博碩士論文 963208015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.116.50.87
姓名 林琪翔(Ci-Siang Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 Mg2Ni儲氫合金之儲氫罐吸放氫熱流分析及儲氫罐熱傳增強設計
(Thermal-Fluid Behavior and Design of Heat Transfer Ehancement for Mg2Ni Hydride Storage Canisters)
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文研究針對Mg2Ni儲氫合金在儲氫罐內吸放氫反應的模擬分析,探討儲氫罐吸放氫的熱流行為,並且比較典型圓柱型儲氫罐、同心圓柱型儲氫罐與添加鰭片同心圓柱型儲氫罐三者之合金平均溫度和吸放氫反應速率的差異,了解儲氫罐體與合金的熱傳效率對於整體儲氫合金吸放氫反應的影響。
首先,依據線性最小平方迴歸法擬合文獻實驗數據,求得Mg2Ni儲氫合金吸放氫反應的合金平衡壓力與反應速率方程式,將所求得的Mg2Ni儲氫合金參數套入儲氫罐數學模型。儲氫合金吸氫過程合金粉末膨脹;放氫過程合金粉末收縮,所以本文將儲氫罐數學模型分為膨脹區與合金區,此外同心圓柱型儲氫罐加入計算中空管流體溫度的一維能量方程式,並在添加鰭片同心圓柱型儲氫罐增加計算鰭片溫度的能量方程式,以考慮中空管流體和鰭片對於儲氫合金溫度與吸放氫效率的影響。
結果顯示典型的圓柱型儲氫罐不論是吸氫過程或放氫過程都無法在2小時內到達整體儲氫合金反應結束,但藉由儲氫罐體型式的修改,增加儲氫罐熱傳效果,添加鰭片同心圓柱型儲氫罐可在6000秒左右完成吸放氫反應,所以儲氫罐外型的修改可以明顯改善Mg2Ni儲氫合金原本緩慢的吸放氫反應速率。若是再將儲氫罐操作環境因素改變,如在吸氫過程降低環境溫度、增加入口壓力或是加快中空管冷卻流體的速度;放氫過程提高環境溫度、降低出口壓力或是加快中空管加熱流體的速度都可進一步加速吸放氫反應的進行。最後經由改變儲氫罐內部鰭片外型發現,其加強熱傳效果主要是由鰭片體積大小所控制。
摘要(英) A study of the hydrogen absorption and desorption processes using Mg2Ni hydrogen storage alloy is presented for investigation on the thermal-fluid behavior in canister and influences of canister geometry.
Absorption and desorption reaction rates and equilibrium pressures are calculated by fitting experimental data in literature using least-squares regression. Then, the fitted parameters are used in the simulations for the thermal-fluid behavior of hydrogen storage canisters. Since the alloy powders will expand in absorption, and shrink in desorption, the canisters in question comprise a metal bed and expansion volume. To enhance heat transfer, we consider the canisters to be equipped with a air pipe at the centre line and/or with internal fins.
Simulation results show the bare cylindrical canister can not carry out during two hours absorption or desorption reactions, but the canister with the addition of a concentric heat exchanger pipe with fins can complete absorption or desorption reactions during about 6000 s. Results also show the reaction rates can be further increased by adjusting working parameters For absorption processes, it benefit by reducing surrounding temperature, increasing inlet pressure or increasing flowing air velocity. For desorption processes, the reaction rate can be increased by increasing surrounding temperature, reducing outlet pressure or increasing flowing air velocity. Finally, adjusting the internal fin volume shows that it is the fin volume that principally affects the heat transfer enhancement of the hydride canister.
關鍵字(中) ★ 氫氣
★ 金屬氫化物
★ 儲氫罐
★ Mg2Ni
關鍵字(英) ★ metal hydride
★ Mg2Ni
★ hydrogen
★ hydrogen storage canister
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號表 x
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機 4
第二章 儲氫合金反應機制 5
2.1 吸放氫原理 5
2.2 儲氫合金平衡壓 6
2.3 儲氫合金反應速率 9
2.3.1 吸氫過程 9
2.3.2 放氫過程 11
第三章 數學模型 21
3.1 物理系統 21
3.2 幾合外型 22
3.3 數學模型 23
3.3.1 膨脹區數學模型 23
3.3.2儲氫合金區數學模型 24
3.3.3中空管一維數學模型 28
3.3.4 鰭片數學模型 29
3.4 初始條件與邊界條件 30
3.4.1 初始條件 30
3.4.2 邊界條件 31
3.4.2.1 A型儲氫罐 31
3.4.2.2 B型儲氫罐 36
3.4.2.3 C型儲氫罐 37
第四章 數值方法 41
4.1 COMSOL簡介 41
4.2 網格配置 42
4.3 誤差與精確度 43
第五章 模擬結果與討論 45
5.1 吸氫反應過程 45
5.2 放氫反應過程 49
5.3參數變化對合金反應的影響 52
5.3.1環境溫度對儲氫罐吸放氫反應影響 52
5.3.2出入口壓力對儲氫罐吸放氫反應影響 53
5.3.3中空管流體速度對儲氫罐吸放氫反應影響 54
5.3.4鰭片外型對儲氫罐吸放氫反應影響 55
第六章 結論與未來展望 86
6.1 結論 86
6.2 未來展望 88
參考文獻 89
附錄 93
參考文獻 Alazmi B, Vafai K. Analysis of variants within the porous media transport models. Journal of Heat Transfer 2000; 122: 303-326.
Askri F, Salah MB, Jemni A, Ben Nasrallah S. Optimization of hydrogen storage in metal-hydride tanks. International Journal of Hydrogen Energy 2009; 34: 897-905.
Ben Nasrallah S, Jemni A. Heat and mass transfer models in metal-hydrogen reactor. International Journal of Hydrogen Energy 1997; 22: 67-76.
Bhatti MS, Shah RK. Handbook of single-phase convective heat transfer. New Yourk: John Wiley and Sons; 1987; pp 4.1-4.166.
Botzung M, Chaudourne S, Gillia O, Perret C, Latroche M, Percheron-Guegan A, Marty P. Simulation and experimental validation of a hydrogen storage tank with metal hydrides. International Journal of Hydrogen Energy 2008; 33: 98-104.
Chung CA, Ho CJ. Thermal-fluid behavior of the hydriding and dehydriding processes in a metal hydrogen storage canister. International Journal of Hydrogen Energy 2009; 34: 4351-4364.
Crabtree GW, Dresselhaus MS, Buchanan MV. The hydrogen economy. Physics Today 2004; December: 39-44.
Dhaou H, Askri F, Salah MB, Jemni A, Ben Nasrallah S, Lamloumi J. Measurement and modeling of kinetics of hydrogen sorption by LaNi5 and two related pseudobinary compounds. International Journal of Hydrogen Energy 2007; 32: 576-587.
Friedlmeier G, Groll M. Experimental analysis and modeling of the hydriding kinetics of Ni-doped and pure Mg. Journal of Alloys and Compounds 1997; 253-254: 550-555.
Goodell PD, Rudman PS. Hydriding and dehydriding rates of the LaNi5-H system. Journal of the Less-Common Metals 1983; 89: 117-125.
Goren SD, Korn C, Mintz MH, Gavra Z, Hadari Z. Measurement of hydrogen diffusion in Mg2NiH4 using nuclear magnetic resonance. Journal of the Less-Common Metals 1980; 73: 261-264.
Han JS, Lee JY. A study of the dehydriding kinetics of Mg2Ni intermetalic compound. Journal of the Less-Common Metals 1987; 128: 155-165.
Hayashi S. Distribution and dynamics of hydrogen in the low-temperature phase of Mg2NiH4 studied by solid-state NMR. Inorganic Chemistry 2002: 41; 2238-2242.
Hsu CW, Lee SL, Jeng RR, Lin JC. Mass production of Mg2Ni alloy bulk by isothermal evaporation casting process. International Journal of Hydrogen Energy 2007; 32: 4907-4911.
Incropera FP, Dewitt DP. Introduction to heat transfer. 4th . New York: John Wiley and Sons; 2002a; pp 434-472.
Incropera FP, Dewitt DP. Introduction to heat transfer. 4th . New York: John Wiley and Sons; 2002b; pp 496-531.
Incropera FP, Dewitt DP. Introduction to heat transfer. 4th . New York: John Wiley and Sons; 2002c; pp 821-834.
Incropera FP, Dewitt DP. Introduction to heat transfer. 4th . New York: John Wiley and Sons; 2002d; pp 52-58.
Ishido Y, Kawamura M, Ono S. Thermal conductivity of magnesium-nickel hydride power beds in a hydrogen atmosphere. International Journal of Hydrogen Energy 1982; 7: 173-182.
Jemni A, Ben Nasrallah S. Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor. International Journal of Hydrogen Energy 1995a; 20: 43-52.
Jemni A, Ben Nasrallah S. Study of two-dimensional heat and mass transfer during desorption in a metal-hydrogen reactor. International Journal of Hydrogen Energy 1995b; 20: 881-891.
Jemni A, Ben Nasrallah S, Lamloumi J. Experimental and theoretical study of a metal-hydrogen reactor. International Journal of Hydrogen Energy 1999; 24: 631-644.
Kobus CJ, Wedekind GL. An experimental investigation into natural convection heat transfer from horizontal isothermal circular disks. International Journal of Heat and Mass Transfer 2001; 44: 3381-3384.
Macdonald BD, Rowe AM. Impacts of external heat transfer enhancement on metal hydride storage tanks. International Journal of Hydrogen Energy 2006a; 31: 1721-1731.
Macdonald BD, Rowe AM. A thermally coupled metal hydride hydrogen storage and fuel cell system. Journal of Power Sources 2006b; 161: 346-355.
Martin M, Gommel C, Borkhart C, Fromm E. Absorption and desorption kinetics of hydrogen storage alloys. Journal of Alloys and Compounds 1996; 238: 193-201.
Mayer U, Groll M, Supper W. Heat and mass transfer in metal hydride reaction beds: experimental and theoretical results. Journal of the Less-Common Metals 1987; 131: 235-244.
Miyamoto M, Yamaji K, Nakata Y. Reaction kinetics of LaNi5. Journal of the Less-Common Metals 1983; 89: 111-116.
Popiel CO, Wojtkowiak J, Bober K. Laminar free convective heat transfer from isothermal vertical slender cylinder. Experimental Thermal and Fluid Science. 2007; 32: 607-613.
Radziemska E, Lewandowski WM. Heat transfer by natural convection from an isothermal downward-facing round plate in unlimited space. Applied Energy 2001; 68: 347-366.
Reilly JJ, Wiswall RH. The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorganic Chemistry 1968; 7: 2254-2256.
Sandrock G. A panoramic overview of hydrogen storage alloys from a gas reaction point of view. Journal of Alloys and Compounds 1999; 293-295: 877-888.
Sandrock G, Thomas G. IEA/DOE/SNL hydride Databases. Internet URL http://hydpark.ca.sandia.gov
Suda S, Kobayashi N, Yoshida K. Reaction kinetics of metal hydrides and their mixtures. Journal of the Less-Common Metals 1980; 73: 119-126.
Szekely J, Evans JW, Sohn HY. Gas-solid reactions. New York: Academic Press; 1976.
Vafai K. Convective flow and heat transfer in variable-porosity media. Journal of Fluid Mechanics 1984; 147: 233-259.
Weisz PB. Basic choices and constraints on long-term energy supplies. Physics Today 2004; July: 47-51.
White FM. Fluid mechanics. 4th ed. New York: McGraw-Hill; 1999.
Züttel A. Materials for hydrogen storage. Materials Today 2003; September: 24-33.
胡子龍,儲氫材料,曉園出版社,2002。
黃鎮江,燃料電池,全華圖書公司,2005
曲新生和陳發林,氫能技術,五南出版社,2006。
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2009-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明