博碩士論文 963204052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:1 、訪客IP:3.146.105.194
姓名 楊琇婷(Siou-Ting Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究
(Separation and ex vivo expansion of hematopoietic stem cells from human blood by membrane filtration method and magnetic associated sorting method)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 人類表皮成長因子的結構穩定性及生物活性測定★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響
★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究
★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究
★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究★ 人類脂肪幹細胞的膜純化法與分化能力研究
★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究
★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上★ 使用不同孔洞大小之耐倫薄膜從脂肪組織中分離及純化人類脂肪幹細胞之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現雖有不同幹細胞分離技術,其中薄膜分離技術是由本實驗室提出且為最簡便、易保持無菌、及維持細胞活性的方法,為臨床醫師認為最具潛力的細胞分離術。臍帶血之血液幹細胞經由膜分離技術,可得到7-20%的回收率。此研究也發展臍帶血幹細胞之體外直接膜培養,可得到6.6倍的血液幹細胞增殖倍數。為了最終應用於臨床醫療之目的,此研究更進ㄧ步設計閉鎖式循環膜培養系統,封閉的培養環境可降低污染的可能性,而不斷循環的培養基則可提供充足的養分給予附著在膜上的血液幹細胞,利用此ㄧ系統可得到14.6倍的血液幹細胞增殖率。除了創新的膜分離培養技術外,此研究也比較了目前普遍使用的免疫磁珠法分離血液幹細胞,被分離的血液幹細胞進而培養在不同的二維及三維培養材料上,由此研究結果發現,血液幹細胞培養在三維材料上,其增殖率小於二維材料,這可能由於血液幹細胞表面表現黏著的分子(CD164),容易附著於3D膜的表面之緣故。此研究也進行了血液幹細胞的分化能力鑑定。閉鎖式循環膜培養系統與免疫磁珠法分離的血液幹細胞培養可得到接近的血液幹細胞增殖倍率,但閉鎖式循環膜培養系統從分離到進行培養只需30分中的操作時間,免疫磁珠法卻需耗費5-8個小時,閉鎖式循環膜培養系統為一具有潛力之血液幹細胞體外增殖的方法。
摘要(英) Stem cell separation through membrane filtration method is simple and inexpensive, and sterility is easy to maintain during the process. The recovery ratio of HSCs from umbilical cord blood (UCB) was found to be 7-20% depending on the recovery solution. A high recovery ratio of HSCs was obtained when 20 wt% of dextran was used as the recovery solution. Direct ex vivo expansion of hematopoietic stem cells (HSCs) from UCB by membrane filtration method has been developed in this study. This study also reports the expansion ratio and ability of colony-forming units of HSCs from UCB purified by conventional Ficoll-Paque and MACS medthod, batch type method of direct ex vivo expansion through membranes and bioreactor of perfusion method of direct ex vivo expansion through membranes, and compared these results. Ex vivo expansion of HSCs compared to initial number of HSCs in UCB was found to be 6.6 folds when was used as a rinsing solution in batch type of direct ex vivo expansion of HSCs through the PU-COOH membranes. Ex vivo expansion of HSCs in 3D culture was found to be worse than that in 2D culture using HSCs purified by Ficoll-Paque and MACS method. This is because pluripotent HSCs adhered on PU membranes tightly, and HSCs in PU membranes of 3D culture could not be detached even after pipetting with washing solution. However, ex vivo expansion of HSCs in bioreactor of perfusion method was found to be similar ex vivo expansion fold compared to that in 2D culture using HSCs purified by conventional Ficoll-Paque and MACS method, which needs longer working time (e.g., 5 hours). The bioassay of HSCs by colony-forming units where HSCs were cultured after purification of HSCs from UCB by conventional Ficoll-Paque and MACS method and by our direct ex vivo expansion method was also investigated. Perfusion type of direct ex vivo expansion method of HSCs from UCB through membranes can provide high ex vivo expansion fold with simple procedure and short working time for HSC purification before HSC culture.
關鍵字(中) ★ 血液幹細胞
★ 體外增殖
★ 幹細胞純化
關鍵字(英) ★ ex vivo expansion
★ hematopoietic stem cells
★ stem cell purification
論文目次 中文摘要 I
ABSTRACT II
誌謝 III
ACKNOWLEDGEMENT IV
INDEX of CONTENTS V
INDEX of FIGURES VIII
INDEX of TABLES XII
CHAPTER ONE : INTRODUCTION 1
1-1 Hematopoietic Stem Cell 1
1-1-1 Types of HSCs 1
1-1-2 Molecular and cellular mechanisms of hematopoiesis 2
1-2 Purification of Hematopoietic Stem Cell 5
1-2-1 Fluorescence-Activated Cell Sorting (FACS) 5
1-2-2 Magnetic-Activated Cell Sorting (MACS) 8
1-2-3 Membrane Purification 10
1-3 Ex Vivo Expansion of HSCs 10
1-3-1 Culture Medium Effect of Ex Vivo Expansion 12
1-3-2 Culture Material Effect of Ex Vivo Expansion 13
1-3-2-1 Conventional synthetic and natural polymeric materials 15
1-3-2-2 Materials manufactured with nanotechnology and having nanosegments 19
1-3-2-3 Polymeric materials modified with immobilized proteins and oligopeptides 23
1-3-2-4 Polymeric materials modified with immobilized glycosaminoglycans 29
1-3-2-5 Materials for 3D culture 31
1-3-3 Bioreactor for HSCs 34
1-3-3-1 Bioreactor design and operation 34
1-3-3-2 Perfusion chambers 34
1-3-3-3 Stirred reactors 35
1-3-3-4 Packed and fluidized bed reactors 35
1-3-3-5 Other reactor types 36
1-4 HSCs Analysis 36
1-4-1 Flow Cytometry Analysis 36
1-4-1-1 The Use of the CD34 Surface Marker to Characterize Primitive Cells 37
1-4-1-2 Flow Cytometry Protocols For the Enumeration of CD34+ cells 38
1-4-2 Colony Forming Cell (CFC) Assay 40
CHAPTER TWO : EXPERIMENT AND METHOD 42
2-1 Materials 42
2-1-1 Preparation of surface-modified PU foaming membranes and surface-modified polystyrene dishes 43
2-1-2 Platelet Poor Plasma (Plasma A) 46
2-1-3 Buffer solution 46
2-2 HSCs Purification 47
2-2-1 Membrane Purification 47
2-2-2 Magnetic Cell Sorting (MACS) 49
2-2-2-1 Preparation of cord blood cells 49
2-2-2-2 Magnetic labeling and magnetic separation of CD34+ cells 49
2-3 HSCs Ex Vivo Expansion 52
2-3-1 Direct Ex Vivo Expansion 52
2-3-1-1 Recovery Solution Direct Ex Vivo Expansion 52
2-3-1-2 Direct Ex Vivo Expansion on Membranes 52
2-3-2 Ex Vivo Expansion of HSCs after MACS Purification 53
2-3-3 Perfusion Cultivation of HSCs 53
2-4 HSCs Analysis 56
2-4-1 Flow Cytometry Analysis 56
2-4-2 Colony Forming Cell (CFC) Assay 56
CHAPTER THREE : RESULTS & DISCUSSION 58
3-1 HSCs Purification by Membrane Purification Method 58
3-1-1 Peripheral Blood Permeation through 5 μm PU-COOH Membranes Using Different Recovery Solutions 58
3-1-1-1 Permeation of the peripheral blood cells 58
3-1-1-2 Recovery of the peripheral blood cells by different recovery solutions 58
3-1-2 Permeation of UCB through PU-COOH Membranes Having Different Pore Size Using Several Recovery Solutions 61
3-1-2-1 Permeation of UCB cells through membranes having different pore size 61
3-1-2-2 Effect of recovery solution on recovery ratio of UCB cells through membranes having different pore size 62
3-2 Ex Vivo Expansion of HSCs 69
3-2-1 Direct Ex Vivo Expansion of HSCs from UCB 69
3-2-2 Ex Vivo Expansion of Cells after HSC Purification by Ficoll-Paque and MACS Methods from UCB 75
3-2-3 CFU assay of Ex Vivo Expanded HSCs after HSC Purification by Ficoll-Paque and MACS Methods from UCB 83
3-2-4 Bioreactor for HSCs 92
CHAPTER FOUR : CONCLUSION 95
REFERENCE 98
參考文獻 [1] G.J.M. Cabrita, B.S. Ferreira, C.L. da Silva, R. Goncalves, G. Almeida-Porada and J.M.S. Cabral, “Hematopoietic stem cells: from the bone to the bioreactor”, TRENDS in Biotechnology, Vol 21, pp. 223-240, May 2003.
[2] T. Reya, S.J. Morrison, M.F. Clarke and I.L. Weissman, “Stem cells, cancer, and cancer stem cells”, Nature, Vol 414, pp. 105-111, November 2001.
[3] H. Ema, H. Takano, K. Sudo and H. Nakauchi, “In vitro self-renewal division of hematopoietic stem cells”, J. Exp. Med., Vol 192, pp. 1281-1288, November 2000.
[4] N. Fox, G. Priestley, T. Papayannopoulou and K. Kaushansky, “Thrombopoietin expands hematopoietic stem cells after transplantation”, J. Clin. Invest., Vol 110, pp. 389-394, August 2002.
[5] J. Audet, C.L. Miller, S. Rose-John, J.M. Piret and C.J. Eaves, “Distinct role of gp130 activation in promoting self-renewal divisions by mitogenically stimulated murine hematopoietic stem cells”, Proc. Natl. Acad. Sci. U. S. A., Vol 98, pp. 1757-1762, February 2001.
[6] G. Gollner, G. Bug, B. Rupilius, C. Peschel, C. Huber and H.G. Derigs, “Regulatory elements of the leukaemia inhibitory factor (LIF) promoter in murine bone marrow stromal cells”, Cytokine, Vol 11, pp. 656-663, September 1999.
[7] K. Geissler and T. Wagner, “Cytokine combinations for the in vivo and ex vivo expansion of hematopoietic progenitor cells”, Acta Med. Austriaca, Vol 27, pp. 21-24, 2000
[8] K. Li, M. Yang, A.C. Lam, F.W. Yau and P.M.P. Yuen, “Effects of flt-3 ligand in combination with TPO on the expansion of megakaryocytic progenitors”, Cell Transplant., Vol 9, pp. 125-131, January-February 2000.
[9] L. Lazzari, S. Lucchi, P. Rebulla, L. Porretti, G. Puglisi, L. Lecchi and G. Sirchia, “Long-term expansion and maintenance of cord blood haematopoietic stem cells using thrombopoietin, Flt3-ligand, interleukin (IL)-6 and IL-11 in a serum-free and stroma-free culture system”, Br. J. Haematol., Vol 112, pp. 397-404, February 2001.
[10] P.H. Shaw, M. Olszewski and M. Kletzel, “Expansion of megakaryocyte precursors and stem cells from umbilical cord blood CD34+ cells in collagen and liquid culture media”, J. Hematother. Stem Cell Res., Vol 10, pp. 391-403, June 2001.
[11] R.J. Su, X.B. Zhang, K. Li, M. Yang, C.K. Li, T.F. Fok, A.E. James, H. Pong and P.M.P. Yuen, “Platelet-derived growth factor promotes ex vivo expansion of CD34+ cells from human cord blood and enhances longterm culture-initiating cells, non-obese diabetic/severe combined immunodeficient repopulating cells and formation of adherent cells”, Br. J. Haematol., Vol 117, pp. 735-746, June 2002.
[12] M.A. Moore, “Cytokine and chemokine networks influencing stem cell proliferation, differentiation, and marrow homing”, J. Cell. Biochem., (Suppl. 38) 29-38, 2002
[13] P. Feugier, D.Y. Jo, J.H. Shieh, K.L. MacKenzie, S. Rafii, R.G. Crystal and M.A.S. Moore, “Ex vivo expansion of stem and progenitor cells in co-culture of mobilized peripheral blood CD34+ cells on human endothelium transfected with adenovectors expressing thrombopoietin, c-kit ligand, and Flt-3 ligand”, J. Hematother. Stem Cell Res., Vol 11, pp. 127-138, February 2002.
[14] Z. Ivanovic, P. Dello Sbarba, F. Trimoreau, J.L. Faucher and V. Praloran, “Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent”, Transfusion, Vol 40, pp. 1482-1488, December 2000.
[15] F. Keil, F. Elahi, H.T. Greinix, G. Fritsch, N. Louda, A.L. Petzer, E. Prinz, T. Wagner, P. Kalhs, K. Lechner and K. Geissler, “Ex vivo expansion of long-term culture initiating marrow cells by IL-10, SCF, and IL-3”, Transfusion, Vol 42, pp. 581-587, May 2002.
[16] T. Kimura, J.F. Wang, H. Minamiguchi, H. Fujiki, S. Harada, K. Okuda, H. Kaneko, S. Yokota, K. Yasukawa, T. Abe and Y. Sonoda, “Signal through gp130 activated by soluble interleukin (IL)-6 receptor (R) and IL-6 or IL-6R/IL-6 fusion protein enhances ex vivo expansion of human peripheral blood-derived hematopoietic progenitors”, Stem Cells, Vol 18, pp. 444-452, 2000.
[17] T. Nakahata, “Ex vivo expansion of human hematopoietic stem cells”, Int. J. Hematol., Vol 73, pp. 6–13, January 2001.
[18] T. Wagner, G. Fritsch, R. Thalhammer, P. Hocker, G. Lanzer, K. Lechner and K. Geissler, “IL-10 increases the number of CFU-GM generated by ex vivo expansion of unmanipulated human MNCs and selected CD34+ cells”, Transfusion, Vol 41, pp. 659-666, May 2001.
[19] F.N. Karanu, B. Murdoch, L. Gallacher, D.M. Wu, M. Koremoto, S. Sakano and M. Bhatia, “The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells”, J. Exp. Med., Vol 192, pp. 1365-1372, November 2000.
[20] M. Masuya, N. Katayama, N. Hoshino, H. Nishikawa, S. Sakano, H. Araki, H. Mitani, H. Suzuki, H. Miyashita, K. Kobayashi, K. Nishii, N. Minami and H. Shiku, “The soluble Notch ligand, Jagged-1, inhibits proliferation of CD34+ macrophage progenitors”, Int. J. Hematol., Vol 75, pp. 269-276, April 2002.
[21] S.M. Watt and J.Y.H. Chan, “CD164- a novel sialomucin on CD34+ cells”, Leuk. Lymphoma, Vol 37, pp. 1-25, 2000.
[22] M.A. Dao and J.A. Nolta, “CD34: to select or not to select? That is the question”, Leukemia, Vol 14, pp. 773-776, May 2000.
[23] J. Zhu and S.G. Emerson, “Hematopoietic cytokines, transcription factors and lineage commitment”, Oncogene, Vol 21, pp. 3295-3313, May 2002.
[24] E.A. de Wynter, A.J.B. Emmerson and N.G. Testa, “Properties of peripheral blood and cord blood stem cells”, Baillieres Best Pract Res Clin Haematol., Vol 12, pp. 1-17, March-June 1999.
[25] H. Sutherland, C. Eaves and A. Eaves, “Characterisation and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro”, Blood, Vol 74, pp. 1563-1569, 1989
[26] W. Craig, R. Kay, R.L. Cutler and P.M. Lansdorp, “Expression of Thy-1 on human haematopoietic progenitor cells”, J Exp Med., Vol 177, pp. 1331-1342, May 1993.
[27] H. Mayani and P.M. Lansdorp, “Thy-1 expression is linked to functional properties of primitive hematopoietic progenitor cells from human umbilical cord blood”, Blood, Vol 83, pp. 2410-2417, May 1994.
[28] C.M. Baum, I.L. Weissman, A.S. Tsukamoto, A.M. Buckle and B. Peault, “Isolation of a candidate human hematopoietic stem-cell population”, Proc Natl Acad Sci USA., Vol 89, pp. 2804-2808, April 1992.
[29] E.A. de Wynter, C. Hart, L.H. Coutinho, D. Gagen, J. Chang, D. Buck and N.G. Testa, “Analysis of human hemopoietic cells isolated with the novel AC133 antibody”, Exp Hematol, Vol 26, pp. 739-739, August 1998.
[30] H.J. Sutherland, P.M. Lansdorp, D.H. Henkelman, A.C. Eaves and C.J. Eaves,” Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers”, Proc Natl Acad Sci USA, Vol 87, pp. 3584-3588, May 1990.
[31] C. Udomsakdi, C.J. Eaves, H.J. Sutherland and P.M.Landsorp, “Separation of functionally distinct subpopulations of primitive human hematopoietic cells using Rhodamine-123”, Exp. Hematol., Vol 19, pp. 338-342, June 1991.
[32] S. Siena, M. Bregni, B. Brando, N. Belli, F, Ravagnani, L. Gandola, A.C. Stern, P.M. Lansdorp, G. Bonadonna and A.N. Gianni, “Flow cytometry for the clinical estimation of circulating hematopoietic progenitors for autologous transplantation in cancer patients”, Blood, Vol 77, pp. 400-409, January 1991.
[33] G. Somlo, J. Doroshow, S. Forman et al., “High-dose chemotherapy and stem cell rescue for the treatment of primary highrisk breast cancer: prognostic indicators of overall survival and progression-free survival”, Proc Am Soc Clin Oncol, Vol 14, pp. 113, 1995.
[34] K. Antman, L. Ayash, A. Elias, C. Wheeler, M. Hunt, J.P. Eder, B.A. Teicher, J. Critchlow, J. Bibbo, L.E. Schnipper and E. Frei, “A phase II study of high-dose cyclophosphamide, thiotepa, and carboplatin with autologous marrow support in women with measurable advanced breast cancer responding to standard-dose therapy”, J Clin Oncol, Vol 10, pp. 102-110, January 1992.
[35] A.A. Ross, B.W. Cooper, H.M. Lazarus, W. Mackay, T.J. Moss, N. Ciobanu, M.S. Tallman, M.J. Kennedy, N.E. Davidson, D Sweet, C. Winter, L. Akard, J. Jansen, E. Copelan, R.C. Meagher, R.H. Herzig, T.R. Klumpp, D.G. Kahn and N.E. Warner, “Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques”, Blood, Vol 82, pp. 2605-2610, November 1993.
[36] A.A. Ross, M. Loudovaris, B. Hazelton, C.H. Weaver, L. Schwartzberg and J.G. Bender, “Immunocytochemical analysis of tumor cells in pre- and post-culture peripheral blood progenitor cell collections from breast cancer patients”, Exp Hematol, Vol 23, pp. 1478-1483, December 1995.
[37] W. Brugger, K.J. Bross, M. Glatt, F. Weber, R Mertelsmann and L. Kanz, “Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors”, Blood, Vol 83, pp. 636-640, February 1994.
[38] R.J. Berenson, W.I. Bensinger, D. Kalamasz et al., “Avidin–biotin immunoadsorption: a technique to purify cells and its potential applications, In: Gale RP, Champlin R (eds)” Progress in Bone Marrow Transplantation. Liss: New York, pp. 423-428, 1989.
[39] D.F. Stroncek, S.K. Fautsch, L.C. Lasky, D.D. Hurd, N.K.C. Ramsay and J Mccullough, “Adverse reactions in patients transfused with cryopreserved marrow. Transfusion, Vol 31, pp. 521-526, July-August 1991.
[40] M.J. Styler, D.L. Topolsky, P.A. Crilley, V. Covalesky, R. Bryan, S. Bulova, I Brodsky, “Transient high grade heart block following autologous bone marrow infusion”, Bone Marrow Transplant, Vol 10, pp. 435-438, November 1992.
[41] E.J. Shpall, C.F. LeMaistre, K. Holland, E. Ball, R.B. Jones, R. Saral, C. Jacobs, S. Heimfeld, R. Berenson and R. Champlin, “A prospective randomized trial of buffy coat versus CD34-selected autologous bone marrow support in high-risk breast cancer patients receiving high-dose chemotherapy”, Blood, Vol 90, pp. 4313-4320, December 1997.
[42] S. Miltenyi, S. Guth, A. Radbruch, “Isolation of CD34+ hematopoietic progenitor cells by high-gradient magnetic cell sorting (MACS)”, Hematopoietic Stem Cells: The Mulhouse Manual, pp. 201-213, 1994.
[43] D.J. Richel, H.E. Johnsen, J. Canon, T. Guillaume, M.R. Schaafsma, C. Schenkeveld, S.W. Hansen, I. McNiece, A.J. Gringeri, R. Briddell, C. Ewen, R. Davies, J. Freeman, S. Miltenyi, M. Symann, “Highly purified CD34(+) cells isolated using magnetically activated cell selection provide rapid engraftment following high-dose chemotherapy in breast cancer patients”, Bone Marrow Transpl., Vol 25, pp. 243-249, February 2000.
[44] M.J. Fulwyler, “Electronic Separation of Biological Cells by Volume”, Science, Vol 150, pp. 910-911, 1965.
[45] R.G. Sweet, “High Frequency Recording with Electrostatically Deflected Ink Jets”, Rev. Sci. Instr., Vol 36, pp. 131-136, 1965.
[46] M.A.V. Dilla, M.J. Fulwyler and I.U. Boone, Proc. Soc. Exp. Biol. Med., Vol 125, pp. 367-370, 1965.
[47] W.A. Bonner, H.R. Hulett, R.G. Sweet, and L.A. Herzenberg, “Fluorescence Activated Cell Sorting”, Rev. Sci. Instr., Vol 43, pp. 404-409, 1972.
[48] K.W. Johnson, A. Dooner and P. J. Quesenberry, “Fluorescence activated cell sorting: A window on the stem cell”, Curr Pharm Biotechnol, Vol 8, pp. 133-139, June 2007.
[49] M . Assenmacher, R. Manz, S. Miltenyi, A. Scheffold, A. Radbruch, “Fluorescence-activated cytometry cell sorting based on immunological recognition”, Clin Biochem, Vol 28, pp. 39-40, February 1995.
[50] M.R. Loken, Immunofluorescence Techniques in Flow Cytometry and Sorting, 2nd edition, Wiley, 1990.
[51] C.W. Randall, “Sorting out the mass”, Modern Drug Discovery, pp. 29-32, November 2004.
[52] K. Kato, A. Radbruch, “Isolation and characterization of CD34+ hematopoietic stem cells from human peripheral blood by high-gradient magnetic cell sorting”, Cytometry, Vol 14, pp. 384-392, 1993.
[53] S. Miltenyi, W. Müller, W. Weichel, A. Radbruch, “High-gradient magnetic cell separation with MACS”, Cytometry, Vol 11, pp. 231-238, 1990.
[54] E.A. de Wynter, L.H. Coutinho, X. Pei et al., “Comparison of purity and enrichment of CD34+ cells from bone marrow, umbilical cord and peripheral blood (primed for apheresis) using five separation systems”, Stem Cells, Vol 13, pp. 524-532, 1995.
[55] I. McNiece, R. Briddell, G. Stoney et al., “Large-scale isolation of CD34+ cells using the Amgen Cell Selection Device results in high levels of purity and recovery”, J Hematother, Vol 6, pp. 1-11, 1997.
[56] A. Higuchi, Y. Shindo, Y. Gomei, T. Mori, T. Uyama and A. Umezawa, “Cell separation between mesenchymal progenitor cells through porous polymeric membranes”, J Biomat Sci Polym Edn Part B: Applied Biomater, Vol 74, pp. 511-519, July 2005.
[57] A. Higuchi, S. Yamamiya, B.O. Yoon, N. Sakurai and M. Hara, “Peripheral blood cell separation through surface-modified polyurethane membranes”, J Biomed Mater Res A, Vol 68, pp. 34-42, January 2004.
[58] A. Higuchi and Y. Tsukamoto, “Cell separation of hepatocytes and fibroblasts through surface-modified polyurethane membranes”, J Biomed Mater Res A, Vol 71, pp. 470-479, December 2004.
[59] A. Higuchi, A. Iizuka, Y. Gomei, T. Miyazaki, M. Sakurai, Y. Matsuoka and S Hayashi, “Separation of CD34+ cells from human peripheral blood through polyurethane membranes”, J Biomed Mater Res Part A, Vol 78, pp. 491-499, September 2006.
[60] M. Muller-Steinhardt, H. Hennig, H. Kirchner and P. Schlenke, “Prestorage WBC filtration of RBC units with soft-shell filters: Filtration performance and impact on RBCs during storage for 42 days”, Transfusion, Vol 42, pp. 153-158, February 2002.
[61] H. Komai, Y. Naito, K. Fujiwara, Y. Takagaki, Y. Noguch and Y. Nishimura, “The protective effect of a leukocyte removal filter on the lung in open-heart surgery for ventricular septal defect”, Perfusion, Vol 13, pp. 27-34, 1998.
[62] M. Yasutake, M. Sumita, S. Terashima, Y. Tokushima, Y. Nitadori and T.A. Takahashi, “Stem cell collection filter system for human placental/umbilical cord blood processing”, Vox Sang, Vol 80, pp. 101-105, February 2001.
[63] P.V. O’Donnell, B. Myers, J. Edwards, K. Loper, P. Rhubart and S.J. Noga, “CD34 selection using three immunoselection devices: Comparison of T-cell depleted allografts”, Cytotherapy, Vol 3, pp. 483-488, 2001.
[64] K. Sazama and P. Holand, “Transfusion-induced graft-versus-host disease”, In: Ganatty G, editor. Immunobiology of Transfusion Medicine, New York: Marcel Dekker, pp. 631-656, 1994.
[65] J. Debelak, M.J. Shlomchik, E.L. Snyder, D. Cooper, S. Seropian, J. McGuirk, B. Smith and D.S. Krause, “Isolation and flow cytometric analysis of T-cell-depleted CD34+ PBPCs”, Transfusion, Vol 40, pp. 1475-1481, December 2000.
[66] S. Florian, K. Sonneck, A.W. Hauswirth, M.T. Krauth, G.H. Schernthaner, W.R. Sperr and P. Valent, “Detection of molecular targets on the surface of CD34+/CD38- stem cells in various myeloid malignancies”, Leuk Lymphoma, Vol 47, pp. 207-222, February 2006.
[67] K.N. Chua, C. Chai, , P.C. Lee, Y.N. Tang, S. Ramakrishna, K.W. Leong and H.Q. Mao, “Surface-aminated electrospun nanofibers enhance adhesion and expansion of human umbilical cord blood hematopoietic stem/progenitor cells”, Biomaterials, Vol 27, pp. 6043-6051, 2006.
[68] K.N. Chua, C. Chaib, P.C. Lee, S. Ramakrishna, K.W. Leong, H.Q. Mao, “Functional nanofiber scaffolds with different spacers modulate adhesion and expansion of cryopreserved umbilical cord blood hematopoietic stem/progenitor cells”, Exp. Hematol, Vol 35, pp. 771-781, 2007.
[69] D. Bonnet, “Biology of human bone marrow stem cells”, Clin. Exp. Med., Vol 3, pp. 140-149, 2003.
[70] M. Takagi, “Cell processing engineering for ex-vivo expansion of hematopoietic cells”, J. Biosci. Bioeng., Vol 99, 189-196, 2005.
[71] C.L. McDowell, and E.T. Papoutsakis, “Serum increases the CD13 receptor expression, reduces the transduction of fluid-mechanical forces, and alters themetabolism of HL60 cells cultured in agitated bioreactors”, Biotechnol. Bioeng., Vol 60, pp. 259-268, 1998.
[72] C.E. Sandstrom, et al., “Review: serum-free media for cultures of primitive and mature hematopoietic cells”, Biotechnol. Bioeng., Vol 43, pp. 706-733, 1999.
[73] G. Almeida-Porada, et al., “Evaluation of serum-free culture conditions able to support the ex vivo expansion and engraftment of human hematopoietic stem cells in the human-to-sheep xenograft model”, J. Hematother. Stem Cell Res., Vol 9, pp. 683-693, 2000.
[74] A. von Drygalski, L. Savatski, D. Eastwood, J. Klein, J.W. Adamson, “The rate of marrow recovery and extent of donor engraftment following transplantation of ex vivo expanded bone marrow cells are independently influenced by the cytokines used for expansion”, Stem Cells Dev., Vol 14, pp. 564-575, 2005.
[75] Y. Zheng, A. Sun and Z.C. Han, “Stem cell factor improves SCID repopulating activity of human umbilical cord blood-derived hematopoietic stem/progenitor cells in xenotransplanted NOD/SCID mouse model”, Bone Marrow Transplant, Vol 35, pp. 137-142, 2005.
[76] L. De Felice, T. Di Pucchio, M. Breccia, F. Agostini, M.G. Mascolo, C. Guglielmi et al., “Flt3L enhances the early stem cell compartment after ex vivo amplification of umbilical cord blood CD34+ cells”, Bone Marrow Transplant, Vol 22 (Suppl 1), pp. S66–S67, 1998.
[77] L. De Felice, T. Di Pucchio, M.G. Mascolo, F. Agostini, M. Breccia, C. Guglielmi et al., “Flt3LP3 induces the ex-vivo amplification of umbilical cord blood committed progenitors and early stem cells in short-term cultures”, Br. J. Haematol., Vol 106, pp. 133-141, 1999.
[78] A. Solanilla, C. Grosset, P. Duchez, P. Legembre, V. Pitard, M. Dupouy et al., “Flt3-ligand induces adhesion of haematopoietic progenitor cells via a very late antigen (VLA)-4- and VLA-5-dependent mechanism”, Br. J. Haematol., Vol 120, pp. 782-786, 2003.
[79] Y. Jiang, F. Prosper, C.M. Verfaillie, “Opposing effects of engagement of integrins and stimulation of cytokine receptors on cell cycle progression of normal human hematopoietic progenitors”, Blood, Vol 95, pp. 846-854, 2000.
[80] T. Papayannopoulou, G.V. Priestley, B. Nakamoto, “Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway”, Blood, Vol 91, pp. 2231-2239, 1998.
[81] K. Levac, F. Karanu and M. Bhatia, “Identification of growth factor conditions that reduce ex vivo cord blood progenitor expansion but do not alter human repopulating cell function in vivo”, Haematologica, Vol 90, pp. 166-172, 2005.
[82] L.J. Murray, J.C. Young, L.J. Osborne, K.M. Luens, R. Scollay, B.L. Hill, “Thrombopoietin, flt3, and kit ligands together suppress apoptosis of human mobilized CD34+ cells and recruit primitive CD34+ Thy-1+ cells into rapid division”, Exp. Hematol., Vol 27, pp. 1019-1028, 1999.
[83] L. Gammaitoni, K.C. Weisel, M. Gunetti, K.D. Wu, S. Bruno, S. Pinelli et al., “Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication”, Blood, Vol 103, pp. 4440-4448, 2004.
[84] C.C. Hofmeister, J. Zhang, K.L. Knight, P. Le and P.J. Stiff, “Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche”, Bone Marrow Transplantation, Vol 39, pp. 11-23, 2007.
[85]. Q. Feng, C. Chai, X.S. Jiang, K.W. Leong, H.Q. Mao, “Expansion of engrafting human hematopoietic stem/progenitor cells in three-dimensional scaffolds with surface-immobilized fibronectin”, J. Biomed. Mater. Res., Vol 78A, pp. 781-791, 2006.
[86] E. Fuchs, T. Tumbar, G. Guasch, “Socializing with the neighbors: Stem cells and their niche”, Cell, Vol 116, pp. 769 –778, 2004.
[87] I.R. Lemischka, K.A. Moore, “Stem cells: Interactive niches”, Nature, Vol 425, pp. 778-779, 2003.
[88] J.A. LaIuppa, T.A. McAdams, E.T. Papoutsakis, W.M. Miller, “Culture materials affect ex vivo expansion of hematopoietic progenitor cells”, J. Biomed. Mater. Res., Vol 36, pp. 347-359, 1997.
[89] X.S. Jiang, C. Chai, Y. Zhang, R.X. Zhuo, H.Q. Mao, K.W. Leong, “Surface-immobilization of adhesion peptides on substrate for ex vivo expansion of cryopreserved umbilical cord blood CD34+ cells”, Biomaterials, Vol 27, pp. 2723-2732, 2006.
[90] S. Neussa, C. Apel, P. Buttler, B. Denecke, A. Dhanasingh, X. Ding, D. Grafahrend, A. Groger, K. Hemmrich, A. Herr, W. Jahnen-Dechent, S. Mastitskaya, A. Perez-Bouza, S. Rosewick, J. Salber, M. Woltje, M. Zenke, “Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering”, Biomaterials, Vol 29, pp. 302-313, 2008.
[91] R. Langer, D.A. Tirrell, “Designing materials for biology and medicine”, Nature, Vol 428, pp. 487-492, 2004.
[92] S. Janjanin, W.J. Li, M.T. Morgan, R.M. Shanti, R.S. Tuan, “Mold-shaped, nanofiber scaffold-based cartilage engineering using human mesenchymal stem cells and bioreactor”, J. Surg. Res., Vol 149, pp. 47-56, 2008.
[93] J. Venugopal, S. Low, A.T. Choon, S. Ramakrishna, “Interaction of cells and nanofiber scaffolds in tissue engineering”, J. Biomed. Mater. Res., Vol 84B, pp. 34-48, 2008.
[94] J.M. Dang, K.W. Leong, “Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers”, Tissue Eng. Part A, Vol 14, pp. 639-648, 2008.
[95] W.J. Li, Y.J. Jiang, R.S. Tuan, “Cell-nanofiber-based cartilage tissue engineering using improved cell seeding, growth factor, and bioreactor technologies”, Tissue Eng. Part A, Vol 14, pp. 639-648, 2008.
[96] I. Han, K.J. Shim, J.Y. Kim, Y.K. Sung, M. Kim, I.K. IKang, J.C. Kim, “Effect of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber matrices cocultured with hair follicular epithelial and dermal cells for biological wound dressing”, Art. Org., Vol 31, pp. 801-808, 2007.
[97] S.I. Jeong, I.D. Jun, M.J. Choi, Y.C. Nho, Y.M. Lee, H. Shin, “Development of electroactive and elastic nanofibers that contain polyaniline and poly(L-lactide-co-epsilon-caprolactone) for the control of cell adhesion”, Macromol. Biosci., Vol 8, pp. 627-637, 2008.
[98] K. Ma, C.K. Chan, S. Liao, W.Y.K. Hwang, Q. Feng, S. Ramakrishna, “Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells”, Biomaterials, Vol 29, pp. 2096-2103, 2008.
[99] J.N. Vournakis, J. Eldridge, M. Demcheva, R.C. Muise-Helmericks, “Poly-N-acetyl glucosamine nanofibers regulate endothelial cell movement and angiogenesis: Dependency on integrin activation of Ets1”, J. Vascular Res., Vol 45, pp. 222-232, 2008.
[100] J.A. van Aalst, C.R. Reed, L. Han, T, Andrady, M, Hromadka, S, Bernacki, K, Kolappa, J.B. JCollins, E.G. Loboa, “Cellular incorporation into electrospun nanofibers - Retained viability, proliferation, and function in fibroblasts”, Annals Plastic Surg., Vol 60, pp. 577-583, 2008.
[101] W.S. Li, Y. Guo, H. Wang, D. Shi, C. Liang, Z. Ye, F. Qing, J. Gong, “Electrospun nanofibers immobilized with collagen for neural stem cells culture”, J. Mater. Sci. Mater. Med., Vol 19, pp. 847-854, 2008.
[102] F. Tian, H. Hosseinkhani, M. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini, Y. Yokoyama, G.G. Estrada, H. Kobayashi, “Quantitative analysis of cell adhesion on aligned micro- and nanofibers”, J. Biomed. Mater. Res., Vol 84A, pp. 291-299, 2008.
[103] Y. Jin, D. Yang, Y. Zhou, G. Ma, J. Nie, “Photocrosslinked Electrospun Chitosan-Based Biocompatible Nanofibers”, J. Appl. Polym. Sci., Vol 109, pp. 3337-3343, 2008.
[104] D. Li, Y. Xia, “Electrospinning of Nanofibers: Reinventing the Wheel?”, Adv. Mater., Vol 16, pp. 1151-1170, 2004.
[105] S. Rafii, R. Mohle, F. Shapiro, B.M. Frey, M.A. Moore, “Regulation of hematopoiesis by microvascular endothelium”, Leuk. Lymphoma, Vol 27, pp. 375-386, 1997.
[106] T.M. Dexter, T.D. Allen, L.G. Lajtha, “Conditions controlling the proliferation of haemopoietic stem cells in vitro”, J. Cell Physiol., Vol 91, pp. 335-344, 1977.
[107] N.J. Boudreau, P.L. Jones, “Extracellular matrix and integrin signalling: the shape of things to come”, Biochem. J., Vol 339(Pt 3), pp. 481-488, 1999.
[108] Verfaillie, C. M.; Gupta, P.; Prosper, F.; Hurley, R.; Lundell, B.; Bhatia, R. “The hematopoietic microenvironment: Stromal extracellular matrix components as growth regulators for human hematopoietic progenitors”, Hematology 1999, 4, 321–333.
[109] A.J. Potocnik, C. Brakebusch, R. Fassler, “Fetal and adult hematopoietic stem cells require β1 integrin function for colonizing fetal liver, spleen, and bone marrow”, Immunity, Vol 12, pp. 653-663, 2000.
[110] K.P. Schofield, M.J. Humphries, E. de Wynter, N. Testa, J.T. Gallagher, “The effect of alpha 4beta 1-integrin binding sequences of fibronectin on growth of cells from human hematopoietic progenitors”, Blood, Vol 91, pp. 3230-3238, 1998.
[111] C.M. Verfaillie, J.B. McCarthy, P.B. McGlave, “Differentiation of primitive human multipotent hematopoietic progenitors into single lineage clonogenic progenitors is accompanied by alterations in their interaction with fibronectin”, J. Exp. Med., Vol 174, pp. 693-703, 1991.
[112] K. Franke, T. Pompe, M. Bornhauser, C. Werner, “Engineered matrix coatings to modulate the adhesion of CD133+ human hematopoietic progenitor cells”, Biomaterials, Vol 28, pp. 836-843, 2007.
[113] F. Li, S.D. Redick, H.P. Erickson, V.T. Moy, “Force measurements of the α5β1 integrin–fibronectin interaction”, Biophys. J., Vol 84, pp. 1252-1262, 2003.
[114] E. Evans, “Looking inside molecular bonds at biological interfaces with dynamic force spectroscopy”, Biophys. Chem., Vol 82, pp. 83-97, 1999.
[115] D.E. Ingberm, “Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology”, Circ. Res., Vol 91, pp. 877-887, 2002.
[116] S. Huang, D.E. Ingber, “The structural and mechanical complexity of cell-growth control”, Nat. Cell Biol., Vol 1, pp. E131-E138, 1999.
[117] R. McBeath, D.M. Pirone, C.M. Nelson, K. Bhadriraju, C.S. Chen, “Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment”, Dev. Cell, Vol 6, pp. 483-495, 2004.
[118] B.M.M Sagar, S. Rentala, P.N.V. Gopal, S. Sharma, A. Mukhopadhyay, “Fibronectin and laminin enhance engraftibility of cultured hematopoietic stem cells”, Biochem. Biophys. Res. Comm., Vol 350, pp. 1000-1005, 2006.
[119] R. Bhatia, A.D. Williams, H.A. Munthe, “Contact with fibronectin enhances preservation of normal but not chronic myelogenous leukemia primitive hematopoietic progenitors”, Exp. Hematol., Vol 30, pp. 324-332, 2002.
[120] C.M. Orschell-Travcoff, K. Hiatt, R.N. Dagher, S. Rice, M.C. Yoder, F.F. Srour, “Homing and engraftment potential of Sca-1+Lin- cells fractionated on the basis of adhesion molecule expression and position in cell cycle”, Blood, Vol 96, pp. 1380-1387, 2000.
[121] M. Rosemblatt, M.H. Vuillet-Gaugler, C. Leroy, L. Coulombel, “Coexpression of two fibronectin receptors, VLA-4 and VLA-5, by immature human erythroblastic precursor cells”, J. Clin. Invest., Vol 87, pp. 6-11, 1991.
[122] J. Teixido, M.E. Hemler, J.S. Greenberger, P. Anklesaria, “Role of beta 1 and beta 2 integrins in the adhesion of human CD34hi stem cells to bone marrow stroma”, J. Clin. Invest., Vol 90, pp. 358-367, 1992.
[123] J.M. Kerst, J.B. Sanders, I.C. Slaper-Cortenbach, M.C. Doorakkers, B. Hooibrink, R.H. van Oers, A.E. von dem Borne, C.E. van der Schoot, “Alpha 4 beta 1 and alpha 5 beta 1 are differentially expressed during myelopoiesis and mediate the adherence of human CD34+ cells to fibronectin in an activationdependent way”, Blood, Vol 81, pp. 344-351, 1993.
[124] D.H. Ryan, B.L. Nuccie, C.N. Abboud, J.M. Winslow, “Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells”, J. Clin. Invest., Vol 88, pp. 995-1004, 1991.
[125] D.A. Williams, M. Rios, C. Stephens, V.P. Patel, “Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions”, Nature, Vol 352, pp. 438-441, 1991.
[126] N. Yanai, C. Sekine, H. Yagita, M. Obinata, “Roles for integrin very late activation antigen-4 in stroma-dependent erythropoiesis”, Blood, Vol 83, pp. 2844-2850, 1994.
[127] K. Hamamura, H. Matsuda, Y. Takeuchi, S. Habu, H. Yagita, K. Okumura, “A critical role of VLA-4 in erythropoiesis in vivo”, Blood, Vol 87, pp. 2513-2507, 1996.
[128] T. Yokota, K. Oritani, H. Mitsui, K. Aoyama, J. Ishikawa, H. Sugahara, I. Matsumura, S. Tsai, Y. Tomiyama, Y. Kanakura, Y. Matsuzawa, “Growth-supporting activities of fibronectin on hematopoietic stem/progenitor cells in vitro and in vivo: structural requirement for fibronectin activities of CS1 and cell-binding domains”, Blood, Vol 91, pp. 3263-3272, 1998.
[129] C.H. Cho, J.F. Eliason, H.W. Matthew, “Application of porous glycosaminoglycan-based scaffolds for expansion of human cord blood stem cells in perfusion culture”, J. Biomed. Mater. Res. A., Vol 86, pp. 98-107, 2008.
[130] L. Kjellen, U. Lindahl, “Proteoglycans: Structures and interactions”, Annu. Rev. Biochem., Vol 60, pp. 443-475, 1991.
[131] S.V. Madihally, A.W. Flake, H.W. Matthew, “Maintenance of CD34 expression during proliferation of CD34+ cord blood cells on glycosaminoglycan surfaces”, Stem Cells, Vol 17, pp. 295-305, 1999.
[132] E. Ruoslahti, “Structure and biology of proteoglycans”, Annu. Rev. Cell. Biol., Vol 4, pp. 229-255, 1988.
[133] I. Vlodavsky, H.Q. Miao, R. Atzmon, E. Levi, J. Zimmermann, R. Bar-Shavit, T. Peretz, S.A. Ben-Sasson, “Control of cell proliferation by heparan sulfate and heparin-binding growth factors”, Thromb. Haemost., Vol 74, pp. 534-540, 1995.
[134] P. Gupta, T.R.Jr. Oegema, J.J. Brazil, A.Z. Dudek, A. Slungaard, C.M. Verfaillie, “Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche”, Blood, Vol 92, pp. 4641-4651, 1998.
[135] N. Banu, M. Rosenzweig, H. Kim, J. Bagley, M. Pykett, “Cytokineaugmented culture of haematopoietic progenitor cells in a novel three-dimensional cell growth matrix”, Cytokine, Vol 13, pp. 349-358, 2001.
[136] J. Bagley, M. Rosenzweig, D.F. Marks, M.J. Pykett, “Extended culture of multipotent hematopoietic progenitors without cytokine augmentation in a novel three-dimensional device”, Exp. Hematol., Vol 27, pp. 496-504, 1999.
[137] Y. Li, T. Ma, D.A. Kniss, S.T. Yang, L.C. Lasky, “Human cord cell hematopoiesis in three-dimensional nonwoven fibrous matrices: In vitro simulation of the marrow microenvironment”, J. Hematother. Stem Cell Res., Vol 10, pp. 355-368, 2001.
[138] H.S. Kim, J.B. Lim, Y.H. Min, S.T. Lee, C.J. Lyu, E.S. Kim, H.O. Kim, “Ex vivo expansion of human umbilical cord blood CD34+ cells in a collagen bead-containing 3-dimensional culture system”, Int. J. Hematol., Vol 78, pp. 126-132, 2003.
[139] T.M. Dexter, et al., “Stimulation of differentiation and proliferation of haemopoietic cells in vitro”, J. Cell. Physiol., Vol 82, pp. 461-473, 1973.
[140] P.C. Collins, et al., “Stirred culture of peripheral and cord blood hematopoietic cells offers advantages over traditional static systems for clinically relevant applications”, Biotechnol. Bioeng., Vol 59, pp. 534-543, 1998.
[141] J.M.S. Cabral, “Ex vivo expansion of hematopoietic stem cells in bioreactors”, Biotechnol. Lett., Vol 23, pp. 741-751, 2001.
[142] B.O. Palsson, et al., “Expansion of human bone marrow progenitor cells in a high cell density continuous perfusion system”, Biotechnology (NY), Vol 11, pp. 368-372, 1993.
[143] M.R. Koller, et al., “Expansion of primitive human hematopoietic progenitors in a perfusion bioreactor system with IL-3, IL-6, and stem cell factor”, Biotechnology (NY), Vol 11, pp. 358-363, 1993.
[144] M.R. Koller, et al., “Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures”, Blood, Vol 82, pp. 378-384, 1993.
[145] R.M. Schwartz, et al., “Rapidmedium perfusion rate significantly increases the productivity and longevity of human bone marrow cultures”, Proc. Natl. Acad. Sci. U. S. A., Vol 88, pp. 6760-6764, 1991.
[146] D.J. Oh, et al., “Frequent harvesting from perfused bone marrow cultures results in increased overall cell and progenitor expansion”, Biotechnol. Bioeng., Vol 44, pp. 609-616, 1994.
[147] C.A. Sardonini, Y.J. Wu, “Expansion and differentiation of human hematopoietic cells from static cultures through small-scale bioreactors”, Biotechnol. Prog., Vol 9, pp. 131-137, 1993.
[148] P.W. Zandstra, et al., “Expansion of hematopoietic progenitor cell populations in stirred suspension bioreactors of normal human bone marrow cells”, Biotechnology (NY), Vol 12, pp. 909-914, 1994.
[149] M.G. Levee, et al., “Microencapsulated human bone marrow cultures: a potential culture system for the clonal outgrowth of hematopoietic progenitor cells”, Biotechnol. Bioeng., Vol 43, pp. 734-739, 1994.
[150] C.L. McDowell, E.T. Papoutsakis, “Increased agitation intensity increases CD13 receptor surface content and mRNA levels, and alters the metabolism of HL60 cells cultured in stirred tank bioreactors”, Biotechnol. Bioeng., Vol 60, pp. 239-250, 1998.
[151] D.A. Breems, et al., “Stroma-contact prevents loss of hematopoietic stem cell quality during ex vivo expansion of CD34+ mobilized peripheral blood stem cells”, Blood, Vol 91, pp. 111-117, 1998.
[152] H. Kawada, et al., “Rapid ex vivo expansion of human umbilical cord hematopoietic progenitors using a novel culture system”, Exp. Hematol., Vol 27, pp. 904-915, 1999.
[153] T. Kohler, et al., “Defining optimum conditions for the ex vivo expansion of human umbilical cord blood cells. Influences of progenitor enrichment, interference with feeder layers, early-acting cytokines and agitation of culture vessels”, Stem Cells, Vol 17, pp. 19-24, 1999.
[154] P.W. Zandstra, A. Nagy, “Stem cell bioengineering”, Annu. Rev. Biomed. Eng., Vol 3, pp. 275-305, 2001.
[155] T.Y. Wang, et al., “Multilineal hematopoiesis in a threedimensional murine long-term bone marrow culture”, Exp. Hematol., Vol 23, pp. 26-32, 1995.
[156] J.G. Highfill, et al., “Large-scale production of murine bone marrow cells in an airlift packed bed bioreactor”, Biotechnol. Bioeng., Vol 50, pp. 514-520, 1996.
[157] A. Mantalaris, et al., “Engineering a human bone marrow model: a case study on ex vivo erythropoiesis”, Biotechnol. Prog., Vol 14, pp. 126-133, 1998.
[158] P. Meissner, et al., “Development of a fixed bed bioreactor for the expansion of human hematopoietic progenitor cells”, Cytotechnology, Vol 30, pp. 227-234, 1999.
[159] N. Jelinek, et al., “Novel bioreactors for the ex vivo cultivation of hematopoietic cells”, Eng. Life Sci., Vol 2, pp. 15-18, 2002.
[160] N. Jelinek, et al., “A novel minimized fixed-bed cultivation system for hematopoietic cells”, Exp. Hematol., Vol 28, pp. 122-123, 2000.
[161] M. Ingram, et al., “Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor”, In Vitro Cell. Dev. Biol. Anim., Vol 33, pp. 459-466, 1997.
[162] L. Healy, D. May, K. Gale, et al., “The stem cell antigen CD34 functions as a regulator of hemopoietic cell adhesion”, Proceedings of the National Academy of Sciences of the USA, Vol 92, pp. 12240-12244, 1995.
[163] M. Fackler, D.S. Krause, O.M. Smith, et al., “Full length but not truncated CD34 inhibits hematopoietic cell differentiation of M1 cells”, Blood, Vol 85, pp. 3040-3047, 1995.
[164] C.I. Civin, L.C. Strauss, C. Brovall, et al., “Antigenic analysis of hematopoiesis. III. A haematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells”, Journal of Immunology, Vol 133, pp. 157-165, 1984.
[165] A. Gianni, S. Siena, M. Bregni, “Granulocyte-macrophage colony stimulating factor to harvest circulating haemopoietic stem cells for autotransplantation” Lancet, Vol ii, pp. 580-585, 1989.
[166] S. Siena, M. Bregni, B. Brando, “Circulation of CD34+ haematopoietic stem cells in the peripheral blood of high dose cyclophosphamide treated patients: enhancement by intravenous recombinant human granulocyte-macrophage colony stimulating factor”, Blood, Vol 74: pp. 1905-1914, 1989.
[167] D. Sutherland, A. Keating, R, Nayar, et al., “Sensitive detection and enumeration of CD34+ cells in peripheral and cord blood by flow cytometry”, Experimental Hematology, Vol 22, pp. 1003-1010, 1994.
[168] B. Thilaganathan, K.H. Nicolaides, G. Morgan, “Subpopulations of CD34-positive haemopoietic progenitors in fetal blood”, British Journal of Haematology, Vol 87, pp. 634-636, 1994.
[169] J.G. Bender, K. Unverzagt, D. Walker, “Guidelines for determination of CD34+ cells by flow cytometry: Application to the harvesting and transplantation of peripheral blood stem cells. In: Hematopoietic Stem Cells: The Mulhouse Manual, Wunder E, Sovalat H, Henon PR, Serke S (eds)”, AlphaMed Press, Dayton, OH, pp. 31-43, 1994.
[170] J.W. Gratama, J. Kraan, W. Levering, D.R. Van Bockstaele, G.T. Rijkers, C.E. Van der Schoot, “Analysis of variation in results of CD34+ hematopoietic progenitor cell enumeration in a multicenter study”, Cytometry, Vol 30, pp. 109-117, 1997.
[171] H.E. Johnsen, for the Nordic Myeloma Study Group Laboratories, “Report from a Nordic workshop on CD34+ cell analysis: Technical recommendations for progenitor cell enumeration in leukapheresis from multiple myeloma patients”, J Hematother, Vol 4, pp. 21-28, 1995.
[172] M.A. Owens, M.R. Loken, “Peripheral blood stem cell quantitation. In: Flow Cytometric Principles for Clinical Laboratory Practice”, Wiley- Liss, New York, pp. 111-127, 1995.
[173] S.Siena, M. Bregni, M. Di Nicola, F. Peccatori, M. Magni, B. Brando, F. Ravagnani, A.M. Gianni, “Milan protocol for clinical CD34+ cell estimation in peripheral blood for autografting in patients with cancer. In: Hematopoietic Stem Cells: The Mulhouse Manual, Wunder E, Sovalat H, Henon PR, Serke S (eds)”, AlphaMed Press, Dayton, OH, pp. 23-30, 1994.
[174] D.R. Sutherland, L. Anderson, M. Keeney, R. Nayar, I. Chin-Yee, “The ISHAGE guidelines for CD34+ cell determination by flow cytometry”, J Hematother, Vol 5, pp. 213-226, 1996.
[175] J.W. Gratama, A. Orfao, D. Barnett, B. Brando, A. Huber, G. Janossy, H.E. Johnsen, M. Keeney, G.E. Marti, F. Preijers, G. Rothe, S. Serke, D. R. Sutherland, C.E. Van der Schoot, G. Schmitz, and S. Papa, “Flow Cytometric Enumeration of CD341 Hematopoietic Stem and Progenitor Cells”, Cytometry (Communications in Clinical Cytometry), Vol 34, pp. 128-142, 1998.
[176] M.J. Borowitz, K.L. Guenther, K.E. Schultz, G.T. Stelzer, “Immunophenotyping of acute leukemia by flow cytometry: Use of CD45 and right angle light scatter to gate on leukemic blasts in three color analysis”, Am J Clin Pathol, Vol 100, pp. 534-540, 1993.
[177] C.H. Chen, W. Lin, S. Shye, R. Kibler, K. Grenier, D. Recktenwald, L.W.M.M Terstappen, “Automated enumeration of CD34+ cells in peripheral blood and bone marrow”, J Hematother, Vol 3, pp. 3-13, 1994.
[178] G. Fritsch, D. Printz, M. Stimpfl, M.N. Dworzak, V. Witt, U. Po¨tschger, P. Buchinger, “Quantification of CD34+ cells: Comparison of methods”, Transfusion, Vol 37, pp. 775-784, 1997.
[179] K. Gutensohn, S. Serke, U. Cassens, J. Fischer, G. Fritsch, S. Fruehauf, H.S.P. Garritsen, W. Gebauer, R. Haas, H.G. Ho¨ffkes, A. Humpe, H.D. Kleine, R. Moog, J. Riggert, G. Rothe, P. Schlenke, G. Schmitz, T. Tonn, B. Wo¨rmann, B.L. Ziegler, “Durchflubzytometrische Analyse CD34- exprimierender ha¨matopoetischer Zellen in Blut und Zytafereseprodukten”, Infusionsther Transfusionsmed, Vol 23 (Suppl 2), pp. 1-23, 1996.
[180] C. Kreissig, A. Kirsch, S, Serke, “Characterization and measurement of CD34- expressing hematopoietic cells”, J Hematother, Vol 3, pp. 263-289, 1994.
[181] M.W. Lowdell, D.R. Bainbridge, participants of the Royal Microscopical Society Clinical Flow Cytometry Group QA Schemes, “External quality assurance for CD34 cell enumeration: Results of a preliminary national trial”, Bone Marrow Transplant, Vol 17, pp. 849-853, 1996.
[182] M.A. Lumley, D.F. McDonald, H.M. Czarnecka, L.J. Billingham, D.W. Milligan, “Quality assurance of CD34+ cell estimation in leucapheresis products”, Bone Marrow Transplant, Vol 18, pp. 791-796, 1996.
[182] D.R. Sutherland, A. Keating, R. Nayar, S. Anania, A.K. Stewart, “Sensitive detection and enumeration of CD34+ cells in peripheral blood and cord blood by flow cytometry”, Exp Hematol, Vol 22, pp. 1003-1010, 1994.
[183] J.W. Gratama, A. Orfao, D. Barnett, B. Brando, A. Huber, G. Janossy, H.E. Johnsen, M. Keeney, G.E. Marti, F. Preijers, G. Rothe, S. Serke, D. R. Sutherland, C.E. Van der Schoot, G. Schmitz, and S. Papa, “Flow Cytometric Enumeration of CD34+ Hematopoietic Stem and Progenitor Cells”, Cytometry (Communications in Clinical Cytometry), Vol 34, pp. 128-142, 1998.
[184] G. Olesen, H. Tønder, M.S. Holm and P. Hokland, “Long-term culture of hematopoietic stem cells – validating the stromal component of the CAFC assay”, Cytotherapy, Vol. 3, pp. 107-116, 2001.
[185] J.E. Dick, “Normal and leukemic human stem cells assayed in SCID mice”, Seminars in IMMUNOLOGY, Vol 8, pp. 197-206, 1996.
[186] S. Kiyohara, M. Sasaki, K. Saito, K, Sugita, T. Sugo, “Radiationinduced grafting of phenylalanine-containing monomer onto a porous membrane”, Reactive Functional Polym, Vol 31, pp. 103-110, 1996.
[187] M. Fotino, E. Merson, F. Allen, “Micromethod for rapid separation of lymphocytes from peripheral blood”, Ann Clin Lab Sci, Vol 1, pp. 131-133, 1971.
[188] S. Mizushima, “Encyclopidea of chemistry 3”, Tokyo: Kyoritsu Schupan, pp. 359, 1997.
[189] S. Mizushima, “Encyclopidea of chemistry 5”, Tokyo: Kyoritsu Schupan, pp. 339, 1997.
[190] S. Mizushima, “Encyclopidea of chemistry 7”, Tokyo: Kyoritsu Schupan, pp. 111, 1997.
[191] A. Higuchi, M. Sekiya, Y. Gomei, M. Sakurai,W.-Y. Chen, S. Egashira, Y. Matsuoka, “Separation of hematopoietic stem cells from human peripheral blood through modified polyurethane foaming membranes”, J. Biomed. Mater. Res. A 85A, Vol 4, pp. 853-861, 2008.
[192] N. Fujimoto, S. Fujita, T. Tsuji, J. Toguchida, K. Ida, H. Suginami, H. Iwata, “Microencapsulated feeder cells as a source of soluble factors for expansion of CD34+ hematopoietic stem cells”, Biomaterials ,Vol 28 ,pp. 4795-4805, 2007.
[193] W. Wagner, F. Wein, C. Roderburg, R. Saffrich, A. Faber, U. Krause, M. Schubert, V. Benes, V. Eckstein, H. Maul, A.D. Ho, “Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell-cell interaction”, Exp. Hematol., Vol 35, pp. 314-325, 2007.
[194] N. Forraz, R. Pettengell, C.P. McGuckin, “Characterization of a lineage-negative stem-progenitor cell population optimized for ex vivo expansion and enriched for LTC-IC”, Stem Cells, Vol 22, pp. 100-108, 2004.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2009-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明