博碩士論文 963206016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:1 、訪客IP:3.231.228.109
姓名 許紹鵬(Shao-peng Hsu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性
(Aerosol chemical characteristics at Mt. Lulin during background and biomass burning event)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性
★ 鹿林山大氣背景站不同氣團氣膠光學特性★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究
★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化
★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析
★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定
★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鹿林山標高2,862公尺,是一個評估東亞大陸污染傳輸和西太平洋背景的適當地點。本研究於2008年9月~2009年4月在鹿林山採集大氣氣膠樣本,並將採集樣本歸類為生質燃燒期間與非生質燃燒期間。兩個期間氣膠水溶性離子優勢物種均為硫酸根離子與銨根離子,但在生質燃燒期間,硝酸根離子與鉀離子濃度會顯著增加。生質燃燒期間,氣膠碳成分分別以OC3和EC1-OP為有機碳(OC)及元素碳(EC)主要物種;非生質燃燒期間,氣膠有機碳的OC1及元素碳的EC2是兩個優勢氣膠碳成分物種。生質燃燒期間與非生質燃燒期間左旋葡萄糖是氣膠無水單醣化合物唯一優勢物種,但以生質燃燒期間濃度增加顯著。生質燃燒期間與非生質燃燒期間氣膠二元酸優勢物種均為oxalic acid,表示oxalic acid是二元酸前驅有機物或是其他二元酸的最終產物,在生質燃燒期間oxalic acid濃度也是增加的。
本研究於觀測期間特別觀測氣膠水可溶有機碳(WSOCp),發現WSOCp主要由低揮發性的OC2、OC3構成,WSOCp在生質燃燒期間與生質燃燒指標有較好的相關性,顯示WSOCp也可作為評估生質燃燒事件的指標。大氣溫度與WSOCp有良好相關性,降雨會顯著降低WSOCp濃度,但不會影響氣相水可溶有機碳(WSOCg)濃度。去除掉降雨事件後,當相對濕度大於70%時,WSOCp佔(WSOCp+WSOCg)比例會顯著上升。鹿林山氣膠中,硫酸根離子主要與銨根離子(線性相關R2=0.90)結合,少部分與鈣離子、鈉離子結合,硫酸根離子與銨根離子結合型態為(NH4)3(H)(SO4)2。
採樣期間氨氣對硫酸氣和硝酸氣有中和不足現象,雖然生質燃燒期間有較多硝酸鹽產生,但硝酸氣並非中和氨氣的主要氣體。2007~2009年鹿林山氣膠量測和中和所需的銨根離子莫耳比(NH4+?meas/NH4+?calc)平均值為0.79,與歐洲瑞士少女峰1999~2005年觀測的0.8差異不大,顯示中歐及東亞地區氨氣均不足以完全中和硫酸氣和硝酸氣。從2009年春季鹿林山受生質燃燒影響時間較長且?NH4+?meas/?NH4+?calc與硫酸鹽、硝酸鹽相關性(線性相關R2=0.53、0.32)較前兩年為佳;顯示氨氣中和硫酸氣和硝酸氣,可能需要較長的反應時間以形成足夠的氣膠硫酸鹽和硝酸鹽。
本研究總計進行五次雲霧事件的前、中、後氣膠採樣觀測,有四次事件雲霧氣流有挾帶氣膠過來;在雲霧事件中,未中和的銨根離子多,硝酸根離子被活化形成雲滴的效率最好,其次為硫酸根離子,銨根離子的效率最低。氣膠碳成分中,OC的滌除率在不同期間相近。雲霧事件過後,可能有乾淨氣團過來使PM1氣膠濃度下降。
摘要(英) Mt. Lulin (2,862m a.s.l.) is a suitable site to assess pollution transport from East Asian continent and West Pacific background. This study observed atmospheric aerosol at Mt. Lulin from September 2008 to April 2009 and split the collected samples into from biomass-burning (BB) and non-biomass-burning (NBB) periods. Aerosol water-soluble ions are dominated by sulfate and ammonium ions during both BB and NBB periods. However, aerosol nitrate and potassium ion levels were noticeably increased during BB period. For aerosol carbons during BB period, OC3 and EC1-OP were the major fractions in organic carbon (OC) and elemental carbon (EC), respectively. In contrast, OC1 in OC and EC2 in EC were the two dominant carbon fractions during NBB period. Aerosol levoglucosan was the only dominant species in aerosol anhydrous monosaccharide during both BB and NBB periods. The level of aerosol levoglucosan was significantly increased during BB period. Oxalic acid was the dominant dicarboxylic acids during both BB and NBB periods. This implies that oxalic acid is the precursor species or the end product of other dicarboxylic acids. The concentration of aerosol oxalic acid was also increased during BB period.
Aerosol water-soluble organic carbon (WSOCp) was specifically observed during observation period. The analysis reveals that low-temperature volatiled OC2 and OC3 are the major fractions of WSOCp. The concentration of WSOCp had a better correlation with BB tracers during BB period. It indicates that the WSOCp can be a good tracer for BB event. Atmospheric temperature is found having a good correlation with WSOCp. Rain fall may significantly reduce WSOCp concentration but not for gaseous water-soluble organic carbon (WSOCg). By excluding raining events, the fraction of WSOCp in (WSOCp+WSOCg) is increased when the relative humidity is above 70%. In Mt. Lulin aerosol, sulfate ion is mainly combined with ammonium ion (R2=0.90) and less with calcium and sodium ions. The compound form of sulfate and ammonium ions is (NH4)3(H)(SO4)2.
During the study period, ammonia gas was found insufficient in neutralizing sulfuric and nitric gases. Although more aerosol nitrate was observed during BB period, nitric gas is not a major acidic gas in neutralizing ammonia gas. The mole ratio of measured over calculated aerosol ammonium ions (?NH4+?meas/?NH4+?calc) is averaged at 0.79 for the period of 2007-2009. This value is not deviated too much from 0.8 at Jungfracjoch in European Swiss Alps observed during 1999-2005. It indicates that the ammonia gas in middle Europe and East Asia is insufficient in neutralizing sulfuric and nitric gases. By considering longer BB period and higher linear correlation for ?NH4+?meas/?NH4+?calc with aerosol sulfate and nitrate (R2=0.53 and 0.32, respectively) in 2009 spring, this study infers that ammonia gas probably needs more time in neutralizing sulfuric and nitric gases to form sufficient aerosol sulfate and nitrate.
Five cloud events were observed to collect aerosols at pre-cloud, in-cloud, and post-cloud periods in this study, respectively. Four cloud events transported aerosols to the collection site. Excess ammonium ion not neutralized is found in cloud event. The activation efficiency of water-soluble ions in the cloud event is the best for nitrate ion, followed by sulfate and ammonium ions. For aerosol carbon fractions, the scavenging ratio of OC is similar in different time periods. PM1 concentration is observed to drop after cloud event, which is probably due to cleaner air masses transported to the site.
關鍵字(中) ★ 高山測站
★ 氣膠水可溶有機碳
★ 氣膠中和
★ 雲霧事件
★ 生質燃燒
關鍵字(英) ★ Biomass burning
★ Cloud events
★ Aerosol neutralization
★ Aerosol water-soluble organic carbons
★ High-elevation site
論文目次 摘要 I
Abstract II
致謝 IV
圖目錄 VIII
表目錄 XII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 高山氣膠 3
2.2 水可溶有機碳 4
2.3 氣膠中和 6
2.4 雲霧事件 8
2.4.1 雲霧事件對於氣膠成分影響 8
2.4.2 活化效率 8
2.5 生質燃燒指標物 10
2.5.1 生質燃燒氣體特性 10
2.5.2 生質燃燒氣膠化學特性 10
(1) 氣膠水溶性離子 10
(2) 氣膠碳成分 11
(3) 氣膠左旋葡萄糖 12
2.6 歷年鹿林山研究成果 14
2.6.1 生質燃燒期間 14
2.6.2 非生質燃燒期間 15
第三章 研究方法 16
3.1 研究架構 16
3.2 採樣方法與採樣器 18
3.2.1 採樣地點描述 18
3.2.2 採樣儀器 20
(1) 人工採樣器 20
(2) 自動監測儀器 20
(3) PILS (Particle-Into-Liquid Sampler) 22
3.2.3 採樣濾紙選擇及前處理程序 23
(1) 儀器與濾紙配置 23
(2) 濾紙的前處理 25
(3) 樣本的運送與保存 26
3.3 樣本分析方法 27
3.3.1 氣膠質量濃度分析 27
3.3.2 氣膠水溶性離子與氣膠二元酸分析 27
(1) 水溶性離子與二元酸濾紙萃取步驟 27
(2) 水溶性離子與有機酸分析儀器 28
3.3.3 氣膠碳成分 30
(1) 氣膠碳成分分析 30
(2) 揮發性有機碳(VOC)與氣膠揮發性有機碳(PVOC)推估 32
3.3.4 氣膠有機成分分析-左旋葡萄糖 32
3.3.5 水可溶有機碳分析 34
(1) 水可溶有機碳濾紙萃取步驟 34
(2) 水可溶有機碳分析儀器 35
3.3.6 氣膠酸鹼中和分析-?NH4+?meas/?NH4+?calc計算 36
3.4雲霧氣膠的收集 37
3.4.1 氣膠受雲霧事件活化效率計算方式 37
3.5判別事件發生方法 38
3.5.1 NOAA HYSPLIT軌跡模式 38
3.5.2 美國太空總屬(NASA)自然災害網 39
3.5.3 全球火災監測中心(GFMC) 40
3.5.4 NCEP Global Tropospheric Analyses資料 40
3.6 本文採樣期間逆推軌跡分類 41
第四章 結果與討論 43
4.1觀測期間氣膠各成分變化 46
4.1.1 PM10及PM2.5氣膠質量濃度 46
4.1.2 PM2.5氣膠水溶性離子與前驅氣體濃度 47
4.1.3 PM2.5氣膠碳成分濃度 50
4.1.4 PM2.5氣膠單醣無水化合物濃度 52
4.1.5 PM2.5氣膠二元酸濃度 53
4.1.6 生質燃燒期間與非生質燃燒期間氣膠各成分變化 53
4.1.7 觀測期間各氣流軌跡氣膠各化學成分變化 58
4.2 歷年鹿林山站氣膠化學成分變化 61
4.2.1 歷年鹿林山站氣膠質量濃度與氣膠化學成分變化 61
4.2.2 歷年鹿林山站各氣流軌跡對PM2.5氣膠化學成分變化 64
4.3氣膠水可溶有機碳 69
4.3.1 鹿林山站採樣觀測期間PM2.5 氣膠相水可溶有機碳 69
4.3.2 PM2.5 氣膠相水可溶有機碳與相關氣體污染物及氣象因子 70
4.3.3 生質燃燒和非生質燃燒煙團對PM2.5氣膠相水可溶有機碳的影響 72
4.3.4 密集觀測期間PM2.5 水可溶有機碳氣固相變化 75
4.4 PM2.5 氣膠酸度與氨氣中和硫酸氣、硝酸氣狀態 79
4.4.1 PM2.5 氣膠結合型態 79
4.4.2 鹿林山採樣觀測期間PM2.5氣膠?NH4+?meas/?NH4+?calc莫耳濃度比 83
4.4.3 2007~2009年不同事件下鹿林山PM2.5氣膠?NH4+?meas/?NH4+?calc莫耳濃度比 84
4.4.4 2007~2009年春季鹿林山不同氣流來源 ?NH4+?meas/?NH4+?calc莫耳濃度比 85
4.5 雲霧事件 89
4.5.1 雲霧事件發生前後鹿林山氣膠變化 89
(1) 第一次雲霧事件 (30 Oct 2008) 92
(2) 第二次雲霧事件 (01 Nov 2008) 98
(3) 第三次雲霧事件 (08 Feb 2009) 104
(4) 第四次雲霧事件 (10Feb 2009) 110
(5) 第五次雲霧事件 (17Apr 2009) 117
4.5.2 不同氣流來源雲霧事件鹿林山氣膠變化 126
4.5.3 不同風向雲霧事件鹿林山氣膠變化 128
4.5.4 氣膠受雲霧事件活化效率 130
第五章 結論與建議 131
5.1 結論 131
5.1.1 生質燃燒期間與非生質燃燒期間氣膠化學成分差異 131
5.1.2 水可溶有機碳 132
5.1.3 PM2.5 氣膠酸度與氨氣中和硫酸氣、硝酸氣狀態 132
5.1.4 雲霧事件 134
5.2 建議 135
第六章 參考文獻 136
附錄一 口試委員意見回覆 147
附錄二 2008年9月到2009年4月觀測期間鹿林山站氣流逆推軌跡 159
參考文獻 秦若鈺,2004。大氣常見有機物分析及有機/無機混和氣膠含水特性之研 究。國立中央大學環境工程研究所碩士論文。
黃希爾,2004。東亞生質燃燒對台灣高山氣膠特性的影響。國立中央大學環境工程研究所碩士論文。
陳鴻文,2006。生質燃燒長程傳輸對台灣中部高山氣膠特性及其指標物影響。國立中央大學環境工程研究所碩士論文。
劉原良,2006。生質燃燒與非生質燃燒期間台灣中部高山氣膠及其前驅氣體特性變化。
翁國豪,2007。生質燃燒氣膠長程傳輸及高山雲霧間隙氣膠特性之研究。國立中央大學環境工程研究所碩士論文。
侯雅馨,2008。大氣氣膠腐植質含量分析及氣膠成分對氣膠含水量影響的研究。
賴信佑,2008。台灣中部高山氣膠特性與氣流軌跡來源。國立中央大學環境工程研究所碩士論文。
Abas, M. R., Simoneit, B. R. T., 1996. Composition of extractable organics matter of air particles from Malaysia:initial study. Atmospheric Environment, 30, 2779–2793.
Abas, M. R., Simoneit, B. R. T., Elias, V., Cabral, J. A., Cardoso, J. N., 1995. Composition of higher molecular weight organic matter in smoke aerosol from biomass combustion in Amazonia. Chemosphere, 30, 995–1015.
Abas, M. R., Oros, D. R., Simoneit, B. R. T., 2004. Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere, 55, 1089–1095.
Aikawa M., Hiraki T., Suzuki M., Tamaki M., Kasahara M., 2007. Separate chemical characterizations of fog water, aerosol, and gas before, during, and after fog events near an Industrialezed area in Japan. Atmospheric Environment, 41, 1950–1959.
Anderson, C. H., Dibb, J. E., Griffin, R. J., Hagler, G. S. W., Bergin, M. H., 2008. Atmospheric water-solube organic carbon measurement at Summit, Greenland. Atmospheric Environment, 42, 5612–5621.
Andreae, M. O., Andreae, T.W., Annegam, H., Beer, J., Cachier, H., le Canut, P., Elbert, W., Maenhaut, W., Salma, I., Wienhold, F. G., Zenker, T., 1998. Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. Journal of Geophysical Research, 103(D24), 32119-32128, 10.1029/98JD02280.
Andreae, M. O., Jones, C. D., Cox, P. M., 2005. Strong present-day aerosolcooling implies a hot future. Nature, 435, 1087–1190.
Beig, G., Brasseur, G. P., 2000. Model of tropospheric ion composition: A first attempt. Journal of Geophysical Research, 105, 22671–22684.
Bey, I., Jacob, D. J., Logan, J. A., Yantosca, R. M., 2001b. Asian chemical outflow to the Pacific: origins, pathways, and budgets. Journal of Geophysical Research, 106, 23097-23114.
Breon, F. M., Tanre, D., Generoso, S., 2002. Aerosol effect on cloud droplet size monitored from satellite. Science, 295 (5556), 834–838.
Breon, F. M., 2006. How do aerosols affect cloudiness and climate? Science, 313 (5787), 623–624.
Brosset, C., 1978. Water-soluble sulphur compounds in aerosols. Atmospheric Environment, 12, 25–38.
Brauer, M., Hisham-Hashim, J., 1998. Fires in Indonesia: crisis and reaction. Environment Science and Technology, 32, 404A–407A.
Cachier, H., Liousse, G., Buat-Menard, P., Gaudichet, A., 1995. Particulate content of savanna fire emission. Journal of Atmospheric Chemistry, 22, 123–148.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley Jr., J. A., Hansen, J. E., Hofmann, D. J., 1992. Climate forcing by anthropogenic aerosols. Science, 255, 423–430.
Cheng, L., McDonlad, K. M., Angle, R. P., Sandhu, H. S., 1998. Forest fire enhanced photochemical air pollution--- A case study. Atmospheric Environment, 32(4), 673-681.
Chow, J. C., Watson, J. G., Lowenthal, D. H., Solomon, P. A., Maglino,K. L.,Ziman, S. D., Richards, L.W., 1993. PM10 and PM2.5 compositions in California's San Joaquin Valley. Aerosol Science and Technology, 18,105–128.
Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., Purcell, R. G., 1993. The DRI Thermal/Optical Reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies. Atmospheric Environment, 27A(8), 1185–1201.
Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K. N., Flynn, M., Coe, H., Henning, S., Steinbacher, M., Henne, S., Collaud Coen, M.,Petzold, A., and Baltensperger, U., 2008. Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics, 8, 407–423.
Crutzen, P. J., Andreae, M. O., 1990. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science, 250, 1369–1378.
Delfino, R. J., Zeiger, R. S. Seltzer, J. M., Street, D. H., McLaren, C. E., 2002. Association of asthma symptoms with peak particulate air pollution and effect modification by anti-inflammatory medication use. Environmental Health Perspectives, 110 (10), A607–617.
Delfino, R. J., Gong, H., Linn, W. S. Pellizzari, E. D. Hu, Y., 2003. Asthma symptoms in Hispanic children and daily ambient exposures to toxic and criteria air pollutants. Environment Health Perspectives, 111 (4), 647–656.
Draxler, R.R., 1999. Hybrid single-particle lagrangian integrated trajectories: Version 0-User’s Guide. NOAA Technical Memorandum ERL ARL-230,
Air Resources Laboratory, Sliver Spring, MD, USA.
Echalar, F., Gaudichet, A., Cachier, H., Artaxo, P., 1995. Aerosol emission by tropical forest and savanna biomass burning:characteristic trace elements and fluxes. Geophysical Research Letters, 22(22), 3039–3042.
Edye, L. A., Richards, G. N., 1991. Analysis of condensates from wood smoke: components derived from polysaccharides and lignins. Environment Science and Techology, 25, 1133-1137.
Falkovich, A. H., Graber, E. R., Schkolnik, G., Rudich, Y., Maenhaut, W.,and Artaxo,P., 2004. Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods. Atmospheric Chemistry and Physics Discussions, 4, 6867-6907.
Fang, M., Zheng, M., Wang, F., To, K. L., Jaafar, A. B., Tong, S. L., 1999. The solvent-extractable organic compounds in the Indonesia biomass burning aerosols-characterization studies. Atmospheric Environment, 33, 783–795.
Ferek, R. J., Reid, J. S., Hobbs, P. V., Blake, D. R., Liousse, C., 1998. Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. Journal of Geophysical Research, 103, 32107–32118.
Frenklach, M., 2002. Reaction mechanism of soot formation in flames. Physical Chemistry, 4, 2028-2037.
Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Osborne, S., Andreae, M. O., 2003. Inoganic and carbonaceous aerosols during the Southern African Regional Science initiative (SAFARI2000) experiment: Chemical characteristics, physical properties, and emission date for smoke from African biomass burning. Journal of Geophysical Research, 108(D13), doi: 1029/2002JD002408.
Gaudichet, A., Echalar, F., Chatenet, B., Quisefit, J. P., Maligret, G., Cachier, H., Menard, P. B., Artaxo, P., Maenhaut, W., 1995. Trace elements in tropical African savanna biomass burning aerosols. Journal of Atmospheric Chemistry, 22, 19–39.
Guazzotti, S. A., Suess, D. T., Coffee, K. R., Quinn, P. K., Bates, T. S., Wisthaler, A., Hansel, A., Ball, W. P., Dickerson, R. R., Neususs, C., Crutzen, P. J., Prather, K. A., 2003. Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion. Journal of Geophysical Research, 108 (D15), 4485.
Glassman, I., 1988. Soot formation in combustion process, in Twenty-Second Symposium (International) on combustion. The Combustion Institute, Pittsburgh, pp. 295.
Graham, B., Falkovich, A. H., Rudich, Y., Maenhaut, W., Guyon, P., Andreae, M. O., 2004. Local and regional contributions to the atmospheric aerosol over Tel Aviv, Israel: a case study using elemental, ionic and organic tracers. Atmospheric Environment, 38, 1593-1604.
Hawthorne, S. B., Krieger, M. S., Miller, D. J., Mathiason, M. B., 1989. Collection and quantification of methoxylated phenol tracers for atmospheric pollution from residential wood stoves. Environment Science Technology, 23, 470–475.
Hawthorne, S. B., Miller, D. J., Barkley, R. M., Krieger, M. S., 1988. Identification of methoxylated phenols as candidate tracers for atmospheric wood smoke pollution. Environment Science and Technology, 22, 1191–1196.
Hawthorne, S. B., Miller, D. J., Langenfeld J. J., Krieger, M. S., 1992. PM10 high volume collection and quantization of semi- and nonvolatile phenols, methoxylated phenols, alkanes and polycyclic aromatic hydrocarbons for winter urban air and their relationship to wood smoke emission. Environment Science and Technology, 26, 2251–2262.
Henning, S., Weingartner, E., Schwikowski, M., Ga¨ggeler, H. W., Gehrig, R., Hinz, K. P., Trimborn, A., Spengler, B., Baltensperger U., 2003. Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfraujoch (3580 m asl). Journal of Geophysical Research, 108(D1), 4030, doi:10.1029/2002JD002439.
Hennigan, C. J., Bergin, M. H., Weber, R. J., 2008. Correlations between water-soluble organic aerosol and water vapor : a synergistic effect from biogenic emissions? Environmental Science and Technology, 42, 9079-9085.
Hennigan, C. J., Bergin, M. H., Dibb, J. E., Weber, R. J., 2008. Enhanced secondary organic aerosol formation due to water uptake by fine particles. Geophysic Research Letters, 35, L18801, 10.1029/2008GL035046 9079.
Hennigan, C. J., Bergin, M. H., Russel, A. G., Nenes, A., Weber, R. J., 2009. Gas/particle partitioning of water-soluble organic aerosol in Atlanta. Atmospheric Chemistry and Physics, 9, 3613–3628.
Hinz, K. P., Trimborn, A., Weingartner, E., Henning, S., Baltensperger, U., Spengler, B., 2005. Aerosol single particle composition at the Jungfraujoch. Journal of Aerosol Science, 36, 123–145.
Kondo, Y., Miyazaki, Y., Takegawa, N., Miyakawa, T., Weber, R. J., Jimenez, J. L., Zhang, Q., Worsnop, D. R., 2007. Oxygenated and water-soluble organic aerosols in Tokyo. Journal of Geophysical Research, 112 (D01203), doi:10.1029/2006JD007056.
Kulshrestha, U. C., Jain, M., Sekar, R., Vairamani, M., Sarkar, A. K., Parashar, D. C., 2001. Chemical characteristics and source apportionment of aerosols over Indian Ocean during INDOEX-1999. Current Science, 80, 180-185.
Krivacsy, Z., Hoffer, A., Sarvari, Zs., Temesi, D., Baltensperger, U., Nyeki, S., Weingartner, E., Kleefeld, S., Jennings, S. G., 2001. Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmospheric Environment, 35, 6231–6244.
Kiehl, J. T., Rpdhe, H., 1995. Modeling geographical and seasonal forcing due to aerosols: In: Charlson, R. J., Heintzenberg, J. (Eds), Aerosol Forcing of Climate. Wiley, New York, 281–296.
Lara, L. L., Artaxo, P., Martinelli, L. A., Camargo, P. B., Victoria, R. L., Ferraz, E. S. B., 2005. Properties of aerosol from sugar-cane burning emission in Southeastern Brazil. Atmospheric Environment, 39, 4627-4637.
Larson, T. V., Koenig, J. Q., 1994. Wood smoke: Emissions and noncancer respiratory effects. Annu. Rev. Public Health, 15, 133-156.
Levine, J. S. (Ed.), 1991. Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications. MIT Press, Cambridge, MA, 569.
Levine, J. S. (Ed.), 1996. Biomass Burning and Global Change, vols. 1 and 2. MIT Press, Cambridge, MA.
Levine, J. S. (Ed.), 1996. Global Biomass Burning Remote Sensing, Modeling and Inventory development, and Biomass Burning in Afica. MIT press, Cambridge, MA, 581.
Levine, J. S., Cahoon Jr., D. R., Costulis, J. A., Couch, R. H., Davis, R. E., Garn, P. A., Jalink Jr., A., McAdoo, J. A., Robinson, D. M., Roettker, W. A., Sasamoto, W. A., Sherrill, R. T., Smith, K. D., 1996. FireSat and the global monitoring of biomass burning. In: Levine, J.S. (Ed.), Biomass Burning and Global Change, vol. 1.MIT Press, Cambridge, MA, pp. 107–129.
Liousse, C., Devaux, C., Dulac, F., Cachier, H., 1995. Aging of savanna biomass burning in southern Africa: Individual particle characterization of atmospheric aerosols and savanna fire samples. Journal of Atmospheric Chemistry, 22, 1–17.
Locker, H. B., 1988. The use of levoglucosan to assess the environment impact of residential wood-burning on air quality. Ph.D. thesis, Dartmouth College, Hanover, NH, 137pp.
Long, W., Tate, R., Neuman, M., Manfreda, J., Becker, A., Anthonisen, N., 1998. Respiratory symptoms in a susceptible population due to burning of agricultural residue. Chest 113 (2), 351–356.
Marinoni, A., Laj, P., Sellegri, K., Mailhot, G., 2004. Cloud chemistry at the Puy de DÔme: variability and relationships with environmental factors , Atmospheric Chemistry and Physics, pp. 715-728
Niemi, J. V., Tervahattu, H., Vehkamaki, H., Kulmala, M., Koskentalo, T., Sillampaa, M., 2004. Characterization and source identification of a fine particle episode in Finland. Atmospheric Environment, 38, 5003–5012.
Nyeki, S., Baltensperger, U., Schwikowski, M., 1996. The diurnal variation of aerosol chemical composition during the 1995 summer campaign at the Jungfraujoch high-alpine station (3454 m), Switzerland. Journal of Aerosol Science, 27, S105–S106.
Ojanen, C., Pakkanen, T., Aurela, M., Makela, T., Merilainen, J., Hillamo, R., Aarnio, P., Koskentalo, T., Hamekoski, K., Rantanen, L., Lappi, M., 1998. Size distribution, composition and sources of inhalable particles in the Helsinki metropolitan area (in Finnish with an abstract in English). Paakaupunkiseudun julkaisusarja C7. Helsinki Metropolitan Area Council (YTV), Helsinki.
Olmez, I., Sheffield, A. E., Gordon, G. E., Houck, J. E., Pritchett, L. C., Cooper, J. A., Dzubay, T. G., Bennett, R. L., 1988. Compositions of particles from selected sources in Philadelphia for receptor modeling applications. Journal of Air Pollution Control Association, 38, 1392–1402.
Olszyna, K. J., Bairai, S. T., Tanner, R. L., 2005. Effect of ambient NH3 levels on PM2.5 composition in the Great Smoky Mountains National Park. Atmospheric Environment, 39, 4593–4606.
Oros, D. R., Simoneit, B. R. T., 2000. Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel, 79, 515–536.
Pathak, R. K., Louie, P. K. K., Chan, C. K., 2004. Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment, 38, 2965–2974.
Pekkanen, J., Timonen, K. L., Ruuskanen, J., Reponen, A., Mirme, A., 1997. Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environmental Research, 71 (1), 24–33.
Peltier, R. E., Hecobian, A. H., Weber, R. J., Stohl, A., Atlas, E. L., Riemer, D. D., Blake, D. R., Apel, E., Campos, T., Karl, T., 2008. Investigating the sources and atmospheric processing of fine particles from Asia and the Northwestern United States measured during INTEX B. Atmospheric Chemistry and Physics, 8(6), 1835–1853.
Penner, J. E., Dong, X., Chen, Y., 2004. Observational evidence of a change in radiative forcing due to the indirect aerosol effect. Nature, 427 (6971), 231–234.
Peter, A., Dockery, D. W., Heinrich, J., Wichmann, H. E., 1997. Short-term effects of particulate air pollution on respiratory morbidity in asthmatic children. European Respiratory Journal, 10 (4), 872–879.
Pakkanen, T. A., Loukkola, K., Korhonen, C. H., Aurela, M., Makela, T., Hillamo, R.E., Aarnio, P., Koskentalo, T., Kousa, A., Maenhaut, W., 2001b. Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area. Atmospheric Environment, 35, 5381–5391.
Patterson, E. M., McMohan, C. K., 1984. Absorption characteristics of forest
fire particulate matter. Atmospheric Environment, 18, 2541–2551.
Ramdahl, T., 1983. Retene-a molecular marker of wood combustion in ambient air. Nature, 306, 580–582.
Rattray, G., Sievering, H., 2001. Dry deposition of ammonia, nitric acid, ammonium, and nitrate to alpine tundra at Niwot Ridge, Colorado. Atmospheric Environment, 35, 1105–1109.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., Rosenfeld, D., 2001. Atmosphere- Aerosols, Climate, and the hydrological cycle. Science, 294, 2119-2124.
Roberts, G. C., Andreae, M. O., Maenhaut, W., Fernandez-Jimenez, M. T., 2001. Composition and sources of aerosol in a central African rain forest during the dry season. Journal of Geophysical Research, 106 (D13), 14423-14434.
Roemer, W., Hoek, G., Brunekreef, B., 2000. Pollution effects on asthmatic children in Europe, the PEACE study. Clinical and Experimental Allergy, 30 (8), 1067–1075.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G, R. Simoneit, B. R. T., 1991. Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations. Environmental Science and Technology 25, 1112–1125.
Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., Simoneit, B. R. T., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment, 27A, 1309–1330.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., Simoneit, B. R. T., 1998. Sources of fineorganic aerosol: 9. Pine, oak and synthetic log combustion in residential fireplaces. Environmental Science and Technology, 32, 13–22.
Romieu, I., Meneses, F., Ruiz, S., Sienra, J. J., Huerta, J., White, M. C., Etzel, R. A., 1996. Effects of air pollution on the respiratory health of asthmatic children living in Mexico City. American Journal of Respiratory and Critical Care Medicine, 154 (2), 300–307.
Rosenfeld, D., 2006. Aerosols, clouds, and climate. Science, 312 (5778), 1323–1324.
Ruellan, S., Cachier, H., Caudichet, A., Masclet, P., Lacaux, J. P., 1999. Airborne aerosols over Africa during the Experiment for Regional Sources and Sinks of Oxidants (EXPRESSO). Journal of Geophysical Research, 104, 30673–30690.
Sahu, L. K., Kondo, Y., Miyazaki, Y., Kuwata, M., Koike, M., Takegawa, N., Tanimoto, H., Matsueda, H., Yoon, S. C., Kim, Y.J., 2009. Anthropogenic aerosols observed in Asian continental outflow at Jeju Island, Korea, in spring 2005. Journal of Geophysical Research, 114, D03301.
Salam, A., Bauer, H., Kassin, K., Ullah, S. M., Puxbaum, H., 2003. Aerosol chemical characteristics of an island site in the Bay of Nengal (Bhola-Bangladesh). Journal of Environmental Monitoring, 5, 483–490.
Schauer, J. J., Kleeman, M. J., Cass, G. R., Simoneit, B. R. T., 1999a.Measurement of emissions from air pollution sources. 1. C1 through C29 organic compounds from meat charbroiling. Environment Science and Technology, 33, 1566–1577.
Sellegri, K., Laj, P., Dupuy, R., Legrand, M., Preunkert, S., Putaud, J. P., 2003. Size-dependent scavenging deficiencies of multicomponent atmospheric aerosols in clouds. Journal of Geophysical Research, 108, 4334, doi:10.1029/2002JD002749.
Shafizadeh, F., 1984. The chemistry of pyrolysis and combustion. In: Rowell, R. (Ed), Chemistry of solid wood, Adv. Chem. Series 207. American Chemical Society. Washington, DC, 489-529.
Sheffield, A. E., Gordon, G. E., Currie, L. A., Riederer, G. E., 1994. Organic, lemental, and isotopic tracers of air pollution in Albuquerque, NM. Atmospheric Environment, 28, 1371–1384.
Simoneit, B. R. T., Mazurek, M.A., 1982. Organic matter of the troposphere Ⅱ. Natural background of biogenic lipid matter in aerosols over the rural western US. Atmospheric Environment, 16, 2139–2159.
Simoneit, B. R. T., Mazurek, M. A., Reed, W. E., 1983. Characterization of organic matter in aerosols over rural sites: phytosterols. In Advances in Organic Geochemistry 1981, eds. M. Bjoroy et al., pp355–361. Wiley, hichester.
Simoneit, B. R. T., Cox, R., Stanley, L., 1988. Organic matter of the troposphere IV. Lipids in Harmattan aerosol of Nigeria. Atmospheric Environment, 22, 983–1004.
Simoneit, B. R. T., Rogge, W. F., Mazurek, M. A., Standley, L. J., Hildemann, L. M., Cass, G. R., 1993. Lignin pyrolysis products, lignans and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environment Science and Technology, 27, 2533–2541.
Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, . P., Rogge, W. F., Cass, G. R., 1999. Levoglucosan, a tracer for ellulose in biomass burning and atmospheric particles. Atmospheric Environment, 33, 173–182.
Simoneit, B. R. T., Oros, D. R., Elias, V. O., 2000a. Molecular tracers for smoke from charring/burning of chitin biopolymer. Chemosphere: Global Change Science, 2, 101–105.
Simoneit, B. R. T., Rogge, W. F., Lang, Q., Jaffė, R., 2000b. Molecular haracterization of smoke from campfire burning of pine wood (Pinuselliottii). Chemosphere:Global Change Science, 2, 107–122.
Simoneit, B. R. T. Elias, V. O., 2000. Organic tracers from biomass burning in atmospheric particulate matter over the ocean. Marine Chemistry, 69, 01–312.
Skaar, C., 1984. Wood-water relationships. In: Rowell, R. (Ed), Chemistry of olid Wood, Adv. Chem. Series 207. American Chemical Society, ashington, DC, 127-172.
Standley, L. J., Simoneit, B. R. T., 1987. Composition of extractable organic matter in smoke particles from prescribed burns. Environment Science and Technology, 21, 163–169.
Standley, L. J., Simoneit, B. R. T., 1994. Resin diterpenoids as tracers for biomass combustion aerosols. Journal of Atmospheric Chemistry, 18, 1–15.
Sutherland, R., Martin, R., 2003. Airway inflammation in chronic obstructive pulmonary disease: comparisons with asthma. Journal of Allergy and Clinical Immunology, 112, 819–827.
Sutherland, R., 2004. Outpatient treatment of chronic obstructive pulmonary disease: comparisons with asthma. Journal of Allergy and Clinical Immunology, 114, 715–724.
Suzuki, I., Hayashi, K., Igarashi, Y., Takahashi, H., Sawa, Y., Ogura, N., Akagi, T., Dokiya, Y., 2008. Seasonal variation of water-soluble ion species in the atmospheric aerosols at the summit of Mt. Fuji. Atmosphere Environment, 42, 8027–8035.
Tanner, R.L., Leaderer, B.P., Spengler, J.D., 1981. Acidity of atmospheric aerosols. Environmental Science and Technology, 15, 150–1153.
Tirigoe, K., Satoshi, H., Numata, O., Yazaki, S., Matsunga, M., Boku, N., Hiura, M., Ino, H., 2000. Influence of emission from rice straw burning on bronchial asthma in children. Pediatrics International, 42, 143–150.
Turns, S. R., 1996. An introduction to combustion--- concepts and applications. McGraw Hill, New York, 291-297.
US EPA., 2004. Air quality criteria for particulate matter. PA/600/P-99/022aF and bF. October 2004. US Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Research Triangle Park Office, Research Triangle Park, NC 27711.
Vedal, S., Petkau, J., White, R., Blair, J., 1998. Acute effects of ambient inhalable particles in asthmatic and nonasthmatic children. American Journal of Respiratory and Critical Care Medicine, 157 (4), 1034–1043.
Yamasoe, M. A., Paulo, A., Miguel, A. H., Allen, A. G., 2000. Chemical composition of aerosol particles from different emissions of vegetation fires in the Amazon Basin: Water-soluble species and trace elements. Atmospheric Environment, 34, 1641-1653.
Yu, O.C., Sheppard, L., Lumley, T., Koenig, J. Q., Shapiro, G. G., 2000. Effects of ambient air pollution on symptoms of asthma in Seattle-area children enrolled in the CAMP study. Environmental Health Perspectives, 108 (12), 1209–1214.
指導教授 李崇德(Chung-te Lee) 審核日期 2010-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明