博碩士論文 963204037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.189.188.161
姓名 葉元婷(Yuan-ting Yeh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 稻殼灰分-氧化鋅複合擔體銅觸媒應用於氧化性甲醇蒸氣重組產氫之研究
(Hydrogen Production by Oxidative Steam Reforming of Methanol over Cu/RHA-ZnO Catalysts)
相關論文
★ 以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究★ 矽粉對二氧化矽碳熱還原氮化反應影響之研究
★ 稻殼灰分和稻殼灰分- 氧化鋁擔載鎳觸媒特性與反應性之研究★ 氧化鐵粉對二氧化矽碳熱還原氮化反應影響之研究
★ 以稻殼灰分初濕含浸製備擔體銅觸媒之研究★ 以稻殼灰分沈澱固著製備擔體銅觸媒之特性研究
★ 鐵粉對稻殼灰分碳熱還原氮化反應之影響研究★ 矽粉對稻殼灰分碳熱還原氮化反應之影響研究
★ 以稻殼灰分沈澱固著製備擔體銅觸媒 之反應性研究★ 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究
★ 氧化鋯擔載奈米金觸媒之製備與應用研究★ 氧化鋁擔載奈米金觸媒之製備與應用研究
★ 稻殼灰分擔載銅觸媒之製備與應用研究★ 氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
★ 氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究★ 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究是利用桃園縣之廢棄稻殼,經酸洗、碳燒跟熱解處理後的稻殼灰份(rice husk ash,RHA ),採用初濕含浸法先製備出ZnO、RHA的複合擔體,再以沈澱固著法製備出不同Si/Zn原子比的Cu/ZnO-RHA複合擔體觸媒。催化反應測試方面,利用甲醇在常壓下進行氧化性蒸氣重組反應(oxidative steam reforming of methanol, ORSM),由於反應物中包含了水與氧,同時具備了甲醇蒸氣重組反應(steam reforming of methanol, SRM)和甲醇部份氧化反應(partial oxidation of methanol, POM)的優點,擁有較高的氫氣產率也能有效降低一氧化碳選擇率,減少燃料電池Pt電極的毒化。在觸媒與擔體特性分析方面,利用感應耦合電漿原子發射光譜儀(ICP-AES)、X射線繞射儀(XRD)、程式升溫還原(TPR)、N2O分解吸附(dissociative adsorption of nitrous oxide)、穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM)等技術,進一步了解各種不同操作變數對觸媒的影響。
由XRD的結果可得知Zn含量越多,Cu0的繞射峰就越明顯也越高。在TPR圖譜中,Zn含量越多Cu的還原溫度也越高。由N2O分解吸附結果顯示Zn含量越多反而造成粒徑變大、分散度變差的問題。但是在活性測試中,擔體中的Si/Zn的原子比為9/1的反應性最好,可以瞭解到加入少量的ZnO能增加觸媒活性,而N2O分解吸附結果對於不同煅燒溫度探討,煅燒溫度在673 K時有最佳的分散度與最小粒徑。在TEM與SEM顯微圖中可得知粒徑大小,其與N2O分解吸附計算出來的結果相似。在氧化性蒸氣重組反應中,可得知在Si/Zn原子比9/1、進料莫耳比O2/CH3OH=0.3與H2O/CH3OH=1及反應溫度為523 K時,觸媒擁有最佳甲醇轉化率、氫氣產率與最低的一氧化碳選擇率。
摘要(英) Cu/RHA-ZnO catalysts were studied for oxidative steam reforming of methanol (OSRM, CH3OH + 0.5H2O + 0.25O2 → 2.5H2 + CO2) to produce hydrogen. Rice husk ash (RHA) was used to prepare RHA-ZnO binary supports by incipient wetness impregnation method and the catalysts were prepared by deposition-precipitation method with the binary support. The catalysts and supports were characterized by ICP-AES, XRD, TPR, N2O titration, TEM and SEM analyses. The average diameter of Cu particles was determined by TEM and N2O titration. XRD was used to study the crystallinity of the catalysts. The TPR results stated that redox properties of catalysts depended on the RHA/ZnO molar ratios. From N2O titration, TEM and SEM results, it was concluded that ZnO played minor role on controlling particle size of copper. However, the appropriate amount of Zn in catalysts is beneficial for activity. The effects of several experimental parameters of this study such as Si/Zn ratio, calcination temperature, reduction temperature, composition of feeding and reaction temperature had been discussed. The Cu/RHA-ZnO catalyst with Si/Zn atomic ratio at 9/1, calcined at 673 K and reduced at 573 K exhibits the optimum CH3OH conversion, H2 production rate and CO selectivity. The most suitable reaction temperature is 523 K with the feed ratio of H2O/CH3OH/O2 = 1/1/0.3 for OSRM reaction.
關鍵字(中) ★ 銅觸媒
★ 產氫
★ 氧化性甲醇蒸氣重組
★ 稻殼灰分
關鍵字(英) ★ Hydrogen
★ Cu catalyst
★ Rice husk ash
★ Oxidative Steam Reforming of Methanol
論文目次 中文摘要.............................................i
英文摘要.............................................iii
誌謝.................................................iv
目錄.................................................v
圖目錄...............................................ix
表目錄...............................................xiii
第一章 緒論..........................................1
1-1前言..............................................1
1-2 燃料電池簡介.....................................2
1-3 燃料電池工作原理.................................4
1-4 燃料電池種類.....................................6
1-5氫能經濟..........................................6
1-6甲醇產氫..........................................9
1-7內容與論文架構....................................10
第二章 文獻回顧......................................12
2-1 稻殼的組成、性質與製備...........................12
2-2 銅觸媒的簡介.....................................14
2-3 觸媒的製備.......................................15
2-4 擔體效應.........................................16
2-5 銅金屬表面積的測定...............................17
2-6 銅的活性位置.....................................18
2-7 氧化性甲醇蒸氣重組反應...........................18
第三章 實驗方法與製備................................23
3-1 稻殼灰分的製備...................................23
3-1-1 水洗程序.......................................23
3-1-2 酸洗程序.......................................23
3-1-3 熱解程序.......................................24
3-1-4 碳燒程序.......................................27
3-2 複合擔體的製備 ...................................29
3-3 擔載銅觸媒的製備.................................30
3-4 擔體銅觸媒的鑑定分析.............................31
3-4-1 感應耦合電漿原子放射光譜儀(ICP-AES)............32
3-4-2 X射線繞射分析儀(XRD)...........................32
3-4-3 程式升溫還原(TPR)..............................33
3-4-4 銅金屬表面積的量測.............................37
3-4-5 穿透式電子顯微鏡(TEM)..........................40
3-4-6 掃描式電子顯微鏡(SEM)..........................40
3-5 觸媒活性測試-氧化性甲醇蒸氣重組產氫反應.........45
3-6 實驗流程與操作變數...............................47
3-7 數據的計算與實例.................................49
3-7-1 銅觸媒理論載量的定義與計算.....................49
3-7-2 轉化率的定義與計算.............................49
3-7-3 選擇率的定義與計算.............................54
3-7-4 產生速率的定義與計算...........................54
3-8 藥品、氣體及儀器設備.............................55
3-8-1 藥品...........................................55
3-8-2 氣體...........................................55
3-8-3 設備儀器.......................................56
第四章 結果與討論....................................58
4-1 稻殼灰分組成分析.................................58
4-2 物性分析.........................................58
4-2-1 X射線繞射(XRD)分析結果.........................60
4-2-2 程式升溫還原(TPR)分析結果......................62
4-2-3 N2O分解吸附反應結果(N2O-Titration )分析結果....65
4-2-4 穿透式電子顯微鏡(TEM)分析結果..................68
4-2-5 掃描式電子顯微鏡(SEM)分析結果..................71
4-3 化性分析.........................................74
4-3-1 擔體Si/Zn原子比對觸媒活性的影響................74
4-3-2 煅燒溫度對觸媒活性的影響.......................79
4-3-3 進料比對觸媒活性的影響.........................83
4-3-3-1 不同O2/CH3OH莫耳比的影響.....................83
4-3-3-2 不同H2O/CH3OH莫耳比的影響....................87
4-3-4 反應溫度對觸媒活性的影響.......................91
4-3-5 Cu/RHA-ZnO與Cu/SiO2-ZnO觸媒在反應活性的比較....93
第五章 結論..........................................101
參考文獻.............................................104
參考文獻 Bond, G.C. and S.N. Namijo, “An improved procedure for estimating the metal surface area of supported copper catalysts”, Journal of catalysis, 118, 507, (1989).
Burch, R. and R.J. Chappell, “Support and additive effects in the synthesis of methanol over copper catalysts”, Applied Catalysis A: General, 45, 131, (1988).
Burton, R.S., R.C. Bailie, S. Alpert, “Municipal solid waste prolysis”, American Institute of Chemical Engineers System, 70, 116, (1974).
Carter, J.L., J.A. Cusumano, J.H. Sinfelt, “Catalysis over supported metals. V. The effect of crystallite size on the catalytic activity of nickel”, Journal of Physical Chemistry, 70, 2257, (1966).
Chang, H.F., M.A. Saleque, W.S. Hsu, W. Lin, “Characterization and dehydrogenation activity of Cu/Al2O3 catalysts prepared by electroless pating technique”, Journal of Molecular Catalysis A: Chemical, 109, 249, (1996).
Chen, H.W., J.M. White, J.G. Ekerdt, “Electronic effect of supports on copper catalysts”, Journal of catalysis, 99, 293, (1986).
Chusuei, C.C., M.A. Brookshier, D.W. Goodman, “Correlation of relative X-ray photoelectron pectroscopy shake-up intensity with CuO particle size” Langmuir, 15, 2806, (1999).
Dietz, W.A.,“Response factors for gas chromatographic analyses”, Journal of Gas Chromatorgraphic, 5, 68, (1967).
Eswaramoorthi, I., V. Sundaramurthy, A.K. Dalai, “Partial oxidation of methanol for hydrogen production over carbon nanoubes supported Cu-Zn catalysts”, Applied Catalysis A: General, 313, 22, (2006).
Gil, A., A. Diaz, L.M. Gandia, M. Montes, “Influence of the preparation method and the nature of the support on the stability of nickel catalysts”, Applied Catalysis A: General, 109, 167, (1994).
Fujitani, T. and J. Nakamura, “The chemical modification seen in the Cu/ZnO methanol synthesis catalysts”, Applied Catalysis A: General, 191, 111, (2000).
Guerreiro, E.D., O.F. Gorriz, J.B. Rivarrola, L.A. Arrua, “Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation”, Applied Catalysis A: General, 165, 259, (1997).
Guo, P., L. Chen, Q. Yang, M. Qiao, H. Li, H. Li, H. Xu, K. Fan, “Cu/ZnO/Al2O3 water-gas shift catalysts for practical fuel cell applications: the performance in shut-down/start-up operation”, Catalysis Communications, 34, 2361, (2009).
Horny, C., A. Renken, L. Kiwi-Minsker, “Compact string reactor for autothermal hydrogen production”, Catalysis Today, 120, 45, (2007).
Ibrahim, D.M. and S.A. EL-Hemaly, “Thermal treatment of rice-husk ash: effect of time firing on pore structure and crystallite size”, Thermochimica Acta, 37, 347, (1980).
Iwasa, N., N. Wataru, M. Tomoyuki, F. Shin-ichiro, A. Masahiko, T. Nobutsune, “Hydrogen production by steam reforming of methanol ”, Journal of Chemical Engineering of Japan, 37, 286, (2004).
Ji, D., Z. Wanchun, W. Zhenlu, W. Guojia, “Dehydrogenation of cyclohexanol on Cu–ZnO/SiO2 catalysts: The role of copper species”, Catalysis Communications, 8, 1891, (2007).
Kasatkin, I., B. Kniep, T. Ressler, “Cu/ZnO and Cu/ZrO2 interactions studied by contact angle measurement with TEM”, Physical Chemistry Chemical Physics, 9, 878, (2007).
Kohler, M.A., H.E. Curry-Hyde, A.E. Hughes, B.A. Sexton, N.W. Cant, “The structure of Cu/SiO2 catalysts prepared by the ion-exchange technique”, Journal of catalysis, 108, 323, (1987).
Liou, T. H., and F. W. Chang, “Pyrolysis kinetic of acid-leached rice husk”, Industrial & Engineering Chemistry Research, 35, 3375, (1996).
Liou, T. H., F. W., Chang, J. J. Lo, “The niridaion kinetic of pyrolyzed rice husk”, Industrial & Engineering Chemistry Research, 36, 568, (1997).
Marchi, A.J., J.L.G. Fierro, J. Santamaria, A. Monzon, “Dehydrogenation of isopropylic alcohol on Cu/SiO2 catalyst: a study of the activity evolution and reactivation of the catalyst”, Applied Catalysis A: General, 142, 375, (1996).
Murcia-Mascaros, S., R.M. Navarro, L. Gomez-sainero, U. Cosantino, M. Nocchetti, J.L.G. Fierro, “Oxidation methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors”, Journal of Catalysis, 198, 338, (2001).
Patel, M., A. Karera, P. Prasanna, “Effect of thermal and chemical treatments on carbon and silica contents in rice husk” , Journal of Materials Science, 22, 2457, (1987).
Patel, S., and K.K. Pant, “Hydrogen production by oxidative steam reforming of methanol using ceria promoted copper-alumina catalysts”, Fuel Processing Technology, 88, 825, (2007).
Perez-Hernandez, R., A. Gutierrez-Martinez, C.E. Gutierrez-Wing, “Effect of Cu loading on CeO2 for hydrogen production by oxidative steam reforming of methanol”, International Journal of Hydrogen Energy, 32, 2888, (2007).
Richardson, J.T. and R.J. Dubus, “Crystallite size distributions of sintered nickel catalsyts”, Journal of Catalysis, 57, 417, (1979).
Robertson, S.D., B.D. Mcnicol, J.H. Baas, S.C. Kloet, J.W. Jenkins, “Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction”, Journal of Catalysis, 37, 424, (1975).
Suzuki, K., S. Velu, M. Okazaki, M.P. Kapoor, F. Ohashi, T. Osaki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts”, Applied Catalysis A: General, 213, 47, (2001).
Turco, M., G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, “Production of hydrogen from oxidative steam reforming of methanol II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts”, Journal of Catalysis, 228, 56, (2004).
Turco, M., B. Giovanni, C. Claudia, S. Pasquale, C. Umberto, S. Michele, “Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol:The role of Cu and the dispersing oxide matrix”, Applied Catalysis B: Environmental, 77, 46, (2007).
van der Grift, C.J.G., A.F.H. Wielers, B.P.J. Joghi, J. Van Beijnum, M. De Boer, M. Versluijs-Helder, J.W. Geus, “Effect of the reduction treatment on the struction and reactivity of silica-supported copper particles”, Journal of catalysis, 131, 178, (1991).
Velu, S. and K. Suzuki,“Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance.”, Topics in Catalysis, 22, 235, (2003).
Velu, S., K. Suzuki, M.P. Kapoor, T. Osaki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl-oxide catalysts”, Applied Catalysis A: General, 213, 47, (2001).
Wang, Z., W. Wang , G. Lu, “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, International Journal of Hydrogen Energy, 28, 151, (2003).
Yu, X., S.T. Tu, Z. Wang, Y. Qi, “Development of a microchannel reactor concerning steam reforming of methanol”, Chemical Engineering Journal , 116, 123, (2006).
Zhang, X.-R., L.-C. Wang, C.-Z. Yao, Y. Cao, W.-L. Dai, H.-Y. He, K.-N. Fan, “Preparation of a highly efficient Cu/ZnO/Al2O3 catalyst via gel-coprecipitation of oxalate precursors for low-temperature steam reforming of methanol”, Catalysis Letters, 102, 183, (2005).
毛宗強, “氫能 : 21世紀的綠色能源”, 新文京開發, (2008)。
本間琢也, 王建義譯, “圖解燃料電池百科”, 全華科技圖書股份有限公司, (2004)。
姚品全, “淺談銅觸媒”, 觸媒與製程, (2000)。
黃志翔, “稻殼灰分擔載銅觸媒應用於氧化性甲醇蒸氣重組產製氫氣之研究”, 碩士論文 ,中央大學化學工程與材料工程研究所, (2008)。
黃鎮江, “燃料電池”, 全華科技圖書股份有限公司, (2003)。
蔡明策,“稻殼灰分和稻殼灰分-氧化鋁擔載鎳觸媒特性與反應性之研究”,博士論文, 中央大學化學工程與材料工程研究所, (2001)。
劉恭益, “氧化矽-氧化鋅複合擔體銅觸媒應用於氧化性甲醇蒸氣重組製氫之研究”, 碩士論文, 中央大學化學工程與材料工程研究所, (2007)。
指導教授 張奉文(Feg-wen Chang) 審核日期 2009-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明