博碩士論文 963206014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.191.53.185
姓名 林琴軒(Chin-shan Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 北部氣膠超級測站近七年氣膠特性變化探討
(Aerosol Characteristics at North Aerosol Supersite from 2002 to 2008)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性
★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性
★ 鹿林山大氣背景站不同氣團氣膠光學特性★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究
★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化
★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析
★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定
★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於大氣氣膠在時間尺度有快速變化特性,因此唯有進行氣膠連續監測,才得以解析氣膠的時間變化和污染來源。本文利用環保署北部氣膠超級測站2002年3月至2008年12月連續觀測數據,探討氣膠特性受環境因子及污染產生源的影響,研究議題包括探討近七年來氣膠特性變化、大陸冷高壓影響、二次有機碳生成量、車輛排放與光化學反應比較、特殊事件日(黃沙事件、節慶日及高濃度事件)氣膠特性、以及大氣能見度與氣膠消光等。
研究結果顯示,大多數氣膠成分都有逐年下降的趨勢,但硫酸鹽的變化趨勢是逐年上升,且在冬季會有最高值,夏季有最低值,但有機碳(OC)、元素碳(EC)與黑碳(BC)最低值發生在秋季。在秋季與冬季常有冷高壓事件、黃沙事件及高濃度事件的發生,冷高壓事件與黃沙事件若氣流傳輸過程中經過大陸沿岸,則PM2.5硫酸鹽濃度會大量增加。高濃度事件是以PM2.5日平均值大於50 μg m-3篩選,主要受到高壓迴流及高壓推擠天氣型態影響,前者會導致本地污染物累積後者則傳輸跨境污染物。另外,節慶日(春節、清明節、中元節及中秋節)如果沒有受到天氣影響,則民俗活動就會凸顯其影響。
每日各小時PM2.5二次有機碳是以每日早上6點至9點的(OC/EC)平均值進行估算,結果指出四季都會有二次有機碳的生成,大約占有機碳的10%至15%左右。比較機動車輛排放與光化學反應時段PM2.5成分發現,當每日臭氧最大濃度小於80 ppb時,機動車輛排放程度會比較嚴重;當每日臭氧最大濃度大於80 ppb時,光化學反應產生的污染程度則會比較嚴重。
以迴歸模式探討氣膠光學特性可以發現,氣膠消光係數主要是受到未量測的PM2.5成分、PM2.5硝酸鹽、PM2.5硫酸鹽、PM2.5 EC及相對溼度的影響;大氣能見度則是受到PM2.5硝酸鹽、PM2.5硫酸鹽及相對溼度影響。
摘要(英) Owing to fast variations of atmospheric aerosol in temporal scale, aerosol time variations and source contributions can only be resolved by way of continuous monitoring. This study adopts continuous monitoring data ranged from March 2003 to December 2008 at the North Aerosol Supersite of the Taiwan Environmental Protection Administration to investigate the effects of environment factors and pollution sources on aerosol properties. The study subjects include aerosol property variations in recent seven years, the influence of continental high, formation of secondary organic carbons, comparisons of mobile vehicle emissions and photochemical reactions, aerosol properties in the selected events (Yellow Dust, Festivals, and high concentration), and atmospheric visibility affected by aerosol extinction.
The results show that the level of most aerosol components except for sulfate has a decreasing trend in years. In addition, most aerosol components apparently have the highest level in winter and with the lowest level in summer in a year. Nonetheless, organic carbon (OC), elemental carbon (EC), and black carbon (BC) exhibit their lowest concentrations in autumn. During years, continental cold-high event, Yellow Dust event, and high concentration event frequently occurred in autumn and winter. For continental cold-high event and Yellow Dust event, high PM2.5 sulfate level was observed when the air masses transport along the coastline of Mainland China. High concentration event is selected by having daily PM2.5 level above 50 μg m-3. This event is caused by weather type such as anticyclonic outflow or high-pressure pushing, the former renders local pollution accumulation and the latter transports trans-boundary pollutants to Taiwan. For days with festival activities (e.g., the Spring Festival, the Tomb-Sweeping Festival, the Mid-Summer Festival, and the Moon Festival), pollution is affected by festival activities if the weather does not interfere with pollutant behaviors.
Hourly PM2.5 secondary organic carbon was estimated by using (OC/EC) averages taken from 6:00 to 9:00 every morning. The estimated PM2.5 secondary organic carbon appeared in every season and accounted for 10 to 15% of OC. PM2.5 components between the time periods for mobile vehicle emissions and photochemical reactions are compared. Mobile vehicle emissions are found related to higher PM2.5 component concentrations when the daily ozone maximum level is below 80 ppb. In contrast, photochemical reactions are responsible for higher PM2.5 component concentrations when the daily ozone maximum level is above 80 ppb.
Regression analysis on aerosol optical property reveals that aerosol light-extinction is mainly affected by components not detected in PM2.5, PM2.5 nitrate, PM2.5 sulfate, PM2.5 EC, and relative humidity. For atmospheric visibility, it is influenced by PM2.5 nitrate, PM2.5 sulfate, and relative humidity.
關鍵字(中) ★ 氣膠連續監測
★ 氣膠污染來源
★ 光化學反應
★ 高濃度污染事件
★ 氣膠光學特性
關鍵字(英) ★ aerosol optical property
★ high concentration event
★ photochemical reactions
★ Source contribution of aerosol
★ Continuous aerosol monitoring
論文目次 摘要 I
Abstract III
致謝 V
圖目錄 VIII
表目錄 XII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 大氣氣膠特性及變化 3
2.2 大氣變化特性及影響 4
2.3 長程傳輸污染 6
2.4 本地人為活動的影響 7
2.5 二次氣膠產生的估算 8
2.6 消光係數與能見度 9
第三章 研究方法 11
3.1 研究架構及流程 11
3.2 監測站位置及周圍區域概述 14
3.3 連續監測儀器介紹及數據處理 15
3.3.1 連續自動儀器監測方法及原理 17
3.3.2 連續自動儀器的數據處理 19
3.4 數據篩選條件與分析方法 21
3.4.1 人工採樣與連續自動儀器數據篩選條件與分析方法 21
3.4.2 逐年氣膠特性變化的篩選條件與分析方法 22
3.4.3 冷高壓事件的篩選條件與分析方法 22
3.4.4 二次有機碳估算的篩選條件與分析方法 23
3.4.5 車輛排放與光化學反應比較的篩選條件與分析方法 23
3.4.6 特殊事件篩選條件與分析方法 24
3.4.7 能見度與消光係數關係的篩選條件與分析方法 25
第四章 結果與討論 27
4.1 人工採樣及連續自動監測儀器的比對 27
4.1.1 PM10質量濃度 27
4.1.2 PM2.5質量濃度 28
4.1.3 硝酸鹽濃度 29
4.1.4 硫酸鹽濃度 30
4.1.5 有機碳成分濃度 32
4.1.6 元素碳成分濃度 33
4.2 逐年氣膠特性變化 35
4.2.1 PM10變化趨勢 40
4.2.2 PM2.5變化趨勢 42
4.2.3 PM2.5硝酸鹽變化趨勢 44
4.2.4 PM2.5硫酸鹽變化趨勢 46
4.2.5 PM2.5有機碳(OC)變化趨勢 49
4.2.6 PM2.5元素碳(EC)變化趨勢 51
4.2.7 PM2.5黑碳(BC)變化趨勢 54
4.2.8 氣膠體積濃度粒徑變化趨勢 56
4.3 大陸冷高壓對氣膠特性的逐年變化趨勢 57
4.4 二次有機碳的估算探討 64
4.4.1 每年二次有機碳的判定標準及逐年變化 64
4.4.2 二次有機碳估算 66
4.5 車輛排放與光化學反應對氣膠特性的逐年影響 73
4.6 特殊事件日的氣膠特性探討 94
4.6.1 黃沙事件氣膠特性的逐年變化 94
4.6.2 節慶日氣膠特性的逐年變化 103
4.6.3 高濃度事件氣膠特性的逐年變化 118
4.7 大氣能見度與氣膠消光以及氣體消光的時間關係 124
4.7.1 氣膠散光係數及吸光係數與氣膠總消光係數迴歸式建立 128
4.7.2 大氣能見度迴歸模式建立 144
第五章 結論與建議 151
5.1 結論 151
5.2 建議 154
參考文獻 155
附錄1 2002年至2008年黃沙影響時間整理 162
附錄2-1 2002年至2008年春季不同臭氧濃度下的氣膠成分 165
附錄2-2 2002年至2008年夏季不同臭氧濃度下的氣膠成分 166
附錄2-3 2002年至2008年秋季不同臭氧濃度下的氣膠成分 167
附錄2-4 2002年至2008年秋季不同臭氧濃度下的氣膠成分 168
附錄3-1 平常日氣膠散光、吸光及總消光係數與污染物相關矩陣 169
附錄3-2 黃沙事件氣膠散光、吸光及總消光係數與污染物相關矩陣 170
附錄3-3 高濃度氣膠散光、吸光及總消光係數與污染物相關矩陣 171
附錄4 各事件日能見度與污染物相關矩陣 172
附錄5 口試委員意見答覆 173
參考文獻 張順欽,(2006)。台北市空氣品值近十年來變動型態及其顯現的意義。國立中央大學環境工程研究所博士論文。
莊銘棟,(2008)。從綜觀天氣型態及地形效應探討大台北地區氣膠事件成因。國立中央大學環境工程研究所博士論文。
鄭兆博,(1993)。台北都會區能見度與氣懸氣膠化學物種關係之研究。國立中央大學環境工程研究所碩士論文。
方彥仁,(2006)。長程傳輸對台灣北端氣膠酸鹼度與污染物演化生成程序的影響。國立中央大學環境工程研究所碩士論文。
陳邦瑋,(2006)。從台北都會區細氣膠特性評估PM1及PM2.5對環境影響的顯著性。國立中央大學環境工程研究所碩士論文。
王之群,(2006)。台北都會區近三年連續監測及事件日氣膠特性。國立中央大學環境工程研究所碩士論文。
沈士翔,(2006)。綜觀天氣及不同氣流軌跡影響下的北台灣氣膠特性。國立中央大學環境工程研究所碩士論文。
陳永盛,(2008)。大氣氣膠碳成分量測方法比較及干擾因子的探討。國立中央大學環境工程研究所碩士論文。
李崇德、周崇光、莊銘棟、林琴軒,(2008)。"微粒空氣污染物特性、毒性和健康風險之研究,分組:環保署北部氣膠超級測站監測特性彙整及評估",環保署/國科會空污防制科研合作計畫,NSC97-EPA-Z-008-003。
李崇德、周崇光、張士昱、莊銘棟、侯雅馨、陳永盛、林琴軒、余政哲、許紹鵬、羅莉雯,(2008)。 “九十六至九十七年度北部氣膠超級監測站操作品保及數據分析計畫” 97年度期末報告, EPA-97-FA11-03-A007,行政院環保署。
柳中明,(2004)。大陸沙塵抵台對台灣空氣品質的影響與分區分級制度的訂定。台灣大學大氣科學系對環保署監資處的建議93/11/18。
Chan, C.Y., Xu, X.D., Li, Y.S., Wong, K.H., Ding, G..A., Chan, L.Y., Cheng, X.H., 2005. Characteristics of vertical profiles and sources of PM2.5, PM10 and carbonaceous species in Beijing. Atmospheric Environment 39, 5113-5124.
Chang, S.C., Lee, C.T., 2007. Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994 to 2003. Atmospheric Environment 41, 4002-4017.
Chang, S.Y., Fang, G.C., Chou, C.C.K., Chen, W.N., 2006. Chemical compositions and radiative properties of dust and anthropogenic air masses study in Taipei Basin, Taiwan, during spring of 2004. Atmospheric Environment 40, 7796-7809.
Chang, S.Y., Lee, C.T., Chou, C.C.K., Liu, S.C., Wen, T.X., 2007. The continuous field measurements of soluble aerosol compositions at the Taipei Aerosol Supersite, Taiwan. Atmospheric Environment 41, 1936-1949.
Cheng, T.T., Wang, H., Xu, Y.F., Li, H.Y., Tian, L.Q., 2006. Climatology of aerosol optical properties in northern China. Atmospheric Environment 40, 1495-1509.
Cheng, Y.F., Wiedensohler, A., Eichler, H., Su, H,, Gnauk, T., Brueggemann, E., Herrmann, H., Heintzenberg, J., Slanina, J., Tuch, T., Hu, M., Zhang, Y.H., 2008. Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China. Atmospheric Environment 42, 6351-6372.
Chuang, M.T., Chiang, P.C., Chan, C.C., Wang, C.F., Chang, E.E., Lee, C.T., 2008a. The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Science of The Total Environment 399, 128-146.
Chuang, M.T., Fu, J.S., Jang, C.J., Chan, C.C., Ni, P.C., Lee, C.T., 2008b. Simulation of long-range transport aerosols from the Asian Continent to Taiwan by a Southward Asian high-pressure system. Science of The Total Environment 406, 168-179.
Chung, Y.S., Yoon, M.B., 1996. On the occurrence of yellow sand and atmospheric loadings. Atmospheric Environment 30, 2387-2397.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Egami, R.T., Solomon, P.A., Thuillier, R.H., 1998. Spatial and temporal variations of particulate precursor gases and photochemical reaction products during SJVAQS/AUSPEX ozone episodes. Atmospheric Environment 32, 2835-2844.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Park, K., Doraiswamy, P., Bowers, K., Bode, R., 2008. Continuous and filter-based measurements of PM2.5 nitrate and sulfate at the Fresno Supersite. Environmental Monitoring and Assessment 144, 179-189.
Deng, X.J., Tie, X.X., Wu, D., Zhou, X.J., Bi, X.Y., Tan, H.B., Li, F., Hang, C.L., 2008. Long-term trend of visibility and its characterizations in the Pearl River Delta (PRD) region, China. Atmospheric Environment 42, 1424-1435.
Draxler, R.R., 2003. Evaluation of an ensemble dispersion calculation. Journal of Applied Meteorology 42, 308-317.
Fang, G.C., Chang, C.N., Wu, Y.S., Yang, C.J., Chang, S.C., Yang, I.L., 2002. Suspended particulate variations and mass size distributions of incense burning at Tzu Yun Yen temple in Taiwan, Taichung. Science of The Total Environment 299, 79-87.
Favez, O., Cachler, H., Sciare, J., Alfaro, S.C., El-Araby, T.M., Harhash, M.A., Abdelwahab, M.M., 2008. Seasonality of major aerosol species and their transformations in Cairo megacity. Atmospheric Environment 42, 1503-1516.
Feng, Y.L., Chen, Y.J., Guo, H., Zhi, G.R., Xiong, S.C., Li, J., Sheng, G.Y., Fu, J.M., 2009. Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China. Atmospheric Research 92, 434-442.
Hao, J.M., Wang, L.T., 2005. Improving urban air quality in China: Beijing case study. Journal Of The Air & Waste Management Association 55, 1298-1305.
Horng, C.L., Cheng, M.T., Chiang, W.F., 2007. Distribution of PM2.5 and gaseous species in central Taiwan during two Chinese festival periods. Environmental Engineering Science 24, 515-524.
Jeong, C.H., Hopke, P.K., Kim, E., Lee, D.W., 2004. The comparison between thermal-optical transmittance elemental carbon and Aethalometer black carbon measured at multiple monitoring sites. Atmospheric Environment 38, 5193-5204.
Kim, J., Yoon, S.C., Jefferson, A., Zahorowski, W., Kang, C.H., 2005. Air mass characterization and source region analysis for the Gosan super-site, Korea, during the ACE-Asia 2001 field campaign. Atmospheric Environment 39, 6513-6523.
Kim, S.W., Yoon, S.C., Jefferson, A., Ogren, J.A., Dutton, E.G., Won, F.G., Ghim, Y.S., Lee, B.I., Han, J.S., 2005. Aerosol optical, chemical and physical properties at Gosan, Korea during Asian dust and pollution episodes in 2001. Atmospheric Environment 39, 39-50.
Kim, Y.J., Kim, K.W., Kim, S.D., Lee, B.K., Han, J.S., 2006. Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon. Atmospheric Environment 40, S593-S605.
Krivacsy, Z., Blazso, M., Shooter, D., 2006. Primary organic pollutants in New Zealand urban aerosol in winter during high PM10 episodes. Environmental Pollution 139, 195-205.
Lee, C.T., Chuang, M.T., Chan, C.C., Cheng, T.J., Huang, S.L., 2006. Aerosol characteristics from the Taiwan aerosol supersite in the Asian yellow-dust periods of 2002. Atmospheric Environment 40, 3409-3418.
Lee, C.T., Cheng, J.P., 1996. The effects of aerosol species and meteorological factors on visibility in the Taipei metropolitan area. Journal of the Chinese Institute of Environmental Engineering 6, 21-30.
Lee, C.T., Shen, C.T., 1995. Visibility and its estimating model in the Taipei metropolitan area. Proceedings of the National Science Council, Republic of China (A) 19, 506-513.
Liu, C.M., Young, C.Y., Lee, Y.C., 2006. Influence of Asian dust storms on air quality in Taiwan. Science of the Total Environment 368, 884-897.
Na, K.S., Sawant, A.A., Song, C., Cocker, D.R., 2004. Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmospheric Environment 38, 1345-1355.
Ning, Z., Geller, M.D., Moore, K.F., Sheesley, R., Schauer, J.J., Sioutas, C., 2007. Daily variation in chemical characteristics of urban ultrafine aerosols and inference of their sources. Environment Science & Technology 41, 6000-6006.
Ondov, J.M., Buckley, T.J., Hopke, P.K., Ogulei, D., Parlange, M.B., Rogge, W.F., Squibb, K.S., Johnston, M.V., Wexler, A.S., 2006. Baltimore Supersite: Highly time- and size-resolved concentrations of urban PM2.5 and its constituents for resolution of sources and immune responses. Atmospheric Environment 40, S224-S237.
Park, S.S., Ondov, J.M., Harrison, D., Nair, N.P., 2005. Seasonal and shorter-term variations in particulate atmospheric nitrate in Baltimore. Atmospheric Environment 39, 2011-2020.
Park, S.U., Kim, J.W., 2006. Aerosol size distributions observed at the Seoul National University campus in Korea during the Asian dust and non-Asian dust periods. Atmospheric Environment 40, 1722-1730.
Polidori, A., Turpin, B.J., Lim, H.J., Cabada, J.C., Subramanian, R., Pandis, S.N., Robinson, A.L., 2006. Local and regional secondary organic aerosol: Insights from a year of semi-continuous carbon measurements at Pittsburgh. Aerosol Science And Technology 40, 861-872.
Singh, T., Khillare, P.S., Shridhar, V., Agarwal, T., 2008. Visibility impairing aerosols in the urban atmosphere of Delhi. Environmental Monitoring and Assessment 141, 67-77.
Tanaka, T.Y., Chiba, M., 2006. A numerical study of the contributions of dust source regions to the global dust budget. Global and Planetary Change 52, 88-104.
Vester, B.P., Ebert, M., Barnert, E.B., Schneider, J., Kandler, K., Schuetz, L., Weinbruch, S., 2007. Composition and mixing state of the urban background aerosol in the Rhein-Main area (Germany). Atmospheric Environment 41, 6102-6115.
Wang, Y., Zhuang, G., Sun, Y., An, Z., 2005. Water-soluble part of the aerosol in the dust storm season-evidence of the mixing between mineral and pollution aerosols. Atmospheric Environment 39, 7020-7029.
Wilson, R., Spengler, J.D. (EDs.), 1996. Particle in our air: Concentrations and health effects, Harvard Univ Press, New York.
Yan, H., 2007. Aerosol scattering properties in northern China. Atmospheric Environment 41, 6916-6922.
Yatavelli, R.L.N., Fahrni, J.K., Kim, M., Crist, K.C., Vickers, C.D., Winter, S.E., Connell, D.P., 2006. Mercury, PM2.5 and gaseous co-pollutants in the Ohio River Valley region: Preliminary results from the Athens supersite. Atmospheric Environment 40, 6650-6665.
Yu, X., Cheng, T., Chen, J., Liu, Y., 2006. A comparison of properties between China continent and Korea, Japan in East Asia. Atmospheric Environment 40, 5787-5797.
指導教授 李崇德(Chung-te Lee) 審核日期 2010-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明