博碩士論文 963204028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.145.178.240
姓名 陳君達(Chen Chun-Ta)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
(Sucrose Conformational Polymorphism and Co-solvent Screening of Acetaminophen)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
★ 生命的起源與天門冬氨酸在水中的結晶★ 微調具光學活性聯二萘酚和其二甲亞碸包合物的光激發光性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文實驗的研究方向是討論蔗糖的多型晶體。一般市面上的蔗糖有一吸熱峰於攝氏189度。但是文獻指出,有另一個吸熱峰位於攝氏150度附近,其出現原因可能是因為鹽類的殘留、含水、不純、非晶態等。目前我們可以用糠醇作為反溶劑製造出蔗糖的另一形態位於攝氏150度附近的多型晶體。在掃描式熱差分儀中,可以看到一吸熱峰於攝氏140-170度。紅外線吸收光譜、粉末X光繞射儀與X光單晶繞射儀,鑑定出官能基-CH2-OH於波長1000-1200 cm-1有改變,fructofuranose ring 與分子內的氫鍵作用於(111), (-112), (003), (112)上發生位移。在近一步以SSNMR來分析結構於chemical shift 60-70 ppm有所不同,其官能基也與之前的儀器所表現出來的數據相似。KF與ICP-AE用於分析蔗糖中的水含量約為0.1-1.5w/w%與Na+, K+離子濃度約為1-5 ppm。Hot stage microscope可以觀察到蔗糖於不同的型態下有著不同的熔點,攝氏150-168與180-200度。最後將新型態的蔗糖運用在藥物的賦型劑為上。實驗結果初步說明了新型態的蔗糖在溶解度與溶解速率上的影響。
在另一個研究主題乙醯氨酚(acetaminophen) Form I,只要是以initial co-solvent screening的系統方式尋找多型晶體。其中以co-solvent中,THF + acetone與 THF + acetonitrile 可以得到長寬比為7.0與7.3的乙醯氨酚固體。但是經由掃描式熱差分儀鑑定後,其型態還是Form I其熔點為攝氏169度。然而THF + acetone中所得到的晶體是一twinned crystal。THF + N-butyl alcohol, THF+DMF, methanol + DMSO, methanol 1,4-dioxane, methanol + ethanol, ethanol +1,4-dioxane, DMSO + benzyl alcohol, and DMF + benzyl alcohol 系統中,其乙醯氨酚會水解與氧化成p-aminophenol與 p-benzoquimemonoimine的orange-red 溶液。雖然在這次研究中,沒有發現新的乙醯氨酚多型晶體。但是,對於製藥製程所需也提供了許多有價值的數據如溶解度,晶貌,多型晶體等。
摘要(英) Our experiments were focused on the study of the polymorph of sucrose. Normally, sucrose has an endotherm at 189oC. But in literatures, sucrose has another endotherm at 150 oC which was believed to be influenced by salt residues, water content, impurity, and crystallinity. We use an anti-solvent method to obtain sucrose solids and their polymorphism was characterized. We found a way to re-crystallize sucrose by furfuryl alcohol as an anti-solvent. The differential scanning calorimetry (DSC) thermogram of it demonstrated only one endotherm around 140o-170oC. The FT-IR spectrum, the powder X-ray diffractogram and the single crystal X-ray crystal had all pointed to the existence of polymorphs with different degree of conformational disorder about the -CH2-OH functional group, with a vibration band at 1000-1200 cm-1, in the fructofranose ring. The intramolecular hydrogen bonds were located near the reflections of (111), (-112), (112) and (003). SSMNR showed the chemical shift at 60-70 ppm having a 2-3 ppm shift pointing to the same functional group (-CH2-OH) with others instruments. KF and ICP-AES were used to determine the water content of 0.1-1.5w/w% and Na+, K+ ions about 1-5 ppm. The hot stage microscopy revealed the presence of two kinds of sucrose with melting points of 150o-168oC and 180o-200oC. Finally, we also investigated the potential application of the conformational sucrose polymorph sucrose in drug release. The experimental results showed that sucrose form II could indeed affect the dissolution rate of vitamin C.
For initial co-solvent screening of acetaminophen a systematic method was utilized to find a new acetaminophen polymorph. Although the aspect ratios of crystals grown in THF + acetone and THF + acetonitrile were 7.0 and 7.3 respectively, the DSC scan showed that they were again the Form I acetaminophen. However, acetaminophen re-crystallized from THF + acetone system produced twinned crystals. The literature showed that Form II and Form III paracetamol preparation were generated by heterogeneous or secondary nucleation. The combinations of THF + N-butyl alcohol, THF+DMF, methanol + DMSO, methanol 1,4-dioxane, methanol + ethanol, ethanol +1,4-dioxane, DMSO + benzyl alcohol, and DMF + benzyl alcohol grave light pink or pink (orange-red) solution at 25 oC with hydrolysis (p-aminophenol) and oxidation (p-benzoquimemonoimine) of acetaminophen. However, acetaminophen re-crystallized from crystal-free mother liquor was produced by homogeneous nucleation. However, we had provided a lot of engineering data for drug development. These were our major contributions of acetaminophen crystallization process.
關鍵字(中) ★ 共溶劑篩選
★ 蔗糖
★ 藥物結晶
★ 多構形多形晶體
★ 賦型劑研發
★ 乙醯氨酚
關鍵字(英) ★ excipients
★ Acetaminophen
★ Conformational Polymorphism
★ Sucrose
論文目次 摘要 I
Abstract III
Acknowledgements V
Table of Contents VI
List of Tables XII
List of Figures XIV
Chapter 1 Executive Summary 1
1.1. Introduction 1
1.2. Brief Introduction of Sucrose and Acetaminophen 5
1.2.1. Sucrose 5
1.2.2. Acetaminophen 7
1.3. Conceptual Framework 9
1.4. References 13
Chapter 2 Analytical Instruments 19
2.1. Introduction 19
2.2. Thermal Analysis 22
2.2.1. Differential Scanning Calorimetry (DSC) 22
2.2.2. Thermal Gravimetric Analysis (TGA) 29
2.3. Crystallography 32
2.3.1. Powder X-ray Diffractometry (PXRD) 32
2.3.2. Single-Crystal X-ray Diffractometry (SXD) 34
2.3.3. Variable Temperature Powder X-ray Diffraction (VT-PXRD) 38
2.4. Spectroscopic Instrument 39
2.4.1. Fourier Transform Infrared (FT-IR) Spectroscopy 39
2.5. Microscopic Methods 42
2.5.1. Optical Microscopic (OM) 42
2.5.2. Scanning Electron Microscope (SEM) 44
2.6. Karl Fischer Titrator 50
2.7. Solid-State Nuclear Magnetic Resonance (Solid-state NMR) 52
2.8. Electron Spectroscopy for Chemical Analysis (ESCA) 55
2.9. Conclusions 59
2.10. References 60
Chapter 3 Initial Solvent-Screening of Sucrose 67
3.1. Introduction 67
3.1.1. Solubility 68
3.1.2. Anti-solvent method 70
3.1.3. Polymorphism 71
3.1.4. Crystal habits 72
3.1.5. Crystallinity 72
3.2. Materials 73
3.2.1. Organic solvents 74
3.3. Experimental Section 77
3.3.1. Solubility test 77
3.3.2. Antisolvent Method 78
3.3.3. Polymorphic and Morphological Characterization 79
3.3.3.1. Differential Scanning Calorimetry (DSC) 79
3.3.3.2. Optical Microscopy (OM) 80
3.3.3.3. Thermogravimetric Analysis (TGA) 81
3.3.3.4. Powder X-ray Diffractometry (PXRD) 81
3.3.3.5. Fourier Transform Iinfrared (FT-IR) Spectroscopy 82
3.4. Results and Discussion 82
3.4.1. Solubility 82
3.4.2. Polymorph study 86
3.4.3. Crystal Habit Study 95
3.5. Conclusions 97
3.6. References 99
Chapter 4 Sucrose Polymorph Characterization 106
4.1. Introduction 106
4.2. Materials 107
4.3. Experimental Procedures 109
4.3.1. Preparation of gram-scale sucrose 109
4.3.2. Ball Milling 109
4.3.3. Granulator 110
4.3.4. Wet granulation 110
4.4. Instrumental Analysis 112
4.4.1. Differential Scanning Calorimetry (DSC) 112
4.4.2. Optical Microscopy (OM) 113
4.4.3. Hot-stage Optical Microscopy (HSOM) 113
4.4.4. Thermogravimetric Analysis (TGA) 114
4.4.5. Powder X-ray Diffractometry (PXRD) 115
4.4.6. Fourier Transform Infrared (FT-IR) Spectroscopy 115
4.4.7. Single-Crystal X-Ray Diffraction (SXD) 116
4.4.8. Scanning Electron Microscopy (SEM) 116
4.4.9. Karl Fischer Titrator 117
4.4.10. Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) 117
4.4.11. Solid-State Nuclear Magnetic Resonance (Solid-State NMR) . 118
4.4.12. Variable Temperature Powder X-ray Diffraction (VT-PXRD) 119
4.4.13. Electron Spectroscopy for Chemical Analysis (ESCA) 119
4.4.14. Dry Sieving 120
4.4.15. Electrical Conductance 120
4.4.16. Dissolution Test 121
4.5. Results and Discussion 122
4.5.1. Polymorphism Study 122
4.5.2. Single crystal X-ray diffraction and Solid-state NMR data 126
4.5.3. Hot-stage Optical Microscopy (HSOM) Study 147
4.5.4. Solubility Curve and Dissolution Rate Test 149
4.5.5. Sucrose Vacuum Evaporation Re-crystallization 156
4.6. Conclusions 162
4.7. References 163
Chapter 5 Co-solvent Screening of Acetaminophen 169
5.1. Introduction 169
5.1.1. Polymorphism 171
5.2. Materials 172
5.3. Experiment Methods 174
5.3.1. Solubility Test 174
5.3.2. Solvent Screening of Acetaminophen 178
5.3.3. Polymorphism and Morphology Characterization 179
5.3.4. Differential Scanning Calorimetry (DSC) 179
5.3.5. Optical Microscopy (OM) 180
5.4. Results and Discussion 180
5.4.1. Solubility 180
5.4.2. Polymorph Study 192
5.4.3. Morphology Study 200
5.5. Conclusions 208
5.6. References 209
Chapter 6 Conclusions and Future Works 215
參考文獻 Chapter 1
P. Honig, “Chemical properties of sucrose,” Chapter 1 of “Principle of Sugar Technology,” 1st ed, (West Indies Sugar Corporation, New York, USA, 1965), pp. 1-8
http:// 64.233.179.104/translate中天期貨 Joint Future (2000)
陳治玄,“登糖入室,”台灣糖業研究所“科學發展”384, 56-61 (2004)
P. Honig, chapter 1 “Chemical properties of sucrose,” “Principle of sugar technology,” 1st ed, (Technical Research Director West Indies Sugar Corporation, New York, USA, 1965), pp. 24-25
S. V. Shah, and Y. M. Chakradeo “A note of the melting point of cane sugar,” Current Sci., 4, p. 652 (1936)
P. Fryer and K. Pinschower, “The materials science of chocolate,” MRS Bull., 25(12), 25-29 (2000)
A. Saleki-Gerhardt and G. Zografi, “Non-isothermail crystallization of sucrose from the amorphous state,” Pharm. Res., 11(8), 1166-1173 (1994)
C. Han, and B. Wang, “Factors that impact the developability of drug candidates: an overview,” Chapter 1 of drug delivery: principles and applications, edited by B. Wang, T. Siahaan, and R. Soltero, John Wiley & Sons, pp. 1-5 (2005)
K. Sweeny, “Technology trends in drug discovery and development: implications for the development of the pharmaceutical industry in Australia”, Draft Working Paper No. 3, Pharmaceutical Industry Project, CSES, Victoria University, Melbourne, pp. 1-29 (2002)
M. S. Lipsky, MD, and K. Sbarp, “From idea to market: the drug approval process,” JABFP., 14(5), 362-367 (2001)
A. Mehta, “Birth of a drug,” Mod. Drug Discovery., 7(2), 37-42 (2004)
Burrill & Company, analysis for pharmaceutical research and manufacturers of America, 2006.
J. Wechsler, “Manufacturers face new challenges battling global threats,” Pharm. Tech., 30(8), 24-32 (2005).
P. H. Karpinski, “Polymorphism of active pharmaceutical ingredients,” Chem. Eng. Technol., 29(2), 233-237 (2006)
J. Bernstein, R. J. Davey, and Jan-Olav Henck, “Concomitant polymorphs,” Angew.Chem. Int. Ed., 38(23), 3440-3461 (1999).
L. X. Yu, M. S. Furness, A. Raw, K. P. W. Outlaw, N. E. Nashed, E. Ramos, S. P. F. Miller, R. C. Adams, F. Fang, R. M. Patel, F. O. Holcombe, Jr., Y. Y. Chiu, and A. S. Hussain, “Scientific considerations of pharmaceutical solid polymorphism in abbreviated new drug applications,” Pharm. Res., 20(4), 531-536 (2003).
P. Honig, “Chemical properties of sucrose,” Chapter 1 of Principle of sugar technology 1rd ed, (West Indies Sugar Corporation: New York, USA, 1965), pp. 2-3
P. Honig, “Chemical properties of sucrose,” Chapter 1 of Principle of sugar technology 1st ed, (West Indies Sugar Corporation: New York, USA, 1965), pp. 1-3
M. S. Jeffery “Key functional properties of sucrose in chocolate and sugar confectionery,” Food Tech., 47(1-3), 141-144 (1993)
A. Awad and A. C. Chen, “A new generation of sucrose products made by cocrystallization,” Food Tech., 47(1-3), 146-148 (1993)
M. Mathlouthi and P. Reiser, “The structure of sucrose in the crystal and in solution,” Chapter2 in “Sucrose Properties and Applications,” 1st ed, (Champman & Hall, London, UK, 1995,) p. 44
S. L. Wang, S. Y. Lin, and Y. S. Wei, “Transformation of metastable forms of acetaminophen Studied by thermal Fourier transform infrared(FT-IR) microspectroscopy,” Chem. Pharm. Bull., 50(2), 153-156 (2002)
G. Nichols and S. Frampton, “Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution,” J. Pharm. Sci., 87(6), 684-693 (1998)
www.accelrys.com, “C2. Polymorph”,Cerius2 Datasheet
M. Szelagiewicz, C. Marcolli, S. Cianferani, A. P. Hard, A. Vit, A. Burkhard, M. von Raumer, U. Ch. Hofmeier, A. Zilian, E. Francotte and R. Schenker, “In situ characterization of polymorphic forms the potential of Raman techniques,” J. Therm. Analy. Calor., 57(1), 23-43 (1999)
巢佳莉, “OTC止痛藥市場概況與發展趨勢,” ITRI (2002)
The annual report of Glaxo SmithKline (GSK) from 2002 to 2006.
R. A. Granberg and A. C. Rasmuson, “Solubility of paracetamol in pure solvents,” J. Chem. Eng. Data., 44(6), 1391-1395 (1999)
B. A. Hendriksen and D. J. W. Grant, “The effect of structurally related substances on the nucleation kinetics of paracetamol (acetaminophen),” J. Cry. Grow., 156(3), 252-260 (1995)
R. I. Ristic, S. Finnie, D. B. Sheen, and J. n. Sherwood, “Macro- and micromorphology of monoclinic paracetamol grown from pure aqueous solution,” J. Phys. Chem. B, 105(38), 9057-9066 (2001)
T. Lee, S. T. Hung, and C. S. Kuo, “Polymorph farming of acetaminophen and sulfathiazole on a chip,” Pharm. Res., 23(11), 2542-2555 (2006)
T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, polymorphism, crystallinity, and crystal habit of Acetaminophen and ibuprofen by initial solvent screening,” Pharm. Tech., 30(10), 72-92 (2006)
C. J. Moye, “Non-aqueous solvents for carbohydrates,” Adv. Carbo. Chem. Biochem., 27, 85-125 (1972)
D. K. Kondepudi, and K. E. Crook, “Theory of conglomerate crystallization in the presence of chiral impurities,” Cryst. Growth Des., 5(6), 2173-2179 (2005)
B. Rodrıguez-Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. Rodrıguez-Hornedo, “General principles of pharmaceutical solid polymorphism: a supramolecular perspective,” Advanced Drug Del Rev., 56(2), 241– 274 (2004)
P.T Cardew, and R. J. Davey, “The kinetics of solvent-mediated phase transformation,” Math. Phys. Sci., 398(1815), 415-428 (1985)
S. R. Byrn, P. A. Sutton, B. Tobias, J. Frye, and P. Main, “The crystal structure, solid-state NMR Spectra, and oxygen reactivity of five crystal forms of prednisolone tert-butylacetatet,” J. Am. Chem. Soc., 110(5), 1609-1614 (1988)
U. R. Desai, I. R. Vlahov, A. Pervin, and R. J. Linhardt, “Conformational analysis of sucrose octasulfate by high resolution nuclear magnetic resonance spectroscopy,” Carbo. Res., 275(2), 391-401 (1995)
B. E. Padden, M. T. Zell, Z. Dong, S. A. Schroeder,D. J. W. Grant, and E.J. Munson, “Comparison of solid-state 13C NMR spectroscopy and powder X-ray diffraction for analyzing mixtures of polymorphs of neotame,” Anal. Chem., 71(16), 3325-3331 (1999)
C. R. Chen, Y. H. lin, S. L. Cho, S. H. Yen, and H. L. S. Wu, “ Investigation of the dissolution difference acidic and neutral media of acetaminophen tables containing a super distintegrant and a soluble excipient,” Chem. Pharm. Bull., 45(3), 509-512 (1997)
Chapter 2
T. L. Threlfall, “Analysis of organic polymorphs : A Review,” The analyst, 120(10), 2435-2460 (1995)
D. Giron, “Thermal Analysis and Calorimetric Methods in the Characterization of polymorphs and solvate,” Thermochim. Acta, 248(1), 1-59 (1995)
D. Giron, “Applications of thermal analysis and coupled techniques in pharmaceutical industry,” J. Therm. Anal. Calorim., 68(2), 335-357 (2002)
H. Gloria, and D. Sievert, “Changes in the physical state of sucrose during dark chocolate processing,” J. Agric. Food Chem., 49(5), 2443-2436 (2001)
B. E. Padden, M. T. Zell, Z. Dong, S. A. Schroeder, D. J. W. grant, and E.j. Munson, “Comparsion of solid-state 13C NMR spectroscopy and powder X-ray diffraction for analzing mixtures of polymorph of neotme,” Anal. Chem. 71(16), 3325-3331 (1999)
K. L. A. Chan, and S. G. Kazarian, “Fourier transform infrared imaging for high-throughput analysis of pharmaceutical formulation,” J. Comb. Chem., 7(2), 185-189 (2005)
T. C. Huang, “Automatic X-ray single crystal structure analysis system for small molecule,” The Rigaku J., 21(2), 43-46 (2004)
T. Yoshinari, R.T. Forbes, P. York, and Y. Kawashima, “Moisture induced polymorphic transition of mannitol and its morphological transformation,” Int. J. of Pharm., 247(1-2), 69-77 (2002)
M. J. Arias, J. M. Gines, J. R. Moyano, J. I. Perez-Martinez, and A. M. Rabasco, “Influence of the preparation method of solid dispersions on their dissolution rate:study of triamterene D-mannitol system,” Int. J. of Pharm., 123(1), 25-31 (1995)
B.Snider, P. Liang, and N. Pearson, “Implementation of water-activity testing to replace Karl Fischer water testing for solid oral-dosage forms,” Pharm. Tech., 31(2), 1-10 (2007)
L. Yu, S. M. Reutzel, and G. A. Stephenson, “Physical characterization of polymorphic drugs: an integrated characterization strategy,” Pharm. Sci. Tech. Today, 1(3), 118-127 (1998)
P. J. Haines, and F. W. Wilburn, “Thermal methods of analysis principles differential,” Chapter 3 in Thermal Analysis and Differential Scanning Calorimetry, Applications and Problems, 1st ed, (Blackie Academic and Professional, New York, USA, 1995,) pp.63- 89
E. V. Boldyerva, V. A. Drebushchak, I. E. Paukov, Y. A. Kovalevskaya, and T. N. Drebushchak, “DSC and adiabatic calorimetry study of the polymorphs of paracetamol,” J. of Therm. Anal. Calor., 77(2), 607-623 (2004)
T. L. Threlfall, “Analysis of organic polymorphs : A Review,” The analyst, 120(10), 2435-2460 (1995)
P. J. Haines, “Thermal methods of analysis – principles, applications and problems,” Blackie Acadmic & Professional, N.Y., 1995) p.89
J. W. Lubach, and E. J Munson, “Solid-state spectroscopy,” Chapter 4 of Polymorphism, 1st ed, (In the pharmaceutical industry: Weinheim, Germany, 2006) pp82-84
G.. Eggleston, B. J. Trask-Morrell, and J. R. Vercellotti, “Use of differential scanning calorimetry and thermogravimetric analysis to characterize the thermal degradation of crystalline sucrose and dried sucrose-salt residues,” J. Agric. Food Chem., 44(10), 3319-3325 (1996)
J. Formica, “X-ray diffraction,” Chapter 18 in “Handbook of instrumental techniques for analytical chemistry”, edited by F. A. Settle, (Prentice Hall PTR, New Jersey, USA, 1997,) pp.339-353
A. Schouten, J. A. Kanters, J. Kroon, S. Comini, P. Looten, and M. Mathlouthi, “Conformational polymorphism of D-sorbitol (D-glucitol) :the crystal and molecular structures of D-glucitol 2/3-hydrate and epsilon D-glucitol,” Carbohydr. Res., 312, 131-137 (1998)
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Principles of instrucmental analysis,” 5th ed, (Thomson Learnin, Mississippi, USA, 2001,) pp.182-183
F. Rouessac, and A. Rouessac, “Chemical analysis-modern instrumentation methods and Techniques,” Chapter 10 in Infrared Apectroscopy, 1st ed, (John Willy & Sons, chichester, England, 2001, )pp.170-173
W. F. Wolkers, A. E. Oliver, f. Tablin, and J. H. Crowe, “A fourier-transform infrared spectroscopy study of sugar glasses,” Carbohydr. Res., 339(6), 1077 (2004)
H. Takahashi, R. Chen, H. Okamoto, and K. Danjo, “Acetaminophen particle design using chitosan and a spray-drying technique,” Chem. Pharm. Bull., 53(1), 37-41 (2005)
D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Introduction to spectroscopy: a guide for students of origanic chemistry,” “Chapter 2 in “Infrared Spectroscopy,” 1st ed, (Thomson Learning, Inc., USA, 2001,) pp.45-68
N. Rasenaack and B. W. Muller, “Crystal habit and tableting behavior,” Int. J. Pharm., 244(1-2), 45-57 (2002)
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Chapter 5 of “Powder Technology Hand Book”, 2nd ed, (USA, 1997,) pp.720-730
K. Gotoh, H. Masuda, and K. Higashitani, “Fundamental properties of powder Beds,” Chapter 3 in “Powder Technology Hand Book,” 2nd ed, (USA, 1997,) pp.413-423
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Chapter 5 in Powder Technology Hand Book, 2nd ed, (USA, 1997) pp.659-661
D. A. Skoog, F. J. Holler and T. A. Nieman, “Surface characterization by spectroscopy and microscopy”, Chapter 21 in “Principles of instrumental analysis,” Fifth edition, (Thomson Learning Inc, USA, 2001,) pp. 549-553
R. E. Reed-hill, “Analytical Methods,” Chapter 2 in “Physical Metallurgy Principles, “Third Edition, (edited by J. Plant, PWS Publishing Company, Boston, USA, 1994,) pp.53-60,
S. A. Margolis, “Amperometric measurement of moisture in transformer oil using Karl Fischer reagents,” Anal. Chem., 67(23), 4239-4246 (1995)
J. W. Lubach, and E. J Munson, “Solid-state spectroscopy,” Chapter 4 in “Polymorphism in the pharmaceutical industry,” 1st ed, (Weinheim, R. Hilfiker, Germany, 2006,) pp.81-82
B. E. Padden, M. T. Zell, Z. Dong, S. A. Schroeder, D. J. W. Grant, and E. J. Munson, “Comparison of solid-state 13C NMR spectroscopy and powder X-ray diffraction for analyzing mixture of polymorphs of neotame,” Anal. Chem., 71(6), 3325-3331 (1999)
J. W. Lubach, and E. J Munson, “Solid-state spectroscopy,” Chapter 4 in “Polymorphism in the pharmaceutical industry,” 1st ed, Weinheim, R. Hilfiker, Germany, 2006, pp.83-84
P. A. Thishamck, D. E. Bugay, and S. R. Byrn, “Solid-state nuclear magnetic resonance spectroscopy-pharmaceutical applications,” J. of Pharm. Sci., 92(3), 441-474 (2003)
A. Pines, M. G.. Gibby, and J. S. Waugh, “ Proton-enhanced NMR of dilute spins in solids,” J. Chem. Phys., 59, 505-590 (1973)
T. J. Offerdahl, “Solid-state nuclear magnetic resonance spectroscopy for analyzing polymorphic drug forms and formulations,” Pharm. Tech., 30(2), 24-42 (2006)
L. R. Chen, B. E. Padden, S. R. Vippagunta, E. J. Munson, and D. J. W. Grant, “Nuclear magnetic resonance and infrared spectroscopic analysis of nedocromil hydrates,” Pharm. Res., 17(5), 619-624 (2000)
M. Sezlagiewicz, C. Marcolli, S. Cianferani, A. P. Hard, A. Vit, A. Burkhard, M.von Raumer, U. Ch. Hofmeier, A. Zilian, E. Francotte, and R. Schenker, “In situ characterization of polymorphic forms,” J. of Therm. Anal. and Calor., 57(1), 23-43 (1999)
K. Durose, S. E. Asher, W. Jaegermann, D. Levi, B. E. McCandless, W. Metzger, H. Moutinho, P. D. Paulson, C. L. Perkins, J. R. Sites, G. Teeter, and M. Terheggen, “Physical Characterization of Thin-film Solar Cells,” Prog. Photovolt.: Res. Appl., 12(2-3), 177-217 (2004)
D. R. Chopra, and A. R. Chourasia, “X-ray photoelectron Spectroscopy, ” Chapter 43 in Handbook of Instrumental Techniques foe Analytical chemistry (Prentice Hall PTR, New Jersey, USA, 1997) pp.809-812
Chapter 3
Y. Akpalu, L. Kielhorn, B. S. Hsiao, R. S. Stein, T. P. Russell, J. V. Egmond, and M. Muthukumar, “Structure development during crystallization of homogeneous copolymers of ethene and 1-octene: time-resolved synchrotron x-ray and SALS measurements,” Macromol., 32(3), 765-770 (1999)
H. Ahari, R. L. Bedard, Carol L. Bowes,N. Coombs, G.. A. Ozin, S.Petrov, I. Sokolov, A. Verma, G. Vovk, and D. Young, “Effect of microgravity on the crystallization of a selfassembling layered material,” Nature, 388(6645), 857-860 (1997)
A. J. Wright, S. E. Mcgauley, S. S. Narine, W. M. Willis, R.W. Lencki, and A. G.. Marangoni, “Solvent effect on the crystallization behavior of milk fat fractions,” J. Agric. Food Chem., 48(4), 1033-1040 (2000)
K. Gotoh, H. Masuda, and K. Higashitani, “Preparation of powder,” Chapter 6 in Powder Technology Hand Book, 2nd ed, (Marcel Dekker, New York, USA, 1997) pp. 459-468
S. L. Morissettea, O. Almarssona, M. L.Petersona, J. F. Remenara, M. J. Reada, A. V. Lemmoa, S. Ellisa, M. J. Cimab, and C. R. Gardnera, “High-throughput crystallization: polymorphs, salt, co-crystals and solvates of pharmaceutical solids,” Adv. Drug Del. Rev., 56(3), 275-300 (2004)
A. J. Wright, S. E. McGauley, S. S. Narine, W. M. Willis, R. W. Lencki, and A. G. Marangoni, “Solvent effects on the crystallization behavior of milk fat fractions,” J. Agric. Food Chem., 48(4), 1033-1040 (2000)
A. Gracin, and A.C. Rasmuson, “Solubility of Phenylacetic acid, p-hydroxyphenylacetic acid, p-aminophenylacetic acid, p-hydroxybenzoic acid, and ibuprofen in pure solvents,” J. Chem. Eng. Data, 47(6), 1379–1383 (2002)
T. Lee, S. T. Hung, and C. S. Kuo, “Polymorph Farming of Acetaminophen and Sulfathiazole on a Chip,” Pharm. Res., 23(11), 2542-2555 (2006)
T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening,” Pharm. Tech., 30(10), 72-92 (2006)
D. K. Kondepudi, and K. E. Crook, “Theory of conglomerate crystallization in the presence of chiral impurities,” Cryst. Growth Des., 5(6), 2173-2179 (2005)
T. Threlfall, “Crystallisation of polymorphs: thermodynamic insight into the role of solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000)
S. T. Beckett, M. G. Francesconi, P. M. Geary, G. Mackenziea and A. P. E. Maulny, “DSC study of sucrose melting,” Carbo. Res., 341(15), 2591–2599 (2006)
K. Kawakami, K. Miyoshi, N. Tamura, T. Yamaguchi, and Y. Ida, “Crystallization of sucrose glass under ambient conditions: behavior of resultant crystals,” J. of Pham. Sci., 95(5), 1354-1363 (2006)
T. Lee and Y. Sheng Lin, “Dimorphs of sucrose”, Int.l Sugar J., 109, 1303 (2007)
W. Oswald, “Studien uber die bildung and umwandlung fester korper”, Z. Phys. Chem. 22, 289-302. (1897)
C. J. Price, “Take some solid steps to improve crystallization,” Chem. Eng. Prog., 93(9), 34-43 (1997)
D. Fox, M. M. Labes, A. Weissberger, “Physics and chemistry of the organic solid state,” (W. C. McCrone New York, 1965) pp. 753-767
J. Berstein, R. J. Davey and Jan-Olav Henck, “Concomitant polymorphs,” Angew. Chem. Int. Ed, 38(23), 3440-3461 (1999).
N. Rasenaack and B. W. Muller, “Crystal habit and tableting behavior,” Int. J. Pharm., 244(1&2), 45-57 (2002)
F. Giordano, A. Rossi, R. Bettini, A. Savioli, A. Gazzaniga, and Cs. Novak, “Thermal behavior of paracetamol-polymeric excipients mixtures,” J. Therm. Anal. Calorim., 68(2), 575-590 (2002)
H. Takahashi, R. Chen, H. Okamoto, and K. Danjo, “Acetaminophen particle design using chitosan and a spryay-drying technique,” Chem. Pharm. Bull., 53(1), 37-41 (2005)
J. W. Mullin, “Solution and solubility.”, Chapter 3 in Crystallization, Paperback ed, (Butterworth-Heinemann, OXFORD, UK, 1997) pp.93, 248-250
A. K. Tiwary, “Modification of crystal habit and its role in dosage form performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001)
M. Lahav and L. Leiserowitz, “The effect of solvent on crystal growth and morphology,” Chem. Eng. Sci., 56(7), 2245-2253 (2001)
D. Gao, and J. H. Rytting, “Use of solution calorimetry to determine the extent of crystallinity of drugs and excipients,” Int. J. Pharm., 151(2), 183-192 (1997)
Y. Kong, and J. N. Hay, “The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC,” Eur. Polym. J., 39(8), 1721-1727(2003)
F. Giordano1, A. Rossi1, R. Bettini1, A. Savioli1, A. Gazzaniga, and Cs. Nov?k, “Thermal behavior of paracetamol-polymeric excipients mixtures,” J. Therm. Anal. Calor., 68(2), 575-590 (2002)
M. Garcia, G. Vliet, M. G. J. ten Cate, F. Chavez, B. Norder, B. Kooi, W. E. van Zyl, H. Verweij, and H. A. Blank “Large-scale extrusion processing and characterization of hybrid nylon-6/SiO2 nanocomposites,” Polym. Adv. Technol., 15(4), 164-172 (2004)
A. A. Lacey, D. M. PRICE, and M. Reading, “Theory and practice of modulated temperature differential scanning calorimetry,” Annu. Rev. Phys. Chem., 47(1), 243-282 (1996)
P. Honig, “Chemical properties of sucrose,” Chapter 1 in Principle of sugar technology, 1st ed., (West Indies Sugar Corporation, New York, USA, 1965), pp. 24-25
P. Honig, “Chemical properties of sucrose,” Chapter 1 of Principle of sugar technology, 1st ed., (West Indies Sugar Corporation, New York, USA, 1965), pp1-8
P. Barrett, B. Smith, J. Worlitschek, V. Bracken, B. O, Sullivan, and D. O, Grady, “A Review of the use of process analytical technology for the understanding and optimization of production batch crystallization processes,” Org. Process Res. Dev., 9(3), 348-355 (2005)
C. J. Moye, “Non-aqueous solvents for carbohydrates,” Adv. Carbo. Chem. Biochem., 27, 85-125 (1972)
H. Gloria, and D. Sievert, “Changes in the physical state of sucrose during dark chocolate processing,” J. Agric. Food Chem., 49(5), 2443-2436 (2001)
G.. Eggleston, B. J. Trask-Morrell, and J. R. Vercellotti, “Use of differential scanning calorimetry and thermogravimetric analysis to characterize the thermal degradation of crystalline sucrose and dried sucrose-salt residues,” J. Agric. Food Chem., 44(10), 3319-3325 (1996)
M. Okuno, S. Kishihara, M. Otsuka, S. Fujill, and K. Kawasaki, “Variability of melting behavior of commercial granulated sugar measured by differential scanning calorimetry,” Int. Sugar J., 105(1249), 29-35 (2003)
S. T. Beckett, M. G. Francesconi, P. M. Geary, G. Mackenziea and A. P. E. Maulny, “DSC study of sucrose melting,” Carbo. Res., 341(15), 2591–2599 (2006)
B. I. M. Grimsey, and T. M. Herrington, “The formation of inclusions in sucrose crystals,” Int. Sugar J., 96(1152), 504-514 (1994)
G.. Eggleston, B. J. Trask-Morrell, and J. R. Vercellotti, “Use of differential scanning calorimetry and thermogravimetric analysis to characterize the thermal degradation of crystalline sucrose and dried sucrose-salt residues,” J. Agric. Food Chem., 44(10), 3319-3325 (1996)
S. J. Angyal, “The Lobry de Bruyn-Alberda van Ekenstein transformation and related reaction,” Topic in Curr. Chem., 215, 1-14 (2001)
G.. Eggleston, J. R. Vercellotti, “Degration of sucrose, glucose and fruction in concentrated aqueous solution under constant pH condition at Elevated Temperature,” J. Carbohydr. Chem., 19(9), 1305-1318 (2000)
E. L. Ponce-Lee, A. Olivares-P?rez, and I. Fuentes-Tapia, “Sugar hologram,” Opt. Mater., 26(1), 5-10 (2004)
N. Rasenaack, and B. W. Muller, “Crystal habit and tableting behavior,” Int. J. Pharm., 244(1-2), 45-57 (2002)
J. M. E. Bunyan, N. Shankland, and D. B. Sheen, “Solvent effect on the morphology of ibuprofen,” Particle Design via Crystallization AIChE Symp. Series, 87(284), 44-57 (1991)
Chapter 4
D. J. W. Grant, “Theory and origin of polymorphism” in Ch 1 of “Polymorphism in pharmaceutical solids,” Ed. By H. G. Brittain., (Marcel Dekker, New York, 1999), pp.1-33.
S. T. Beckett, M. G. Francesconi, P. M. Geary, G. Mackenziea, and A. P. E. Maulny, “DSC study of sucrose melting,” Carbo. Res., 341(15), 2591–2599 (2006).
K. Kawakami, K. Miyoshi, N. Tamura, T. Yamaguchi, and Y. Ida, “Crystallization of sucrose glass under ambient conditions: evaluation of crystallization rate and unsual melting behavior of resultant crystals,” J. of Pham. Sci., 95(5), 1354-1363 (2006).
T. Lee and Y. S. Lin, “Dimorphs of sucrose”, Int. Sugar J., 109, 1303 (2007).
P. Honig, “Chemical properties of sucrose,” Chapter 1 in Principle of sugar technology, 1st ed., (Technical Research Director West Indies Sugar Corporation, New York, USA, 1965), pp. 24-25.
P. Fryer, and K. Pinschower, “The materials science of chocolate,” MRS Bull., 25(12), 25-29 (2000).
P. Honig, “Chemical properties of sucrose,” Chapter 1 in Principle of sugar technology, 1st ed., (Technical Research Director West Indies Sugar Corporation, New York, USA, 1965), pp. 105-108.
H. Ashida, D. Izutsu, and A. Yamashita, “Water-soluble vitamin composition having excellent tablet properties and process for production thereof,” U.S. Patent, Patent Number: 5994324
W. Sorasuchart, J. Wardrop, and J. W. Ayres, “Drug release from spray layered and coated drug-containing beads: effects of pH and comparison of different dissolution methods,” Drug Dev. Ind. Pharm., 25(10), 1093-1098 (1999).
S. A. Altaf, S. W. Hoag, and J. W. Ayres, “Bead Compacts. II. Evaluation of rapidly disintegrating nonsegregating compressed bead formulations,” Drug Dev. Ind. Pharm., 25(5), 635-642 (1999).
T. X. Viegas, R. U. Curatella, Lise L. Van Winkel, and G. Brinker, “Measurement
of intrinsic drug dissolution rates using two types of apparatus,” Pharm. Tech., 25(6), 44-53 (2001).
H. Kaemmerer, H. Lorenz, S. N. Black, and A. Seidel-Morgenstern, “Study of system thermodynamic and feasibility of crystal resolution of the polymorphic system of malic enantiomers and its partial solid solution,” Cryst. Growth. Des., 9(4), 1851-1862 (2009).
M. Hurtta, I. Pitk?ne, and J. Knuutinen, “ Melting behavior of D-sucrose, D-glucose and D-fructose,” Carbo. Res., 339(13), 2267-2273 (2004).
K. Kawakami, K. Miyoshi, N. Tamura, T. Yamaguchi, and Y. Ida, “Crystallization of sucrose glass under ambient condition: evaluation of crystallization rate and unusual melting behavior of resultant crystals,” J. Pharm. Sci., 95(6), 1354 (2006).
U. J. Griesser, R. K. R. Jetti, M. F. Haddow, T. Brehmer, D. C. Apperley, A. King, and R. K. Harris, “Conformational polymorphism in oxybuprocaine hydrochloride,” Cryst. Growth. Des., 8(1), 44-56 (2008).
J. Mernstein, and A. T. Hagler, “Conformational polymorphism. The influence of crystal structure on molecular conformation,” J. Am. Chem. Soc., 100(3), 673 (1978).
B. E. Padden, M. T. Zell, Z.ng, S. A. Schroeder, D. J. W. Grant, and E. J. Munson, “Comparison of solid-state 13C NMR spectroscopy and powder X-ray diffraction for analyzing misture fo polymorphs of neotame,” Anal. Chem., 71(7), 3325-3331 (1999).
J. R. Smith, W. Xu, and D. Raftery, “Analysis of conformational polumorphism in pharmaceutical solid using solid-state NMR and electronic structure calculations,” J. Phys. Chem. B., 110(15), 7766-7776 (2006).
R. K. Harris, “NMR studies of organic polymorph & solvates,” Analyst, 131(3), 351-373 (2006).
T. L. Threlfall, “Analysis of organic polymorphs : A Review,” Analyst, 120(10), 2435-2460 (1995).
U. J. Griiesser, R. K. R. Jetti, M. F. Haddow, T. Brehmer, D. C. Apperley, A. King, and R. K. Harris, “Conformational polymorphism in oxybuoricaine hydrochloride,” Cryst. Growth Des., 8(1), 44-56 (2008).
M. mathlouthi, and J. Genotelle, “Role of water in sucrose crystallization,” Carbohydr. Polym., 37(3), 335-342 (1998).
J. Berstein, and A. T. Hagler, “Conformation polymorphism. The influence of crystal structure on molecular conformation,” J. Am. Ceram. Soc., 100(3), 673 (1978).
M. Mathlouthi and P. Reiser, “The structure of sucrose in the crystal and in solution,” Chapter2 in “Sucrose Properties and Applications,” 1st ed, (Champman & Hall, London, UK, 1995,) pp. 14.-20
M. Darder and E. Ruiz-hitzky, “Caramel-clay nanocomposites,” J. Mater. Chem., 15(35&36), 3913-3918 (2005).
M. Mathlouthi and P. Reiser, “The structure of sucrose in the crystal and in solution,” Chapter 2 in “Sucrose Properties and Applications,” 1st ed, (Champman & Hall, London, UK, 1995,) p. 14
G. Eggleston, B. J. Trask-Morrell, and J. R. Vercellotti, “Used of differential scanning calormetry and thermogravimetric analysis to characterize the thermal degradation of crystalline sucrose and dried sucrose-salt residues,” J. Agric. Food Chem., 44(10), 3319-325 (1996).
C. Perruchot, J. F. Watts, C. Lowe, R. G. White, and P. J. Cumpson, “Angle-resolved XPS characterization of urea formaldehyde-epoxy system,” Surf. Interface Anal., 33(10-11), 869-872 (2002)
C. Malitesta, I. Lossto, L. Sabbatini, and P. G. Zambonin, “New findings on polypyrrole chemical structure by XPS coupled to chemical derivatization labeling,” J. Electron. Spectrosc. Relat. Phenom., 76(29) 629-634
P. Y. Jouan, M. C. Peignon, Ch. Cardinaud and G. Lemp?ri?re, “Characterisation of TiN coatings and of the TiN/Si interface by X-ray photoelectron spectroscopy and Auger electron spectroscopy,” Appl. Surf. Sci., 68(4), 595-603 (1993)
H. E. Kissinger, “Reaction kinetics in differential thermal analysis,” Anal. Chem., 29, 1702-1706 (1957)
V. P. Lehto, E. Laine, “A kinetic study of polymorphic transition of anhydrate caffeine with microcalorimeter” Thermochim. Acta, 417, 47-58 (1998)
D. J. Berry, C. C. Seaton, W. Clegg, R. W. Harrington, S. J. Coles, P. N. Norton, M. B. Hursthouse, R. storey, W. Jones, and N. Blagden, “Applying hot-stage microscopy of co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients,” Cryst. Growth Des., 8(5), 1697-1712 (2008).
T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen,” Pharm. Tech., 30(10), 72 (2006)
G.. K. Bolhuis, and N. A. Armstrong, “Excipents for direct compaction-an update,” Pharm. Dev. & Tech., 11(3), 111-124 (2006).
P. Honig, “ Physical properties of sucrose,” Chapter 2 in “Principles of Sugar Technology,” Vol. 1, (N.Y., USA, 1965), pp. 22-23.
T. Lee, and F. B. Hsu, “A cross-performance relationship between carr’s index and dissolution rate constant: the study of acetaminophen batches,” Drug Dev. Ind. Pharm., 33(5), 1273-1284 (2007).
Chapter 5
J. Berstein, R. J. Davey and J.-O. Henck, “Concomitant polymorphs,” Angew.
Chem. Int. Ed., 38(23), 3440-3461 (1999).
W. L. McCabe, J. C. Smith, and P. Harriott, “Crystallization,” Ch 27 in “Unit Operations of Chemical Engineering,” Sixth Edition, (Mc Graw-Hill, New York, USA, 2001) pp. 902-942
O. Almarsson, and M. J. Zaworotko, “Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals present a new path to improved medicines? ” Chem. Commun., 17, 1889-1896 (2004)
S. Pfeffer-Hennig, P. Piechon, M. Bellus, C. Goldbronn, and E. Tedesco, “Physico-chemical characterization of an active pharmaceutical ingredient: crystal polyorphism and structrual analysis,” J. Therm. Analy. Calor., 77(2), 663-679, (2004)
N. Rasenaack and B. W. Muller, “Crystal habit and tableting behavior,” Int. J. Pharm., 244(1-2), 45-57 (2002)
D. J. W. Grant, chapter 1 :“Theory and origin of polymorphism,” “Polymorphism in pharmaceutical solids.” Ed. by H. G. Brttain, (Marcel Dekker, New York, 1999) pp.7-8
W. H. DeCamp, “The impact of polymorphism on drug development: A regulator’s viewpoint,” XVIII Congress of the International Union of Crystallography, (2001)
J. W. Mullin, “Crystal habit modification.”, Ch. 6 in Crystallization. paperback edition, (Butterworth-Heinemann, Oxford, U.K., 1997) pp. 248-250
S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima and C. R. Gardner, “High-throughput crystallization: polymorphs, salts co-crystals and solvates of pharmaceutical solids.”, Adv. Drug Del. Rev., 56(3), 275-300 (2004)
J. R. Fritch, O. S. Fruchey, T. Horlenko, D. A. Aguilar, C. B. Hilton, P. S. Snyder, and W.J. Seeliger, “Production of acetaminophen,” United State Patent, No. US 5,155,273 (1992)
B. Tozkoparan, N. Gokhan, G. Aktay, E. Yesilada, and M. Ertan, “6-Benzylidenethiazolo[3,2-b]-1,2,4-triazole-5(6H)-ones substituted with ibuprofen: synthesis, characterization and evaluation of anti-inflammatory activity,” Eur. J. Med. Chem., 35(7-8), 743-750 (2000)
O. S. Fruchey, E. G. Zey, and L. O. Wheeler, “Method for The Purification of acetaminophen,” United State Patent, No. US 6,277,783 B1 (2001)
S. Rohani, “Control of product quality in batch crystallization of pharmaceuticals and fine chemicals. Part 1: design of crystallization process and the effect of solvent,” Org. Proc. Res. Dev., 9(6), 858-872 (2005)
A. M. Railkar, and J. B. Schwartz, “Evaluation and comprison of a moist granulation technique to conventional methods,” Drug Dev. Ind. Pharm., 26(8), 885-889 (2000)
H. Wen, K. R. Morris, and K. Park, “Study on the interaction between polyvinylpyrrolidone (PVP) and acetaminophen crystals: partial dissolution pattern change,” J. Pharm. Sci., 94(10), 2166-2174 (2005)
S. L. Wang, S. Y. Lin, and Y. S. Wei, “Transformation of metastable forms of acetaminophen studied by thermal Fourier transform infrared (FT-IR) microspectroscopy,” Chem. Pharm. Bull., 50(2), 153-156 (2002)
R. A. Granberg, and A. C. Rasmuson, “Solubility of paracetamol in pure solvents,” J. Chem. Eng. Data., 44(6), 1391-1395 (1999)
B. A. Hendriksen, and D. J. W. Grant, “The effect of structurally related substances on the nucleation kinetics of paracetamol (acetaminophen),” J. Cry. Grow., 156(3), 252-260 (1995)
R. I. Ristic, S. Finnie, D. B. Sheen, and J. N. Sherwood, “Macro- and micromorphology of monoclinic paracetamol grown from pure aqueous solution,” J. Phys. Chem. B, 105(38), 9057-9066 (2001)
P. D. Martino, A-M. G. Hermann, P. Conflant, M. Drache, and J.-C. Guyot, “A new pure paracetamol for direct compression: the orthorhombic form,” Int. J. Pharm., 128(1), 1-8 (1996)
M. Sacchetti, “Thermodynamic analysis of DSC data for acetaminophen polymorphs,” J. Therm. Anal. Calorim., 63(2), 345-350, (2001)
N. A. Zoubi, J. E. Koundourellis, and S. Malamataris, “FT-IR and Raman spectroscopic methods for identification and quantitation of orthorhombic and monoclinic paracetamol in powder mixes,” J. Pharm. Biomed. Anal., 29(3), 459-467 (2002)
H. A. Garekani, J. L. Ford, M. H. Rubinstein, and A. R. R. Siahboomi, “Formation and compression characteristics of prismatic polyhedral and thin plate-like crystals of paracetamol,” Int. J. Pharm., 187(1), 77-89 (1999)
G. Nichols, and S. Frampton, “Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution,” J. Pharm. Sci., 87(6) 684-693, (1998)
D. J. W. Grant, Chapter 1 :“Theory and origin of polymorphism,” “Polymorphism in pharmaceutical solids.” (Edited by H. G. Brttain, Marcel Dekker, New York, 1999) pp.7-21, and pp.395-400
D. Giron, “Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates,” Thermochem. Acta, 248, 1-59 (1995)
T. Threfall, “Crystallization of polymorphs: thermodynamic insight into the role of solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000)
Y. Yi, D. Hatziavramidis, and A. S. Myerson, “Development of a small-scale automated solubility measurement apparatus,” Ind. Eng. Chem. Res., 44(15), 5427-5433 (2005)
K. Park, J. M. B. Evans, and A. S. Myerson, “Determination of solubility of polymorphs using differential scanning calorimetry,” Cryst. Grow. Des., 3(6), 991-995 (2003)
M. L. Ramos, J. F. Tyson, and D.J. Curran, “Determination of acetaminophen by flow injection with on-line chemical derivatization: investigations using visible and FT-IR spectrophotometry,” Anal. Chim. Acta, 364(1-3), 107-116 (1998)
T. Lee, C. S. Shin, and Y. H. Chen, “Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen,” Pharm. Tech., 30(10), 71-92 (2006)
J. W. Mullin, “Solutions and solubility,” Chapter 3 in Crystallization, 3rd ed, (Butterworth-Heinemann, Oxford, U.K, 1997) pp. 93-94
B. G. Kyle, Chemical and process thermodynamics, 3th ed, (Person Education Taiwan Ltd., 2003), pp. 444-446
J. M. E. Bunyan, N. Shankland, and D. B. Sheen, “Solvent effect on the morphology of ibuprofen,” Particle Design via Crystallization AIChE Symp. Series, 87(284), 44-57 (1991)
J. C. Burley, M. J. Duer, R. S. Stein, and R. M. Vrcelj, “Enforce Ostwald’s rule of stages: isolation of paracetamol Form III and I,” Euro. J. Pharm. Sci., 31(5), 271-276 (2007)
指導教授 李度(Tu Lee) 審核日期 2009-12-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明