博碩士論文 963206013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:140 、訪客IP:18.222.119.148
姓名 阮亮凱(Liang-Kai Juan)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以非熱電漿處理CuO/ZnO/Al2O3觸媒應用於合成氣合成甲醇之研究
(Plasma-treated CuO/ZnO/Al2O3 Catalystfor Methanol Synthesis from Syngas)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 甲醇為許多化學品合成之原料,近來更被視為優良能量載體,就甲醇合成程序而言,善用觸媒可降低反應所需活化能並增進反應速率。非熱電漿技術於觸媒之結合或應用乃近十年方興起之研究領域,目前國際學術界利用此新穎技術於轉化合成氣為甲醇之研究尚未得見。在傳統共沈澱法之觸媒製備過程包括:沉澱、洗滌、過濾、烘乾、鍛燒、及還原等步驟,本研究在觸媒製備過程中引入一個特殊過程:『電漿處理』,將其插入上述鍛燒製備程序之前後、或用其取代鍛燒程序,並以此觸媒在高壓高溫下進行合成氣轉化甲醇之實驗,研究重點在於瞭解電漿處理觸媒之可行性。本研究所測試的觸媒包括:商用、未經電漿處理、經氧氣電漿處理和經氫氣電漿處理等觸媒。商用及未經電漿處理觸媒經催化實驗結果顯示,本研究所自行製備之觸媒具有較高活性;比較有無氧氣電漿處理(鍛燒前)之結果顯示,可降低最佳活性溫度,於235℃、40 atm條件下,提升甲醇選擇率及產率,同時亦降低了副產物的選擇率;以氫氣電漿處理來取代鍛燒之觸媒,CO轉化率高達97%,但主要產物並非甲醇而是CO2及CH4,其活性已經截然不同。針對了電漿處理氣氛及程序做更進一步的探討,結果發現在鍛燒前氫氣電漿處理及鍛燒後氧氣電漿處理,其甲醇選擇性及甲醇產率都低於未經電漿處理;反之,鍛燒前氧氣電漿及鍛燒後氫氣電漿處理,皆優於未經處理觸媒之甲醇選擇性及甲醇產率。經由XRD、ICP及比表面積量測,證實以非熱電漿處理可輔助觸媒,分解前驅物的特性、較大之比表面積及經電漿處理過後可具有較小氧化銅顆粒。此外,以電漿處理CuO/ZnO/Al2O3觸媒具有低耗能特性,所需電量僅為11 kJ/g-cat.。綜合而言,本研究證實以非熱電漿處理確實可修飾觸媒的表面特性,但並非其所改變之特性完全有利於轉化合成氣為甲醇,乃必須慎選電漿處理方法以利觸媒催化反應,反之亦可能導致相反之結果。
摘要(英) In recent years, nonthermal plasma has been utilized as a novel technique to enhance the activity of catalyst. The study applied this novel technique to the preparation of the catalyst for methanol synthesis Such study has yet reported so far. The main objective of this study is to investigate the feasibility of using nonthermal plasma to modify the performance of methanol synthesis catalyst. In terms of methanol synthesis by catalysis, the catalyst is generally prepared via coprecipitation, and consists of precipitation, washing, filtration, drying, calcination and reduction. In this study, plasma treatment can be applied before/after calcination or used to replace calcinations. A variety of catalysts have been experimentally tested in this study, i.e., commercial, self-made (without plasma treatment), O2-plasma-treated, and H2-plasma-treated catalysts. The experimental results indicate the self-made catalyst could achieve better performance than the commercial one. On the other hand, the treatment of O2 plasma (before calcination) could shift the optimum temperature for methanol synthesis from 255oC to 235oC and increase the selectivity of MeOH at the same time. As for the H2-plasma-treated (replace calcination) catalyst, although the best CO conversion rate obtained in this study is as high as 97%, the main products are CO2 and CH4 instead of the desired product, MeOH. As a further study on applying different plasma treatments and processes, it reveals that the selectivity and the yield of MeOH from H2-plasma-treated catalyst before calcinations and O2-plasma-treated catalyst after calcinations are lower than that of self-made catalysts. That is to say, the selectivity and yield of MeOH from H2-plasma-treated catalyst before calcinations and O2-plasma-treated catalyst after calcinations are better than that of self-made catalysts. To get insights into the influence of plasma treatment on the physical and chemical properties of the catalyst, the measurements of XRD, ICP and surface area are also conducted in this study. The results indicate that the plasma treatment could decompose the precursors of the active components. Moreover, after plasma treatment, larger surface area and smaller CuO grain size could be achieved as well. Besides, it is worth noticing that the energy required for the treatment of Cu/ZnO/Al2O3 catalyst is only 11 kJ/g-cat, which is economically competitive. In conclusion, it has been demonstrated in this study that the plasma treatment could alter the physical and chemical properties of the catalyst. However, the alteration is not always beneficial for methanol synthesis. Therefore, one should be careful in selecting the background gas of plasma so that the plasma treatment process is beneficial to catalyst performance.
關鍵字(中) ★ 生質能
★ 替代燃料
★ 合成氣液化
★ 非熱電漿
★ 經電漿處理觸媒
★ 甲醇
關鍵字(英) ★ Methanol (MeOH)
★ Biomass energy.
★ Alternative fuel
★ Syngas liquefaction
★ Nonthermal plasma
★ Plasma-treated catalyst
論文目次 摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 X
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 甲醇的重要性及其發展 3
2-2 甲醇合成觸媒及其製備方法 6
2-3 甲醇合成之研究現況 9
2-4 電漿特性及類型 13
2-5 電漿放電對於觸媒表面物化特性之影響 17
第三章 實驗方法與設備 21
3-1 研究流程 21
3-2 觸媒製備 23
3-2-1 傳統共沈澱法 23
3-2-2 氧氣電漿處理 23
3-2-3 氫氣電漿處理 25
3-3 合成甲醇之方法及步驟 26
3-4 觸媒特性鑑定分析 28
3-4-1 氮氣吸附儀(ASAP) 28
3-4-2 感應耦合電漿原子放射光譜儀(ICP-AES) 29
3-4-3 高解析薄膜X光繞射儀(X-ray Diffractometer) 29
3-4-4 氧化亞氮脈衝吸附(N2O-pulse) 30
3-4-5 掃瞄式電子顯微鏡(SEM) 31
3-5 儀器設備、氣體及藥品 32
第四章 實驗結果與討論 36
4-1 背景實驗 36
4-1-1 觸媒製備程序的影響 36
4-1-2 無添加觸媒 39
4-2 商用觸媒 41
4-2-1 時間的影響 41
4-2-2 空間流速的影響 44
4-2-3 溫度的影響 46
4-3 自製觸媒 49
4-3-1 溫度的影響 49
4-3-2 壓力的影響 52
4-4 電漿處理觸媒 55
4-4-1 氧氣電漿處理 55
a. 溫度的影響 55
b. 壓力的影響 58
4-4-2 氫氣電漿處理 60
a. 溫度的影響 60
4-5 電漿處理氣氛及程序的影響 63
4-5-1 鍛燒前電漿處理 66
a. 氧氣電漿 66
b. 氫氣電漿 69
4-5-2 鍛燒後電漿處理 72
a. 氧氣電漿 72
b. 氫氣電漿 75
4-6 觸媒鑑定 78
4-6-1 觸媒表面結構特性分析 78
4-6-2 ICP-AES元素組成分析 80
4-6-3 XRD晶相分析 82
4-6-4 氧化亞氮脈衝吸附 85
4-6-5 SEM分析 87
第五章 結論與建議 91
5-1 結論 91
5-2 建議 92
參考文獻 93
參考文獻 Bae, J.W.; Potdar, H. S.; Kang, S.H.; Jun, K.W., “Coproduction of methanol and dimethyl ether from biomass-derived syngas on a Cu-ZnO-Al2O3/γ-Al2O3 hybrid catalyst,” Energy & Fuels, 22, 223-230, 2008.
Baltes, C.; Vukojevic, S.; Schuth F., “Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis,” Journal of Catalysis, 258 , 334-344, 2008.
BP, “BP statistical review of world energy,” London, UK, 2002. (Available from http:www.bp.com/centres/energy2002)
Chen, H.Y.; Lau, S.P.; Chen, L.; Lin, J.; Huan, C.H.A.; Tan, K.L.; Pan, J.S., “Synergism between Cu and Zn sites in Cu/Zn catalysts for methanol synthesis,”Applied Surface Science, 152, 193-199, 1999.
Chen, M. H.; Chu, W.; Dai, X. Y.; Zhang, X. W., “New palladium catalysts prepared by glow discharge plasma for the selective hydrogenation of acetylene,” Catalysis Today, 89, 201-204, 2004.
Cranmore, R. G.; Stanton, E., “Natural gas in: Dawe R.A.,” editor. Modern Petroleum Tehcnology, Upstream Volume. Chishester: Institute of Petroleum, Johy Wiley and Sons Ltd, 337-408, 2000.
Eliasson, B. and Kogelschatz, U., “Nonequilibrium volume plasma chemical processing,” IEEE Transactins on Plasma Science, 19, 1063-1077, 1991.
Eliasson, B.; Hirth, M.; Kogelschatz, U., “Ozone synthesis from oxygen in dielectric barrier discharges,” Journal of Physics D: Applied Physics, 20, 1421-1437, 1987.
Fei, J.H.; Tang, X.J.; Huo, Z.Y.; Lou, H.; Zheng, X.M., “Effect of copper content on Cu-Mn-Zn/zeolite-Y catalysts for the synthesis of dimethyl ether from syngas,” Catalysis Communications, 7, 827-831, 2006.
Kim, H. H., “Nonthermal plama processing for air-pollution control: a historical review, current issues, and future prospects,” Plasma Processes and Polymers, 1, 91-110, 2004.
Koeppel, R.A.; Baiker, A.; Wokaun, A., “Copper zirconia catalysts for the synthesis of methanol from carbon-dioxide - influence of preparation variables on structural and catalytic properties of catalysts,” Applied Catalysis A: General, 84, 77, 1992.
Kuai, P.-Y.; Liu, C.-J.; Huo, P.-P., “Characterization of CuO-ZnO catalyst prepared by decomposition of carbonates using dielectric-barrier discharge plasma,” Catal Lett, 129, 493-498, 2009.
Lange, J. P., “Methanol synthesis: a short review of technology improvements,” Catalysis Today, 64, 3-8, 2001.
Lee, H. M., Juan, L.K., Chen, H.-L., Chang, M.B., Chen, S.H., Li, H.Y., Tzeng, C.C., “Plasma-treated catalyst for methanol synthesis from syngas,” IEEE Trans. Plasma Sci. (2009/05). (revision)
Li, J.L.; Zhang, X.G.; Inui, T., “Improvement in the catalyst activity for direct synthesis of dimethyl ether from synthesis gas through enhancing the dispersion of CuO/ZnO/-Al2O3 in hybrid catalysts,” Applied Catalysis A: General, 147, 23-33, 1996.
Li, Z.H.; Tian, S.X.; Wang, H. T.; Tian, H. B., “Plasma treatment of Ni catalyst via a corona discharge,” Journal of Molecular Catalysis A: Chemical, 211, 149-153, 2004.
Lihong, H.; Wei, C.; Junqiang, X.; Jingping, H.; Min, Y., “Effect of glow discharge plasma on rhodium-based catalyst for oxygenates synthesis,” Front. Chemistry Energy China, 1(1), 16-19, 2007.
Liu, C. J.; Vissokov, G. P.; Jang, B. W.L., “Catalyst preparation using plasma technologies,” Catalysis Today, 72, 173-184, 2002.
Liu, C.J.; Zou, J.; Yu, K.; Cheng, D.; Han, Y.; Zhan, J.; Ratanatawanate, C.; Jang B. W.L., “ Plasma application for more environmentally friendly catalyst preparation,” Pure Appl. Chem., 78(6), 1227-1238, 2006.
Liu, X.Z.; Wang, J.G.; Liu, C.J.; He, F.; Eliasson, B., “Partial oxidation of methane to syngas over Ni-Fe/Al2O3 catalyst with plasma enhanced activity,” Reaction Kinetics and Catalysis Letters, 79, 69-76, 2003.
Liu,C.J.; Wang, J.X.; Yu, K.L.; Eliasson, B.; Xia, Q.; Xue, B.; Zhang, Y.H., “Floating double probe characteristics of non-thermal plasmas in the presence of zeolite,” Journal of Electrostatics, 54, 149, 2002.
Mao, D.; Yang, W.; Xia, J.; Zhang, B.; Song, Q.; Chen, Q., “Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component,” Journal of Catalysis, 230, 140-149, 2005.
Moradi, G.R.; Ghaneia, R.; Yaripour, F., “ Comparison of the performance of different hybrid catalysts for direct synthesis of dimethyl ether from synthesis gas,” React. Kinet. Catal. Lett., 92(1), 137-145, 2007.
Moradi, G.R.; Nosrati, S.; Yaripor, F., “Effect of the hybrid catalysts preparation method upon direct synthesis of dimethyl ether from synthesis gas,” Catalysis Communications,8 ,598-606, 2007.
Moretti, G.; Ferraris, G.; Fierro, G.; Jacono, M. L., “An XPS study of the reduction process of CuO–ZnO–Al2O3 catalysts obtained from hydroxycarbonate precursors,” Surface and Interface Analysis, 38, 224-228, 2006.
Nakamura, J.; Uchijima, T.; Kanai, Y.; Fujitani, T., “The role of ZnO in Cu/ZnO methanol synthesis catalysts,” Catalysis Today, 28, 223-230, 1996
Ratanatawanate, C.; Macias, M.; Jang, B. W.L., “Promotion effect of the nonthermal RF plasma treatment on Ni/Al2O3 for benzene hydrogenation,” Ind. Eng. Chem. Res., 44(26), 9868-9874, 2005.
Raudaskoski, R.; Niemela, M.V.; Keiskia, R.L., “The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2,” Topics in Catalysis, 45, 1-4, 2007.
Satterfield, C. N., “Heterogeneous catalysis in industrial practice,” 2nd Ed., McGraw-Hill, New York, 1991.
Shen, G.C.; Fujita, S.I.; Matsumoto, S.; Takezawa, N., “Steam reforming of methanol on binary Cu/ZnO catalysts: effect of preparation condition upon precursors, surface structure and catalytic activity,” Journal of Molecular Catalysis A: Chemical, 124, 123-136, 1997.
Takeguchi, T.; Yanagisawa, K.I.; Inui, T.; Inoue, M., “Effect of the property of solid acid upon syngas-to-dimethyl ether conversion on the hybrid catalysts composed of Cu-Zn-Ga and solid acids,” Applied Catalysis A: General, 192, 201-209, 2000.
Tijm, P.J.A.; Waller, F.J.; Brown, D.M., “Methanol technology developments for the new millennium,” Applied Catalysis A: General, 221, 275-282, 2001.
Wang J.G.; Liu C.J.; Zhang Y.P.; Yu, K. L.; Zhu, X. L.; He, F., “Partial oxidation of methane syngas over glow discharge plasma treated Ni-Fe/Al2O3 catalyst,” Catalysis Today, 89, 183-191, 2004.
Yang, C.; Ma, Z.; Zhao, N.; Wei, W.; Hu, T.; Sun, Y. “Methanol synthesis from CO2-rich syngas over a ZrO2 doped CuZnO catalyst,” Catalysis Today, 115, 222-227, 2006.
Yang, R.; Yu, X.; Zhang, Y.; Li, W.; Tsubaki, N. “A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2,” Fuel, 87, 443-450, 2008.
Yang, R.; Zhang, Y.; Iwama, Y.; Tsubaki, N., “Mechanistic study of a new low-temperature methanol synthesis on Cu/MgO catalysts,” Applied Catalysis A: General, 288, 126-133, 2005.
Yoo, K.S.; Kim, J.H.; Park, M.J.; Kim, S.J., Joo, O.S.; Jung, K.D., “Influence of solid acid catalyst on DME production directly from synthesis gas over the admixed catalyst of Cu/ZnO/Al2O3 and various SAPO catalysts,” Applied Catalysis A: General, 330, 57-62, 2007.
Zhu, Y. R.; Li, Z. H.; Zhou, Y. H.; Lv, J.; Wang, H. T., “Plasma treatment of Ni and Pt catalysts for partial oxidation of methane,” Reaction Kinetics and Catalysis Letters, 87, 33-41, 2006.
Zou, J.J.; Liu, C.J.; Zhang, Y.P., “Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment,” Langmuir, 22, 2334-2339, 2006.
李灝銘,「以低溫電漿去除揮發性有機物之研究」,中央大學環境工程研究所博士論文,中壢市,2001。
高正雄,電漿化學,復漢出版社,台南,1991。
賀黎明、沈召軍,「甲烷的轉化和利用」,化學工業出版社,2005。
萬其正,「石化工業製程技術」,高立圖書有限公司,2004。
指導教授 張木彬(Moo Been Chang) 審核日期 2009-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明