博碩士論文 963208001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:145 、訪客IP:3.17.6.75
姓名 蔡宗澤(Tsung-tse Tsai)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 高溫高壓之電解水產氫效率分析
(Analysis of water electrolysis energy efficiency under high presssure and high temperature)
相關論文
★ 金屬粉末射出成型毛細吸附脫脂模擬★ 燃料電池複合式流道設計與膜電極組製程
★ 氣態鋅與水蒸氣混合之流場與反應爐參數分析★ 利用化學水浴沉積法製作Ni-ZnO光電極之研究
★ 電解水產氫之電解液流場效應分析★ 以化學水浴法製備AgInS2可見光光電極及其摻雜銅之研究
★ 超音波場下電解水產氫之效應分析★ 以化學水浴法製備氧化鋅光電極薄膜之研究
★ 以化學浴沉積法製備四元化合物光電極薄膜之研究★ 利用化學水浴法鍍製二氧化鈦光電極薄膜之研究
★ 以化學浴沉積法製備Cu-In-S化合物光電極薄膜之研究★ 以化學浴沉積法製備β-In2S3化合物光電極薄膜之研究
★ 以化學浴沉積法製備不同結構氧化鋅光電極薄膜之研究★ 電解水產氫中極化作用之分析與研究
★ 磁場對水電解產氫效率增益之機制研究★ 二氧化銥/氧化還原石墨烯複合觸媒之水電解效能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主旨是為探討高溫高壓之下,電解水產氫的效率,主要以電流對電壓圖作為表現依據,其中,又將電流電壓表現,細分為四種不同的反應機制,個別加以詳細探討,四種不同反應機制如下:
1.可逆電位(reversible voltage) 2.活性極化(activation polarization) 3.歐姆極化(ohmic polarization) 4.濃度極化(concentration polarization)。
每個不同反應機制的結果為: 1.可逆電位:隨著溫度壓力愈高,其電位愈低。2.活性極化: 隨著溫度愈高,其過電位愈低,而活性過電位受到壓力的影響可以忽略。3.歐姆極化:分為電極電阻過電位以及氣泡電阻過電位來考慮,其中隨著溫度上升,電極電阻過電位增加,不受壓力影響,而隨著溫度上升,氣泡電阻過電位增加,隨著壓力上升,過電位下降,但在電流密度小於1A/cm2的情況下,氣泡電阻過電位十分小可以忽略4.濃度極化: 隨著溫度愈高,其過電位愈低,其受到壓力的影響可忽略。但在電流密度小於1A/cm2的情況下,濃度過電位十分小可忽略。
而最後的整體電能消耗部分,500bar/370oC比起1bar(約1atm)/80oC節省了約17%的電能,若我們再考慮把1bar的氣體壓縮到500bar的壓縮能量花費,則500bar/370oC節省了約22%的電能。
摘要(英) This work aims at analysing the energy efficiency of a high pressure, high temperature water electrolysis by current-voltage diagram.
Four different kinds of reaction mechanisms,namely,1. reversible voltage, 2. activation polarization, 3. ohmic polarization,and 4. concentration polarization,are investigated in details.。
The results of each different reaction mechanisms are: 1. Reversible voltage: The higher the temperature and pressure are, the lower its potential is. 2.Activation polarization: The higher the temperature is, the lower its potential is. However,the influence of pressure can be neglected. 3. Ohmic polarization: it can be divided into electrode resistance and bubble resistance . Between them, the electrode resistance overpotential
rises with temperature, but is not effected by pressure. The bubble resistance overpotential increases as temperature rises,and drops as the pressure rises.However, as the current density is smaller than 1A/cm2, the bubble resistance overpotential is very small and can be neglected.4. Concentration polarization: As temperature gets higher, the concentration overpotential decreases, and the influence of pressure can be neglected.
The whole electric energy consumption at 500bar/370oC, compared with that at 1bar/80oC, is saved about 17%. If the consumption of compressing the gas from 1bar to 500bar is considered, then the water electrolysis at 500bar/370oC saves about 22% of the electric energy.
關鍵字(中) ★ 電解水
★ 高溫高壓水電解
★ 活性過電壓
★ 產氫
關鍵字(英) ★ hydrogen production
★ activation overvoltage
★ water electrolysis
論文目次 摘要 ............................................................................................................I
ABSTRACT..............................................................................................II
目錄.........................................................................................................III
表目錄.....................................................................................................VI
圖目錄...................................................................................................VII
符號說明.................................................................................................X
第一章 緒論............................................................................................1
1-1前言............................................................................................1
1-2產氫............................................................................................3
1-3文獻回顧....................................................................................3
1-4研究目的與動機 ........................................................................6
第二章 理論基礎.....................................................................................8
2-1電解水製氫之基本原理.............................................................8
2-2可逆電位..................................................................................10
2-3法拉第定律..............................................................................10
2-4吉布斯自由能 ..........................................................................11
2-5極化作用..................................................................................12
2-5-1濃度極化 .......................................................................13
2-5-2活性極化 .......................................................................14
2-5-3歐姆極化 .......................................................................15
2-5-3-1電極片造成的歐姆極化 ...................................15
2-5-3-2氣泡造成的歐姆極化 .......................................16
第三章 理論模型與計算方法...............................................................18
3-1可逆電位..................................................................................19
3-1-1可逆電位的計算方法...................................................19
3-1-2可逆電位的計算結果與討論.......................................20
3-2活性過電位...............................................................................20
3-2-1活性過電位的計算方法........................................................21
3-2-2活性過電位的計算結果與討論............................................22
3-3歐姆極化:歐姆過電位之計算及結果與討論..........................23
3-3-1電極片上線段部分造成的歐姆過電位........................23
3-3-1-1電極片上線段部分造成的歐姆過電位之計算方法......................................................................................23
3-3-1-2電極片上線段部分造成的歐姆過電位之計算結果與討論..........................................................................24
3-3-2氣泡造成的歐姆過電位之計算方法及結果與討論....25
3-4濃度過電位之計算及結果與討論 ...........................................25
3-5不考慮最後須要壓縮氣體的能量之能量效率比較...............26
3-6考慮最後須要壓縮氣體的能量之能量效率比較...................28
第四章 結論與未來研究建議...............................................................30
4-1結論..........................................................................................30
4-2未來研究建議..........................................................................31
參考文獻 ................................................................................................33
表 ............................................................................................................37
圖 ............................................................................................................41
附錄........................................................................................................54
附錄圖....................................................................................................59
表(3-1) 可逆電位隨溫度及壓力的變化................................................37
表(3-2) 可逆電位隨溫度及壓力的變化,利用線性內插法得到........37
表(3-3) 常溫常壓下0.5m(莫爾重量濃度) NaOH溶液的各種性質.....38
表(3-4) 離子特性受到溫度的影響........................................................38
表(3-5) 常溫下離子遷移數跟壓力的關係,其中t+表示陽離子遷移數..............................................................................................................39
表(3-6) 常溫下擴散係數跟壓力的關係,其中D指的是擴散係數,Dp/Do指的是該壓力之下跟常壓下的擴散係數比值............................39
表(3-7) 常溫時總當量電導度跟壓力的關係........................................40
圖(1-1) 1850年至2150年,世界能源過渡圖......................................41
圖(1-2) 氫/碳的原子數比.......................................................................41
圖(3-1) 電極片背面示意圖....................................................................42
圖(3-2) 電極片側面示意圖....................................................................42
圖(3-3) 水的三相圖................................................................................43
圖(3-4) 可逆電位跟溫度壓力的關係....................................................43
圖(3-5) 80oC及370oC之下,未考慮交換電流密度受溫度改變時,所計算出的活性過電位與電流的關係......................................................44
圖(3-6) 80oC及370oC之下,考慮交換電流密度受溫度改變時,所計算出的活性過電位與電流的關係..........................................................44
圖(3-7) 80oC之下,比較不修正及修正,交換電流密度為溫度的函數,的活性過電位對電流關係......................................................................45
圖(3-8) 370oC之下,比較不修正及修正,交換電流密度為溫度的函數,的活性過電位對電流關係......................................................................45
圖(3-9) 電極片的線段,的歐姆過電位和電流之關係(截面積為1mm2 ).......................................................................................................46
圖(3-10) 電極電極片的線段,的歐姆過電位和電流之關係(截面積為10mm2).....................................................................................................46
圖(3-11) Kuhn等人的實驗值,氣泡造成的歐姆過電位和電流的關係..............................................................................................................47
圖(3-12) 本文根據Roy等人的經驗公式繪出的圖,顯示氣泡造成的過電位對電流的關係..............................................................................47
圖(3-13) 常溫常壓下,濃度過電位和電流的關係..............................48
圖(3-14) 80oC 總供應電壓跟電流密度對各壓力的關係.....................48
圖(3-15) 170oC總供應電壓跟電流密度對各壓力的關係....................49
圖(3-16) 300oC 總供應電壓跟電流密度對各壓力的關係...................49
圖(3-17) 370oC/500bar總供應電壓跟電流密度的關係........................50
圖(3-18) 固定壓力為500bar 各溫度之下總供應電壓對電流的關係.50
圖(3-19) 固定壓力為100bar 各溫度之下總供應電壓對電流的關係.51
圖(3-20) 800C/1bar,線段截面積為1mm2之下,三個反應機制佔總供應電壓之權重..........................................................................................51
圖(3-21) 800C/500bar,線段截面積為10mm2之下,三個反應機制佔總供應電壓之權重......................................................................................52
圖(3-22) 800C/1bar,線段截面積為1mm2之下,三個反應機制佔總供應電壓之權重..........................................................................................52
圖(3-23) 3700C/500bar,線段截面積為1mm2之下,三個反應機制佔總供應電壓之權重......................................................................................53
圖(3-24) 3700C/500bar,線段截面積為10mm2之下,三個反應機制佔總供應電壓之權重..................................................................................53
附錄圖(1) Marshall等人的電解水實驗數據.........................................59
附錄圖(2) Yangjian 等人的電解水實驗數據........................................59
附錄圖(3) 用Nagai等人的理論企圖擬合出特性電阻........................60
參考文獻 1. Pchome 新聞網http://news.pchome.com.tw/science/cnyes/20081114/index-12266712150382009005.html
2. S. Dunn, “Hydrogen futures: toward a sustainable energy system,” Hydrogen Energy, Vol.27, pp. 235-264 (2002).
3. R. A. Hefner, Presentation at the 10th Repsol-Harvard Seminar on Energy Policy, in Madrid, Spain (1999).
4. C. J. Winter, “On energies of change — the hydrogen solution,” Gerling Akademie Verlag, pp. 67-82 (2000).
5. P. Ridge, “Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques,” Noyes Data corporation, New Jersey, M. S. Casper (1978).
6. M. Kuhn, G. Kreysa, ’’Modelling of gas-evolving electrolysis cells.
The iR drop at gas-evolving electrodes,’’ Journal of Applied Electrochemistry, Vol. 19, pp. 720-728 (1989).
7. P. A. Lheman, C. E. Chmberlin, G. Pauletto and M. A. Rocheleau,
“Operating experience with a photovoltaic-hydrogen energy system,” International Journal of Hydrogen Energy, Vol. 22, pp. 465-470 (1997).
8. C. A. Schug, “Operational characterisyics of high-pressure, high
efficiency water-hydrogen-electrolysis,” International Journal of Hydrogen Energy, Vol. 23, pp. 1113-1120 (1998).
9. W. Kreuter and H. Homann, “Electrolysis:The important energy transformer in a world of sustainable energy,” International Journal of Hydrogen Energy, Vol. 23, pp. 661-666 (1998).
10. R. Mosdale and S. Srinivasan, ”Analysis of performance and of water and thermal management in proton exchange membrane fuel cells,” Electrochimica Acta,Vol. 40, pp. 413-421 (1995).
11. D. L. Stojić, M. P. Marčeta, S. P. Sovilj, and Š. S. Miljanić,“Hydrogen generation from water electrolysis—possibilities of energy saving,” Journal of Power Sources, Vol. 118, pp. 315-319 (2003).
12. N. Nagai, M. Takeuchi, T. Kimura, and T. Oka, ”Existence of optimum space between electrodes on hydrogen production by water electrolysis,” International Journal of Hydrogen Energy, Vol. 28, pp. 35-41 (2003).
13. J. Ivy, ’’Summery of electrolytic hydrogen production: milestone completion report,’’ (2004). (http://www.nrel.gov/docs/fy04osti/36734.pdf )website last accessed on 06-02-2009.
14. S. Licht, “Solar water splitting to generate hydrogen fuel—a photothermal electrochemical analysis,” International Journal of Hydrogen Energy, Vol. 30, pp. 459-470 (2005).
15. R. F. de Souza, J. C. Padilha, R. S. Gonçalves, and J. Rault-Berthelot,” Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis,” Electrochemistry Communications, Vol. 8,
pp. 211-216 (2006).
16. R. L. LeRoy, M. B. I. Janjua, R. Renaud, and U. Leuenberger,“ Analysis of time-variation effects in water electrolyzers, ”Journal of Electrochemical Society, pp. 1674-1682 (1979).
17. R. L. LeRoy, and C. T. Bowen, ”The thermodynamics of aqueous water electrolysis,” Journal of Electrochemical Society, pp. 1954-1962 (1980).
18. K. Onda, T. Kyakuno, K. Hattori, and K. Ito, “Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis,” Journal of Power Sources, Vol. 132, pp. 64-70 (2004).
19. A. Roy, S. Watson, and D. Infield, ”Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers,” International Journal of Hydrogen Energy, Vol. 31, pp. 1964-1979 (2006).
20. F. Marangio, M. Santarelli, M. Cali, ”Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production pressure PEM water electrolyser for hydrogen production,” International Journal of Hydrogen Energy, Vol. 34, pp. 1143–1158 (2009).
21. 魚崎浩平,喜多英明同撰,黃忠良譯,基本電化學,復漢出版社 (1983)。
22. J. Koryta, J. Dvořák, and L. Kavan, Principles of electrochemistry, second edition, John Wiley, New York (1993).
23. 田福助,電化學基本原理與應用,五洲出版社 (2004)。
24. M. W. Chase, J, JANAF Thermochemical Tables(3rd ed), (1985).
25. K. Kinoshita, Electrochemical Oxygen Technology, Wiley, New York (1992).
26. T. Thampan, S. Malhotra, J. X. Zhang, R. Datta, ’’PEM fuel cell as a membrane reactor,’’ Catalysis Today, Vol. 67, pp.15–32 (2001).
27. H. Wang, C. Wingender, H. Baltruschat , M. Lopez and M. T. Reetz, ’’Methanol oxidation on Pt, PtRu, and colloidal Pt electrocatalysts: a DEMS study of product formation,’’ Journal of Electroanalytical Chemistry, Vol. 509, pp. 163–169 (2001).
28. S. D. Hamann, Physico-chemical effects of pressure, London Butterworths Scientific Publications (1957).
29. R. A. Serway,Principles of Physics (2nd ed), Saunders College Pub (1998).
30. Crow原著,黃進益譯,電化學的原理與應用,高立出版社 (1998)。
31. 國立台灣師範大學物理系 物理教學示範實驗教室網站
http://forum.phy.ntnu.edu.tw/demolab/phpBB/viewtopic.php?topic=7758
32. A. Fujishima, Electrochemistry Handbook(fifth ed), Electrochemical Society of Japan, Maruzen, Tokyo, p. 27 (2000)。
33. M. W. Chase, J, JANAF Thermochemical Tables(3rd ed), p. 1276 (1985).
34. 黃鎮江編著,燃料電池 ,全華科技圖書股份有限公司出版(2003)。
35. A. Marshall, B. Borresen, G. Hagen, M. Tsypkin, R. Tunold, “Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—Reduced energy consumption by improved electrocatalysis,”, Energy, Vol. 32, pp. 431–436 (2007).
36. Y. J. Zhang, C. Wang, N. F. Wan, Z. X. Liu, Z. Q. Mao, ’’Study on a novel manufacturing process of membrane electrode assemblies for solid polymer electrolyte water electrolysis,’’ Electrochemistry Communications, Vol. 9, pp. 667–670 (2007).
37. 萬其超編譯,電化學之原理與應用,徐氏基金會出版 (1972)。
38. 毛宗強,氫能-21世紀的綠色能源,新文京開發出版社(2008)。
指導教授 洪勵吾(Lih-wu Hourng) 審核日期 2009-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明