www.reade.com/index.php.
[71] http://www.icmm.csic.es/fis/english/evaporacion_resistencia.html.
[72] Y. Murakami, Y. Miyauchi, S. Chiashi and S. Maruyama, “Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates chemical”, Chemical Physics Letters, 377 (2003) 49.
[73] Ch. Emmenegger, P. Mauron, A. Zuttel, Ch. Nutzenadel, A. Schneuwly, R. Gallay and L. Schlapbach, “Carbon nanotube synthesized on metallic substrates”, Applied Surface Science, 162-163 (2000) 452.
[74] G.S. Choi, Y.S. Cho, K.H. Son and D.J. Kim, “ Mass production of carbon nanotubes using spin-coating of Nanoparticles”, Microelectronic Engineering, 66 (2003) 77.
[75] W.E. Alvarez, B. Kitiyanan, A. Borgna and D.E. Resasco, “Synergism of Co and Mo in the catalytic production of singlewall carbon nanotubes by decomposition of CO”, Carbon, 39 (2001) 547.
[76] H. Sato, M. Matsubayashi, T. Sakai, K. Hata, H. Miyake, K. Hiramatsu, A. Oshita and Y. Saito, “Growth characteristics of carbon nanotues on nanotip-formed substrate”, American Vacuum Society, 24 (2006) 1004.
[77] X.J. Li and W.F. Jiang, “Enhanced field emission from a nest array of multi-walled carbon nanotubes grown on a silicon nanoporous pillar array”, Nanotechnology, 18 (2007) 065203.
[78] C. Li, G. Fang, L. Yuan, N. Liu, L. Ai1, Q. Xiang, D. Zhao, C. Pan and X. Zhao, “Field emission from carbon nanotube bundle arrays grown on self-aligned ZnO nanorods”, Nanotechnology, 18 (2007) 155702.
[79] H.V. Jansen, J.G.E. Gardeniers, J. Elders, H.A.C. Tilmans, M. Elwenspoeke, “Applications of fluorocarbon polymers in micromechanics and micromachining”, Sensors and Actuators A, 4142 (1994) 136140.
[80] B van der Schoot, Coulometnc sensors, PhD Thesis, University of Twente, (1986).
[81] V. Yanev, S. Krischok, A. Opitz, H. Wurmus, J.A. Schaefer, N. Schwesinger and S.I.U. Ahmed, “Influence of the RF power on the deposition rate and the chemical surface composition of fluorocarbon films prepared in dry etching gas plasma”, Surface Science, 566-568 (2004) 1229.
[82] Y. Yamada, O. Tanaike, T.T. Liang, H. Hatori, S. Shiraishi and A. Oya, “Electric double layer capacitance performance of porous carbons prepared by defluorination of polytetrafluoroethylene with potassium”, Electrochemical and Solid-State Letters, 5 (2002) A283.
[83] A. Yasuda, N. Kawase, T. Matsui, T. Shimidzu, C. Yamaguchi and H. Matsui, “Carbyne: electrochemical preparation and nanotube formation”, Reactive and Functional Polymers, 41 (1999) 13.
[84] A. Yasuda and W. Mizutani, “Carbon nanostructure formation by a reduction of PTFE”, Thin Solid Films, 438-439 (2003) 313.
[85] A. Yasuda and W. Mizutan, “Carbon nanotube formation by an electron beam: alignment and space effect of the precursor”, Thin Solid Films, 464-465 (2004) 282.
[86] R. H. Fowler, L. W. Nordfeim, Proceedings of of the Royal Society of London-A119 (1928) 173.
[87] Xin Jian Li,Wei Fen Jiang “Enhanced field emission from a nest array of multi-walled carbon nanotubes grown on a silicon nanoporous pillar array”, Nanotechnology 18 (2007) 065203,p4.
[88] C.A. Spindt, J. Appl, phys. 39, (1968) 3504
[89] Nai-Gui Shang , Fan-Yu Meng “ Fabrication and Field Emission of High-Density Silicon Cone Arrays” Adv,Mater,2002,14,No.18,September 16
[90] H. C. Lo, D. Das “ SiC-capped nanotip arrays for field emission with ultralow turn-on field” Applied physics letters Vol.83 No.7,2003 Augest 18.
[91] X.D. Bai “High-Density uniformly aligned silicon nanotip arrays and their enhanced field emission characteristics ”Solid State Communications 125(2003),185-188.
[92] S. Johnson “Field emission properties of self-assembled silicon nanostructures on n-and p-typre silicon ”Applied physics letters Vol.85 No.15 2004 October 11
[93] J.C. She “Field electron emission of Si nanotips with apexes of various compositions ”Applied physics letters 87,052105(2005)
[94] Q Wang ,J J Li “Field emission properties of carbon coated Sinanocone arrays on porous silicon ”Nanotechnology 16(2005)02919-2922.
[95] Ho-Yen Hsieh “High-density ordered triangular Si nanopillars with sharp tips and varied slopes:one-step fabrication and excellent field emission properties ”Nanotechnology 18 92007)905305 (5pp).
[96] Xiao-sheng Fang “Si nanowire semisphere-like ensembles as field emitters” Chem. Commun.,2007 4093-4095
[97] Bo Juang ,Song “Growth of carbon nanotube on well-aligned silicon nanograss ”中央大學碩士論文(2008)
[98] Wei Li, Jiang Zhou, Xian-gao Zhang, “Field emission from a periodic amorphous silicon pillar array fabricated by modified
nanosphere lithography” Nanotechnology 19 (2008) 135308, p3,4.
[99] C.A. Spindt, J. Appl, phys. 39, (1968) 3504.
[100] Z.P. Huang, Y.Tu, D.L.Carnahan, Z.F. Ren,”Field Emission of Carbon Nanatubes” Encyclopedia of Nanoscience and Nanotechnology.
指導教授 謝健、周正堂
(Jiann Shieh、Cheng-Tung Chou)
審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明