博碩士論文 963206020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:34.204.173.45
姓名 余政哲(Zheng-zhe Yu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
(The water mass of atmospheric aerosol and the optical property of dry aerosol at Mt. Lulin in Taiwan)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性
★ 鹿林山大氣背景站不同氣團氣膠光學特性★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究
★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化
★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析
★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定
★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究於2008/10/14 ~ 2009/04/30在鹿林山觀測氣膠、分析氣膠化學成分及檢索乾氣膠光學監測數據,研究目的是探討影響大氣氣膠含水量以及鹿林山乾氣膠光學係數的主要因子。
本研究以統計多元迴歸分析方法(N=37)發現大氣PM10氣膠含水量的影響因子,依照影響程度順序為未量測的氣膠成分(PM10, others)、氣膠硫酸根離子(SO42-)、氣膠鈣離子(Ca2+)、氣膠硝酸根離子(NO3-)以及氣膠水不可溶有機碳(WIOC);PM10親水性水可溶有機氣膠只有在生質燃燒(BB)期間,對大氣氣膠含水量的影響較顯著。大氣PM2.5氣膠含水量的主要影響因子是水可溶有機碳(WSOC)和SO42-,兩者對大氣PM2.5氣膠含水量的影響相當。
生質燃燒長程傳輸氣膠會使鹿林山乾氣膠光學係數遠高於區域型測站,相對地,在非生質燃燒期間,鹿林山白天氣膠會受到谷風或亞洲大陸污染物傳送的影響。鹿林山氣膠各氣流軌跡來源,依污染嚴重性分別為生質燃燒期間來自源區和來自源區並經過中國南方,非生質燃燒期間來自亞洲大陸、海洋、源區並經過中國南方。鹿林山大氣氣膠在非生質燃燒期間,對於輻射作用力是降溫效應,但在生質燃燒期間,則相對會促進大氣暖化,因此對於環境變遷的影響是存在的。
鹿林山乾氣膠光學係數主要受到次微米氣膠影響,光學直徑粒徑範圍在0.10 ~ 0.26 μm和0.30 ~ 1.00 μm。此外,大部分的氣膠化學成分也都與光學直徑小於1 μm的細粒徑氣膠有很好相關。最後以統計多元迴歸分析探討乾氣膠光學係數影響因子(N=40),發現依照氣膠成分濃度和迴歸係數乘積計算,影響順序為鉀離子、銨根離子以及NO3-。
摘要(英) This study collected atmospheric aerosols, analyzed aerosol chemical composition, and retrieved optical data of dry aerosols at Mt. Lulin from 14 October 2008 to 30 April 2009. The objectives are aimed at investigating major factors for aerosol water mass and optical coefficients of dry aerosol.
Multiple regression analysis (N=37) shows that the order of importance for factors affecting PM10 water mass are unmeasured PM10 (PM10, others), sulfate ion (SO42-), calcium ion (Ca2+), nitrate ion (NO3-), and water-insoluble organic carbon (WIOC). Hydrophilic water-soluble organic carbon only shows its influence during biomass burning (BB) period. The major factors for PM2.5 water mass are water-soluble organic carbon (WSOC) and SO42-, both have equal significance.
The level of optical coefficients was observed to elevate significantly above other regional stations when Mt. Lulin was influenced by transported BB plume. In contrast, daytime aerosol was affected by pollution from local valley wind or Asian continent during non-biomass burning (NBB) period. Based on backward trajectory analysis, as sorted by seriousness of pollution, air masses from BB source region either directly or via the southern China during BB periods were most polluted followed by that from Asia continent, oceanic area, and source region via the southern China during NBB periods. The aerosols observed at Mt. Lulin have cooling effect in radiative forcing during NBB period, while that of BB period show relative warming effect and thus more toward environmental change. Optical coefficients of dry aerosols are mainly affected by submicron aerosols with optical diameter ranged from 0.10 ~ 0.26 and 0.30 ~ 1.00 μm. In addition, most aerosol chemical components are correllated well with fine aerosols with optical diameter less than 1 μm. Finally, the regression analysis on optical coefficients of dry aerosol (N=40) shows that important aerosol components calculated by the product of their atmospheric concentrations and regression coefficients are potassium ion, ammonium ions, and NO3- accordingly.
關鍵字(中) ★ 氣膠含水量
★ 氣膠化學成分
★ 氣膠光學特性
★ 氣膠粒徑分布
★ 氣膠質量光學效率
★ 大氣能見度
關鍵字(英) ★ Aerosol water mass
★ aerosol chemical composition
★ aerosol optical properties
★ aerosol size distribution
★ aerosol mass optical efficiency
★ atmospheric visibility
論文目次 摘 要 i
Abstract ii
致 謝 iii
目 錄 iv
圖 目 錄 vii
表 目 錄 xiv
一、前言 1
1.1 研究緣起 1
1.2 研究目的 2
二、文獻回顧 3
2.1 大氣氣膠組成 3
2.1.1 大氣水可溶有機氣膠 5
2.1.2 大氣似腐植質物質氣膠 6
2.2 大氣氣膠含水特性 9
2.2.1 無機氣膠含水特性 9
2.2.2 有機氣膠含水特性 10
2.2.3 有機與無機混合氣膠含水特性 11
2.3 氣膠光學特性 12
2.3.1 氣膠散光係數與氣膠吸光係數 12
2.3.2 氣膠質量光學效率 13
2.3.3 延伸的光學參數 15
2.3.4 大氣能見度 18
三、研究方法 19
3.1 研究架構 19
3.2 氣膠含水量量測 21
3.2.1 觀測地點介紹 21
3.2.2 手動採樣 23
3.2.3 手動採樣濾紙前處理 29
3.2.4 氣膠含水量分析 29
3.2.5 ISORROPIA模式分析 34
3.2.6 氣膠質量濃度分析 35
3.2.7 氣膠水溶性離子與氣膠有機酸分析 35
3.2.8 氣膠碳成分分析 38
3.2.9 氣膠水可溶有機碳成分分析 40
3.2.10 似腐植質氣膠碳成分分析 41
3.2.11 似腐植質氣膠含量分析 42
3.3 大氣氣膠連續監測系統 45
3.3.1 NOAA氣膠觀測系統 45
3.3.2 氣膠觀測系統主要量測儀器原理 51
3.3.3 氣膠觀測系統數據處理原則 57
3.3.4 其他儀器 58
3.4 數據分析方法 62
3.4.1 各儀器數據採樣時間 62
3.4.2 逆溯氣流軌跡線來源分類 64
3.4.3 長程傳輸污染判斷指標 70
四、結果與討論 76
4.1 氣膠水可溶有機氣膠成分對大氣氣膠含水量的影響 76
4.1.1 ISORROPIA模式推估無機氣膠含水量 87
4.1.2 影響大氣氣膠含水量因子的探討 90
4.1.3 氣膠含水量與氣膠成分的多元迴歸分析 101
4.1.4 水可溶有機碳及似腐植質物質對氣膠含水量的影響 118
4.1.5 氣膠化學成分交互作用對氣膠含水量影響評估 123
4.1.6 PM2.5氣膠含水量探討 127
4.2 鹿林山乾氣膠光學特性 133
4.2.1 觀測期間的乾氣膠光學特性 133
4.2.2 以逆溯氣流軌跡來源探討乾氣膠光學特性 152
4.2.3 鹿林山本地污染影響評估 169
4.3 乾氣膠光學特性受到氣膠粒徑分布和氣膠化學成分的影響 172
4.3.1 乾氣膠光學特性與氣膠粒徑分布 172
4.3.2 乾氣膠光學特性與氣膠化學成分 186
4.3.3 氣膠質量光學效率 191
4.4 鹿林山大氣能見度 204
4.4.1 鹿林山能見度觀測 204
4.4.2 鹿林山乾氣膠消光係數多元迴歸分析 214
五、結論與建議 226
5.1 結論 226
5.2 建議 229
六、參考文獻 230
附錄-口試委員意見與回覆 243
附錄-張順欽口試委員意見書與回覆 250
參考文獻 Anderson, T. L. and Ogren, J. A., 1998. Deteriming aerosol radiative properties using the TSI 3563 Integrating Nephelometer. Aerosol Science and Technology 29, 57-69.
Ångström, A., 1929. On the Atmospheric Transmission of Sun Radiation and on Dust in the Air. Geografiska Annaler 11, 156-166, doi:10.2307/519399.
Ansari, A. S. and Pandis, S. N., 1999. Prediction of multicomponent inorganic atmospheric aerosol behavior. Atmospheric Environment 33, 745-757.
Asa-Awuku, A., Sullivan, A. P., Hennigan, C. J., Weber, R. J., Nenes, A., 2008. Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol. Atmospheric Chemistry and Physics 8, 799-812.
Bodhaine, B. A., 1979. Measurement of the rayleigh scattering properties of some gases with a nephelometer. Applied Optics 18, 121-125.
Bond, T. C., Anderson, T. L., Campbell, D., 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Science and Technology 30, 582-600.
Cappiello, A., De Simoni, E., Fiorucci, C., Mangani, F., Palma, P., Trufelli, H., Decesari, S., Facchini, M. C., Fuzzi, S., 2003. Molecular Characterization of the Water-Soluble Organic Compounds in Fogwater by ESIMS/MS. Environmental Science and Technology 37, 1229-1240, doi: 10.1021/es0259990
Chan, M. N., Choi, M. Y., Ng, N. L., Chan, C. K., 2005. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: Amino acids and biomass burning derived organic species. Environmental Science and Technology 39, 1555-1562.
Chan, Y. C., McTainsh, G. H., Simpson, R. W., Vowles, P. D., Cohen, D. D., Bailey, G. M., 2002. Light degrading properties of size-fractionated PM10 aerosol samples collected from an industrial area in Brisbane, Australia. Aerosol Science and Technology 36, 890-898.
Chang, S. Y. and Lee, C. T., 2002. Applying GC-TCD to investigate the hygroscopic characteristics of mixed aerosols. Atmospheric Environment 36, 1521-1530.
Charlock, T. P. and Sellers, W. D., 1980. Aerosol Effects on Climate: Calculations with Time-Dependent and Steady-State Radiative-Convective Models. Journal of the Atmospheric Sciences 37, 1327-1341.
Charlson, R. J., Langner, J., Rodhe, H., Leovy, C. B., Warren, S. G., 1991. Perturbation of the northern-hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus Series A-Dynamic Meteorology and Oceanography 43, 152-163.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., Hofmann, D. J., 1992. Climate forcing by anthropogenic aerosols. Science 255, 423-430.
Chen, X. and Yu, J. Z., 2007. Measurement of organic mass to organic carbon ratio in ambient aerosol samples using a gravimetric technique in combination with chemical analysis. Atmospheric Environment 41, 8857-8864.
Cheng, Y. F., Wiedensohler, A., Eichler, H., Su, H., Gnauk, T., Brueggemann, E., Herrmann, H., Heintzenberg, J., Slanina, J., Tuch, T., Hu, M., Zhang, Y. H., 2008. Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China. Atmospheric Environment 42, 6351-6372.
Chuang, P. Y., Duvall, R. M., Bae, M. S., Jefferson, A., Schauer, J. J., Yang, H., Yu, J. Z., Kim, J., 2003. Observations of elemental carbon and absorption during ACE-Asia and implications for aerosol radiative properties and climate forcing. Journal of Geophysical Research-Atmospheres 108, 8634, doi: 10.1029/2002JD003254.
Colbeck, I. and Lazaridis, M., 2010. Aerosols and environmental pollution. Naturwissenschaften 97, 117-131.
Colberg, C. A., Luo, B. P., Wernli, H., Koop, T., Peter, T., 2003. A novel model to predict the physical state of atmospheric H2SO4/NH3/H2O aerosol particles. Atmospheric Chemistry and Physics 3, 909-924.
Cristofanelli, P., Marinoni, A., Arduini, J., Bonafe, U., Calzolari, F., Colombo, T., Decesari, S., Duchi, R., Facchini, M. C., Fierli, F., Finessi, E., Maione, M., Chiari, M., Calzolai, G., Messina, P., Orlandi, E., Roccato, F., Bonasoni, P., 2009. Significant variations of trace gas composition and aerosol properties at Mt. Cimone during air mass transport from North Africa – contributions from wildfire emissions and mineral dust. Atmospheric Chemistry and Physics 9, 4603-4619.
Decesari, S., Facchini, M. C., Fuzzi, S., McFiggans, G. B., Coe, H., Bower, K. N., 2005. The water-soluble organic component of size-segregated aerosol, cloud water and wet depositions from Jeju Island during ACE-Asia. Atmospheric Environment 39, 211-222.
Decesari, S., Facchini, M. C., Matta, E., Lettini, F., Mircea, M., Fuzzi, S., Tagliavini, E., Putaud, J. P., 2001. Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy. Atmospheric Environment 35, 3691-3699.
Decesari, S., Facchini, M. C., Matta, E., Mircea, M., Fuzzi, S., Chughtai, A. R., Smith, D. M., 2002. Water soluble organic compounds formed by oxidation of soot. Atmospheric Environment 36, 1827-1832.
Delene, D. J. and Ogren, J. A., 2002. Variability of aerosol optical properties at four North American surface monitoring sites. Journal of the Atmospheric Sciences 59, 1135-1150.
Dinar, E., Taraniuk, I., Graber, E. R., Anttila, T., Mentel, T. F., Rudich, Y., 2007. Hygroscopic growth of atmospheric and model humic-like substances. Journal of Geophysical Research-Atmospheres 112, D05211, doi: 10.1029/2006JD007442.
El-Zanan, H. S., Zielinska, B., Mazzoleni, L. R., Hansen, D. A., 2009. Analytical determination of the aerosol organic mass-to-organic carbon ratio. Journal of the Air and Waste Management Association 59, 58-69.
Fierz-Schmidhauser, R., Zieger, P., Gysel, M., Kammermann, L., DeCarlo, P. F., Baltensperger, U., Weingartner, E., 2010. Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics 10, 2319-2333.
Finlayson-Pitts, B. J. and Pitts, J. N., 2000. Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Academic, New York.
Fountoukis, C. and Nenes, A., 2007. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+ - Ca2+ - Mg2+ - NH4+ - Na+ - SO42- - NO3- - Cl- - H2O aerosols. Atmospheric Chemistry and Physics 7, 4639-4659.
Garland, R. M., Yang, H., Schmid, O., Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Takegawa, N., Kita, K., Miyazaki, Y., Kondo, Y., Hu, M., Sha, M., Zeng, L. M., Zhang, Y. H., Andreae, M. O., Poeschl, U., 2008. Aerosol optical properties in a rural environment near the mega-city Guangzhou, China: implications for regional air pollution, radiative forcing and remote sensing. Atmospheric Chemistry and Physics 8, 5161-5186.
Gelencsér, A., 2004. Carbonaceous Aerosol. Atmospheric and Ocean ographic Sciences Library 30. Springer1-4020-2886-5.
Global Atmosphere Watch Station Information System, GAW SIS website (http://gaw.empa.ch/gawsis/reports.asp)
Google Map website (http://maps.google.com.tw/maps)
Griffing, G. W., 1980. Relations between the prevailing visibility, nephelometer scattering coefficient and sunphotometer turbidity coefficient. Atmospheric Environment 14, 577-584.
Groblicki, P. J., Wolff, G. T., Countess, R. J., 1981. Visibility reduction species in the Denver “Brown Cloud”—I. Relationships between extinction and chemical composition. Atmospheric Environment 12, 2437-2484.
Heintzenberg, R., Berner, A., Dusek, U., Alabashi, R., 1997. Humidity-dependent growth of size-segregated aerosol samples. Aerosol Science and Technology 27, 116-130.
Hinds, W. C., 1999. Aerosol technology, properties, behavior, and measurements of airborne particles. Wiley InterScience, New York.
Hobeco website (http://www.hobeco.net/pdf/FWD12.pdf)
Hoffer, A., Gelencser, A., Guyon, P., Kiss, G., Schmid, O., Frank, G. P., Artaxo, P., Andreae, M. O., 2006. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmospheric Chemistry and Physics 6, 3563-3570.
Hoffmann, T., Odum, J. R., Bowman, F., Collins, D., Klockow, D., Flagan, R. C., Seinfeld, J. H., 1997. Formation of organic aerosols from the oxidation of biogenic hydrocarbons. Journal of Atmospheric Chemistry 26, 189-222.
Hoffmann, T., Odum, J. R., Bowman, F., Collins, D., Klockow, D., Flagan, R. C., Seinfeld, J. H., 1997. Formation of organic aerosols from the oxidation of biogenic hydrocarbons. Journal of Atmospheric Chemistry 26, 189-222.
Holmes, J. and Zoller, W., 1996. The elemental signature of transported Asian dust at Mauna Loa observatory. Tellus Series B-Chemical and Physical Meteorology 48, 83-92.
Horvath, H. and Noll, K. E., 1969. The relationship between atmospheric light scattering coefficient and visibility. Atmospheric Environment 3, 543-552.
Horvath, H., 1996. Spectral extinction coefficients of rural aerosol in southeren Italy- A case study of cause and effect of variability of atmospheric aerosol. Journal of Aerosol Science 27, 437-453.
Horvath, H., 1997. Experimental calibration for aerosol light absorption measurements using integrating plate method-summary of the data. Journal of Aerosol Science 28, 1149-1161.
Husar, R. B., Husar, J. D., Martin, L., 2000. Distribution of continental surface aerosol extinction based on visual range data. Atmospheric Environment 34, 5067-5078.
Jung, J., Lee, H., Kim, Y. J., Liu, X. G., Zhang, Y. H., Gu, J. W., Fan, S. J., 2009. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. Journal of Environmental Management 90, 3231-3244.
Jung, J., Lee, H., Kim, Y. J., Liu, X. G., Zhang, Y. H., Hu, M., Sugimoto, N., 2009. Optical properties of atmospheric aerosols obtained by in situ and remote measurements during 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006). Journal of Geophysical Research-Atmospheres 114, D00G02, doi: 10.1029/2008JD010337.
Kang, C. M., Sunwoo, Y., Lee, H. S., Kang, B. W., Lee, S. K., 2004. Atmospheric concentrations of PM2.5 trace elements in the Seoul urban area of South Korea. Journal of the Air and Waste Management Association 54, 432-439.
Kiss, G., Tombacz, E., Hansson, H. C., 2005. Surface Tension Effects of Humic-Like Substances in the Aqueous Extract of Tropospheric Fine Aerosol. Journal of Atmospheric Chemistry 50, 279-294.
Kiss, G., Varga, B., Galambos, I., Ganszky, I., 2002. Characterization of water soluble organic matter isolated from atmospheric fine aerosol. Journal of Geophysical Research 107, 8339, doi:10.1029/2001JD000603.
Koloutsou-Vakakis, S., Carrico, C. M., Li, Z., Rood, M. J., Ogren, J. A., 1999. Characterisation of aerosol properties and radiative forcing at an anthropogenically perturbed continental site. Physics and Chemistry of the Earth Part C-Solar-Terrestial and Planetary Science 24, 541-546.
Koutrakis, P., Sioutas, C., Ferguson, S. T., Wolfson, J. M., Mulk, J. D. Burton, R. M., 1993. Development and evaluation of a glass honeycomb denuder/filter pack system to collect atmospheric gases and particles. Environmental Science and Technology 27, 2497-2501.
Krivácsy, Z., Kiss, G., Varga, B., Galambos, I., Sárvári, Z., Gelencsér, A., Molnár, Á., Fuzzi, S., Facchini, M. C., Zappoli, S., Andracchio, A., Alsberg, T., Hansson, H. C., Persson, L., 2000. Study of humic like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis. Atmospheric Environment 34, 4273-4281.
Lee, C. T. and Chang, S. Y., 2002. A GC-TCD method for measuring the liquid water mass of collected aerosols. Atmospheric Environment 36, 1883-1894.
Lee, C. T. and Cheng, J. P., 1996. The effects of aerosol species and meteorological factors on visibility in the Taipei metropolitan area. Journal of the Chinese Institute of Environmental Engineering 6, 21-30.
Lee, C. T. and Hsu, W. C., 1998. A novel method to measure aerosol water mass. Journal of Aerosol Science 29, 827-837.
Lee, C.T. and Hsu, W.C., 2000. The measurement of liquid water mass associated with collected hygroscopic particles. Journal of Aerosol Science 31, 189–197.
Levin, E. J. T., Kreidenweis, S. M., McMeeking, G. R., Carrico, C. M., Collett, J. L., Jr., Malm, W. C., 2009. Aerosol physical, chemical and optical properties during the Rocky Mountain Airborne Nitrogen and Sulfur study. Atmospheric Environment 43, 1932-1939.
Lowenthal, D. H., Watson, J. G., Saxena, P., 2000. Contributions to light extinctions during project MOHAVE. Atmospheric Environment 35, 2351-2359.
Marcolli, C. and Krieger, U. K., 2006. Phase changes during hygroscopic cycles of mixed organic/inorganic model systems of tropospheric aerosols. Journal of Physical Chemistry A 110, 1881-1893.
Marcq, S., Laj, P., Roger, J. C., Villani, P., Sellegri, K., Bonasoni, P., Marinoni, A., Cristofanelli, P., Verza, G. P., Bergin, M., 2010. Aerosol optical properties and radiative forcing in the high Himalaya based on measurements at the Nepal Climate Observatory – pyramid site (5100 m a.s.l). Atmospheric Chemistry and Physics Discussions 10, 5627-5663.
McMeeking, G. R., Kreidenweis, S. M., Baker, S., Carrico, C. M., Chow, J. C., Collett, J. L., Hao, W. M., Holden, A. S., Kirchstetter, T. W., Malm, W. C., Moosmuller, H., Sullivan, A. P., Wold, C. E., 2009. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. Journal of Geophysical Research-Atmospheres 114, D19210, doi: 10.1029/2009JD011836.
Miyazaki, Y., Aggarwal, S. G., Singh, K., Gupta, P. K., Kawamura, K., 2009. Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation processes. Journal of Geophysical Research-Atmospheres 114, D19206, doi: 10.1029/2009JD011790.
Miyazaki, Y., Kondo, Y., Shiraiwa, M., Takegawa, N., Miyakawa, T., Han, S., Kita, K., Hu, M., Deng, Z. Q., Zhao, Y., Sugimoto, N., Blake, D. R., Weber, R. J., 2009. Chemical characterization of water-soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006. Journal of Geophysical Research-Atmospheres 114, D14208, doi: 10.1029/2009JD011736.
Molnara, A. and Meszarosb, E., 2001. On the relation between the size and chemical compositions of aerosol particles and their optical properties. Atmospheric Environment 35, 5053-5058.
NASA Global Fire Maps website (http://rapidfire.sci.gsfc.nasa.gov/)
NASA GSFC TOMS OMI Aerosol Index website (http://toms.gsfc.nasa.gov/)
NASA MODIS Rapid Response System website (http://rapidfire.sci.gsfc.nasa.gov/)
NOAA Air Resources Labotatory (http://www.arl.noaa.gov/ready.php)
NOAA/Earth System Research Laboratory/Global Monitoring Division/Aerosols Group website (http://www.esrl.noaa.gov/gmd/aero/)
Oezkaynak, H., Schatz, A. D., Thurston, G. D., Isaacs, R. G., Husar, R. B., 1985. Relationships between aerosol extinction coefficients derived from airport visual range observations and alternative measures of airborne particle mass. Journal of the Air Pollution Control Association 35, 1176-1185.
Ohta, S. and Okita, T., 1990. Chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment Part A-General Topics 24, 815-822.
Omar, A. H., Biegalski, S., Larson, S. M., Landsberger, S., 1999. Particulate contributions to light extinction and local forcing at a rural Illinois site. Atmospheric Environment 33, 2637-2646.
Paredes-Miranda, G., Arnott, W. P., Jimenez, J. L., Aiken, A. C., Gaffney, J. S., Marley, N. A., 2009. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign. Atmospheric Chemistry and Physics 9, 3721-3730.
Pereira, S., Wagner, F., Silva, A. M., 2008. Scattering properties and mass concentration of local and long-range transported aerosols over the South Western Iberia Peninsula. Atmospheric Environment 42, 7623-7631.
Pio, C. A., Legrand, M., Oliveira, T., Afonso, J., Santos, C., Caseiro, A., Fialho, P., Barata, F., Puxbaum, H., Sanchez-Ochoa, A., Kasper-Giebl, A., Gelencser, A., Preunkert, S., Schock, M., 2007. Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west-east transect across Europe. Journal of Geophysical Research-Atmospheres 112, D23S02, doi: 10.1029/2006JD008038.
Quinn, P. K., Miller, T. L., Bates, T. S., Ogren, J. A., Andrews, E., Shaw, G. E., 2002. A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. Journal of Geophysical Research-Atmospheres 107, 4130, doi:10.1029/2001JD001248
Reidmiller, D. R., Jaffe, D. A., Chand, D., Strode, S., Swartzendruber, P., Wolfe, G. M., Thornton, J. A., 2009. Interannual variability of long-range transport as seen at the Mt. Bachelor observatory. Atmospheric Chemistry and Physics 9, 557-57.
Russell, L. M., 2003. Aerosol organic-mass-to-organic-carbon ratio measurements. Environmental Science and Technology 37, 2982-2987.
Salma, I., Ocskay, R., Lang, G. G., 2008. Properties of atmospheric humic-like substances - water system. Atmospheric Chemistry and Physics 8, 2243-2254.
Salma, I., Ocskay, R., Varga, I., Maenhaut, W., 2006. Surface tension of atmospheric humic-like substances in connection with relaxation, dilution, and solution pH. Journal of Geophysical Research 111, D23205, doi:10.1029/2005JD007015.
Sardar, S. B., Fine, P. M., Sioutas, C., 2005. Seasonal and spatial variability of the size-resolved chemical composition of particulate matter (PM10) in the Los Angeles Basin. Journal of Geophysical Research-Atmospheres 110, D07S08, doi: 10.1029/2004JD004627.
Saxena, P. and Hildemann, L. M., 1996. Water-soluble organics in atmospheric particles:A critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry 24, 57-109.
Saxena, V. K., 1990. Parameters involved in visibility perception during Haze episodes. In: visibility and fine particles. Transactions of an AWMA/US-EPA International Specialty Conference. Pittsburgh, PA.
Schichtel, B. A., Husar, R. B., Falke, S. R., Wilson, W. E., 2001. Haze trends over the United States 1980-1995. Atmospheric Environment 35, 5205-5210.
Schwartz, S. E., 1996. The whitehouse effect-shortwave radiative forcing of climate by anthropogenic aerosols: an overview. Journal of Aerosol Science 27, 359-382.
Seinfeld, J. H. and Pandis, S. N., 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New York.
Seinfeld, J. H., and Pandis, S. N., 2006. Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, New York.
Shendrikar, A. D. and Steinmetz, W. K., 2003. Integrating nephelometer measurements for the airborne fine particulate matter (PM2.5) mass concentrations. Atmospheric Environment 37, 1383-1392.
Sheridan, P. J., Delene, D. J., Ogren, J. A., 2001. Four years of continuous surface aerosol measurements from the Department of Energy's Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbed site. Journal of Geophysical Research-Atmospheres 106, 20735-20747.
Sioutas, C., Wang, P. Y., Ferguson, S. T., Koutrakis, P., Mulik, J. D., 1996. Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment 30, 885-895.
Sjogren, S., Gysel, M., Weingartner, E., Baltensperger, U., Cubison, M.J., Coe, H., Zardini, A.A., Marcolli, C., Krieger, U.K., Peter, T., 2007. Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures. Journal of Aerosol Science 38, 157-171.
Slater, J. F. and Dibb, J. E., 2004. Relationships between surface and column aerosol radiative properties and air mass transport at a rural New England site. Journal of Geophysical Research-Atmospheres 109, D01303, doi: 10.1029/2003JD003406.
Snyder, D. C., Rutter, A. P., Collins, R., Worley, C., Schauer, J. J., 2009. Insights into the origin of water soluble organic carbon in atmospheric fine particulate matter. Aerosol Science and Technology 42, 1099-1107.
Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., Prather, K. A., 2009. Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmospheric Chemistry and Physics 9, 3303-3316.
Svendby, T. M., Lazaridis, M., Torseth, K., 2008. Temperature dependent secondary organic aerosol formation from terpenes and aromatics. Journal of Atmospheric Chemistry 59, 25-46.
Taraniuk, I., Rudich, Y., Graber, E. R., 2009. Hydration-influenced sorption of organic compounds by model and atmospheric humic-like substances (HULIS). Environmental Science and Technology 43, 1811-1817.
Targino, A. C., Noone, K. J., Ostrom, E., 2005. Airborne in situ characterization of dry aerosol optical properties in a multisource influenced marine region. Tellus Series B-Chemical and Physical Meteorology 57, 247-260.
Tie, X. X., Wu, D., Brasseur, G., 2009. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmospheric Environment 43, 2375-2377.
Tolbert, P. E., Klein, M., Metzger, K. B., Peel, J., Flanders, W. D., Todd, K., Mulholland, J. A., Ryan, P. B., Frumkin, H., 2000. Interim results of the study of particulates and health in Atlanta (Sophia). Journal of Exposure Analysis and Environmental Epidemiology 10, 446-460.
Tomasi, C., Vitale, V., Petkov, B., Lupi, A., Cacciari, A., 2005. Improved algorithm for calculations of Rayleigh-scattering optical depth in standard atmospheres. Applied Optics 44, 3320-3341.
Twomey, S., 1977. The influence of pollution on the short-wavde albedo of clouds. Journal of the Atmospheric Sciences 34, 1149-1152.
Wang, J., Hoffmann, A. A., Park, R. J., Jacob, D. J., Martin, S. T., 2008. Global distribution of solid and aqueous sulfate aerosols: Effect of the hysteresis of particle phase transitions. Journal of Geophysical Research-Atmospheres 113, D11206, doi: 10.1029/2007JD009367.
Wiscombe, W. J. and Grams, G. W., 1976. The backscattered fraction in two-stream approximations. Journal of the Atmospheric Sciences 33, 2440-2451.
World Data Centre for Aerosols website (http://wdca.jrc.ec.europa.eu/)
Yang, M., Howell, S. G., Zhuang, J., Huebert, B. J., 2009. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China - interpretations of atmospheric measurements during EAST-AIRE. Atmospheric Chemistry and Physics 9, 2035-2050.
Zardini, A. A., Sjogren, S., Marcolli, C., Krieger, U. K., Gysel, M., Weingartner, E., Baltensperger, U., Peter, T., 2008. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles. Atmospheric Chemistry and Physics 8, 5589-5601.
行政院環保署 空氣品質監測網 (http://210.69.101.63/emcv2/logon.aspx)
行政院環保署 鹿林山背景測站網站(http://taqm.epa.gov.tw/lulin/default.aspx?pid=b0101&cid=b0101)
林能暉、蔡錫祺、王家麟、李崇德、許桂榮。2008。鹿林山背景站測試採樣分析與國際合作之參與及推動研究專案工作計畫,2006-2008工作報告。行政院環境保護署、國立中央大學大氣物理所。
侯雅馨,2008。大氣氣膠腐植質含量分析及氣膠成分對氣膠含水量影響的研究。 國立中央大學環境工程研究所碩士論文。
翁國豪,2007。生質燃燒氣膠長程傳輸及高山雲霧間隙氣膠特性之研究。國立中央大學環境工程研究所碩士論文。
國立中央大學NCU 鹿林天文台網站 (http://www.lulin.ncu.edu.tw/)
陳順宇,2000。迴歸分析。華泰文化事業股份有限公司
廖偉翔,2003。北台灣長程傳輸氣膠光學特性。國立中央大學環境工程研究所碩士論文。
指導教授 李崇德(Chung-te Lee) 審核日期 2010-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明