博碩士論文 963208008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.141.8.247
姓名 王智玄(Chih-Hsuan Wang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 超音波場下電解水產氫之效應分析
(The study on water electrolysis in the presence of ultrasonic field)
相關論文
★ 金屬粉末射出成型毛細吸附脫脂模擬★ 燃料電池複合式流道設計與膜電極組製程
★ 氣態鋅與水蒸氣混合之流場與反應爐參數分析★ 利用化學水浴沉積法製作Ni-ZnO光電極之研究
★ 電解水產氫之電解液流場效應分析★ 以化學水浴法製備AgInS2可見光光電極及其摻雜銅之研究
★ 高溫高壓之電解水產氫效率分析★ 以化學水浴法製備氧化鋅光電極薄膜之研究
★ 以化學浴沉積法製備四元化合物光電極薄膜之研究★ 利用化學水浴法鍍製二氧化鈦光電極薄膜之研究
★ 以化學浴沉積法製備Cu-In-S化合物光電極薄膜之研究★ 以化學浴沉積法製備β-In2S3化合物光電極薄膜之研究
★ 以化學浴沉積法製備不同結構氧化鋅光電極薄膜之研究★ 電解水產氫中極化作用之分析與研究
★ 磁場對水電解產氫效率增益之機制研究★ 二氧化銥/氧化還原石墨烯複合觸媒之水電解效能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氫能為潔淨且能量密度高的燃料,被看好未來能取代石化燃料。電解水製氫是目前較為成熟且產氣純度較高的技術,只是在電解過程會消耗大量的電能。為了節省電力,提升電解效率是當今相當重要的課題。在電解過程中,電極表面會累積大量的氫氣與氧氣氣泡,阻礙離子於電極上之反應。要改善此現象,最常用的方法為攪拌電解液,而超音波產生的空蝕效應也有類似的作用。因此本文將探討不同頻率與強度的超音波對氣阻現象之影響。
本文實驗所設定之參數為電解液濃度(1M、4M、8M、11M)、電解電位(3V、5V) 、超音波頻率(25kHz、40kHz、68kHz、100kHz)、超音波強度(90W、180W、270W、540W),每次電解時間為600秒,並利用恆電位儀記錄實驗數據,以探討在不同的反應電量在各超音波場下之提升效率。
結果顯示,在高反應電流下,空蝕效應所引發的微小噴射液滴與高壓滯流環可有效帶走電極表面氣泡,改善氣阻現象。而當空蝕氣泡密度夠高時,其爆破產生的高溫可加速電化學反應速率,並增進其效率。
在常溫下,電極間距4mm,濃度8M、電位5V,超音波場25kHz、540W有最佳電流提升效率為27%。
摘要(英) As an energy carrier, hydrogen will play an important role in the future because of its high energy content per unit mass and it is cleaner than the chemical fuels. Today, water electrolysis is a developed technology that generates the purest hydrogen gas. However, it may cause high energy cost. Therefore, energy conservation becomes more and more important and is a major object in many researches. During the process of electrolysis, the electrode plate would be covered by bubbles resulting in the drag of the reactions and high overpotentials at the surface of electrodes. To abate this phenomenon, agitation would be added, and ultrasonic field would offer comparable effect.
In this study, we will discover the influence of ultrasonic on electrolysis by 4 parameters such as concentration, voltage, frequency, and power. Each electrolysis treatment takes 600 seconds, data recorded by a potentiostat / galvanostat.
The results of experiment show that in the condition of high current density, micro jet and stagnation flow circular produced by cavitation would remove bubbles on the electrode plate, and lower ohmic polarization effectively. The bulk of explosion of cavitation bubbles close to electrode plate will produce high temperature to accelerate reactive rate, and increase efficiency of chemical reaction.
Finally, the maximum current density enhancement of the system is about 27%, for concentration 8M, voltage 5V, while an ultrasonic field (25kHz, 540W) is applied.
關鍵字(中) ★ 超音波
★ 空蝕現象
★ 極化
★ 水電解
關鍵字(英) ★ water electrolysis
★ polarization
★ cavitation
★ ultrasonic field
論文目次 目錄
摘要 I
ABSTRACT II
目錄 III
表目錄 VI
圖目錄 VII
符號說明 XI
第一章 緒論 1
1-1前言 1
1-2產氫 3
1-3文獻回顧 4
1-4研究目的與動機 6
第二章 理論基礎 8
2-1電解水製氫之基本原理 8
2-2電解電壓 9
2-2-1電解液溫度對電解反應之影響 10
2-3法拉第定律 11
2-4吉布斯自由能 11
2-5極化作用 12
2-5-1濃度極化 12
2-5-2活性極化 13
2-5-3電阻極化 15
2-6電導度 16
2-7超音波的原理 16
2-7-1空蝕現象 17
2-7-2超音波產生空蝕現象之機制 17
2-7-3空蝕氣泡之機制 18
第三章 實驗裝置與步驟 20
3-1實驗簡述 20
3-2實驗藥品及材料 20
3-2-1實驗藥品 20
3-2-2實驗材料 21
3-3實驗儀器 21
3-4實驗架設與變因 22
3-5實驗步驟 23
3-6注意事項 23
第四章 結果與討論 25
4-1實驗參數之探討與設定 25
4-2電解液濃度之影響 27
4-3電場之影響 28
4-4頻率之影響 30
4-5功率之影響 32
第五章 結論與建議 38
5-1結論 38
5-2未來研究方向與建議 38
參考文獻 40
表 44
圖 46
參考文獻 參考文獻
1. 行政院國家科學委員會
http://web1.nsc.gov.tw/ct.aspx?xItem=8008&ctNode=439&mp=1
2. 毛宗強,氫能-21世紀的綠色能源,新文京開發出版社(2008)。
3. Western Oregon University
http://www.wou.edu/las/physci/GS36 /Energy_From_Fossil_Fuels.htm
4. S. Dunn, “Hydrogen futures: toward a sustainable
energy system,” Hydrogen Energy, Vol.27, pp. 235-264 (2002).
5. C. A. Schug, “Operational characterisyics of
high-pressure, high-efficiency water-hydrogen-electrolysis,” International Journal of Hydrogen Energy, Vol.23,pp.1113-1120(1998).
6. W. Kreuter and H. Homann , “Electrolysis : The
important energy transformer in a world of sustainable energy ,” International Journal of Hydrogen Energy, Vol.23,pp.661-666(1998).
7. P. Ridge, “Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques,” Noyes Data corporation, New Jersey, M. S. Casper (1978).
8. R. Mosdale and S. Srinivasan, “Analysis of performance
and of water and thermal management in proton exchange membrane fuel cells,” Electrochimica Acta,Vol.40,pp.413-421(1995).
9. P. A. Lheman , C. E. Chmberlin, G. Pauletto and M. A.
Rocheleau, “Operating experience with a photovoltaic-hydrogen energy system,” International Journal of Hydrogen Energy,Vol.22,pp.465-470(1997).
10. D. Lj. Stojić, M. P. Marčeta, S. P. Sovilj, and Š. S.
Miljanić, “Hydrogen generation from water electrolysis
—possibilities of energy saving,” Journal of Power Sources,Vol.118,pp.315-319(2003).
11. N. Nagai, M. Takeuchi, T. Kimura, and T. Oka, “Existence of optimum space between electrodes on hydrogen production by water electrolysis,” International Journal of Hydrogen Energy,Vol.28,pp.35-41(2003).
12. R. F. de Souza, J. C. Padilha, R. S. Gonçalves, and J.
Rault-Berthelot, “Dialkylimidazolium ionic liquids as
electrolytes for hydrogen production from water electrolysis,” Electrochemistry Communications,Vol.8,
pp.211-216(2006).
13. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and
H. Tributsch, “Over 18% solar energy conversion to
generation of hydrogen fuel; theory and experiment for efficient solar water splitting,” International Journal of Hydrogen Energy,Vol.26,pp.653-659(2001).
14. S. Licht, “Solar water splitting to generate hydrogen fuel—a photothermal electrochemical analysis,” International Journal of Hydrogen Energy,Vol.30,
pp.459-470(2005).
15. R. L. LeRoy, M. B. I. Janjua, R. Renaud, and U. Leuenberger, “Analysis of time-variation effects in water electrolyzers,” J. Electrochem. Soc., pp.1674-1682(1979).
16. R. L. LeRoy, and C. T. Bowen, “The thermodynamics of aqueous water electrolysis,” J. Electrochem.,pp.1954-1962(1980).
17. K. Onda, T. Kyakuno, K. Hattori, and K. Ito,
“Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis,” Journal of Power Sources,Vol.132,pp.64-70(2004).
18. S. D. Li, C. C. Wang, C. Y. Chen, “ Water electrolysis
in the presence of an ultrasonic field,” J. Electrochimica Acta, 54 (2009) 3877–3883
19. J. Koryta, J. Dvořák, and L. Kavan, Principles of electrochemistry, second edition, John Wiley, New York (1993).
20. T. J. Mason, J. P. Lorimer and D. J. Walton,
Sonoelectrochemistry, Ultrasonics : 28 (1990) 333-337.
21. T. J. Mason, Sonochemistry the uses of ultrasound in
chemistry, Royal Society of Chemistry, 1990.
22. 賴耿陽,超音波工學理論實務,復漢出版社(1998)。
23. R. P. Tong, W. P. Schiffers, S. J. Blake, “Splashing in the collapse of a laser-generated cavity near a rigid boundary,” J.Fluid Mech.: 380 (1999) 3339-361.
24. J. R. Blake, Y. Tomita, R. P. Tong, “The art craft and science of modelling jet impact in a collapsing cavitation bubble,” Appl. Sci. Res.: 58 (1998) 77-90.
25. L. A. Crum, “Comments on the evolving field of sonochemistry by a cavitation physicist,” Ultrason. Sonochem.: 2 (2) (1995) 147-152.
26. K. S. Suslick, S. J. Doktycz and E. B. Flint,“On the
origin of sonoluminescence and sonochemistry,” Ultrasonics: 28 (1990) 280-290.
27. J. M. Gras and P. Spiteri , “Corrosion of stainless steels and nickel based alloys for alkaline water electrolysis,” International Journal of Hydrogen Energy,Vol.18,pp.561-566(1993).
28. L. D. Rozenberg, High intensity ultrasonic fields, Plenum Press, New York,1971.
29. E. A. Neppiras, “Acoustic cavitation: an introduction,” Ultrasonics: 22(1) (1984) 25-28.
30. K. S. Suslick, “The chemical effects of ultrasound,” Sci. Am.: 80 (1989) 80-86.
31. 田福助,電化學基本原理與應用,五洲出版社(2004)。
指導教授 洪勵吾(Lih-Wu Hong) 審核日期 2011-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明