博碩士論文 963209004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:35.172.217.40
姓名 張維蓉(Wei-jung Chang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
(Promotion of Pt-Ru/C Catalysts Driven by HeatTreated Induced Surface Segregation for MethanolOxidation Reaction)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係★ 不同形貌硒化鎘奈米晶之製備及其於有機光伏元件之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 直接甲醇燃料電池(DMFC)具有體積小、工作溫度低且使用液態燃料等特性,因此在可攜式電源的應用領域裡具有極大的發展潛力,但也因其具有較低的功率密度、陽極白金觸媒易遭一氧化碳毒化、甲醇穿透(crossover)與觸媒價格相對高之缺點,故在產業界與學術界皆被廣泛的研究,特別是關於提升觸媒效能的研究,更是近二十年來的研究重點之ㄧ。本研究採用最為廣泛使用的E-tek商用觸媒,重量組成比為Pt : Ru : C = 13.4 : 6.6 : 80之鉑釕陽極觸媒 (PtRu/C),並以不同氣氛的熱處理改質,期望能了解觸媒組成、結構、成份偏析以及電化學活性之關連性,並且也透過改質,製備出甲醇氧化效能超越原始商用材之優良觸媒。
所改質的觸媒,以X光繞射分析儀(X-ray diffraction, XRD)鑑定其結構,並以程式溫度還原系統(temperature-programmed reduction, TPR)與X射線光電子光譜(X-ray photoelectron spectroscopy, XPS)分析其表面組成,而電催化特性則以電化學循環伏安法(cyclic voltammetry, CV)分析。從XRD與XPS分析發現原始的商用材表面成份多為RuO2與Pt還有部份的Pt(OH)2。熱處理會造成Ru的表面偏析,並且因為過多的非晶質Ru偏析至表面導致觸媒的合晶度降低,然而在本研究中,合金度並不直接影響電化學活性。比較I07 (0.7 V vs. NHE)可發現,氫氣熱處理的樣品具有相似的表面組成且具有優秀的抗一氧化碳毒化之特性。而氮氣熱處理會抑制Ru的偏析,進而促進甲醇氧化效應,其改質效果最佳。
摘要(英) The direct methanol fuel cells (DMFC) have many advantages, such as small volume, low operational temperature, and liquid fuel feeding, therefore, DMFC has potential applications in mobile electronics. However, the low power density, methanol crossover, expensive Pt catalysts, and catalyst poisoning are needed to be solved. The research of DMFC has attracted much attention, especially the development and promotion of catalysts, has been studied comprehensively in last two decades.
Alloy catalysts of commercial E-tek with a weight ratio of Pt : Ru : C = 13.4 : 6.6 : 80, heat treated in different atmospheres were prepared for the methanol oxidation reaction (MOR) and their structure-activity relationship (SAR) investigation. The alloy structures, surface species,and electro-catalytic activities of prepared alloy catalysts were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS) technique, respectively. The electro-oxidation performance was studied by cyclic
voltammetry (CV).
It has been found that the surface of as-received Pt-Ru/C catalysts was consisted of mainly RuO2, Pt, and some Pt(OH)2. Thermal treatments induce Ru surface segregation in different extents, especially in O2 and H2 environments. The segregation of amorphous Ru in the catalysts altered the alloying degrees significantly. However, the Pt-Ru alloying degree is not significantly influence the electrochemical properties in this study. Catalysts involved in H2 heat treatment have a excellent CO depoisoning ability and have similar surface compositions and species. The N2 treatment seems to serve as a surface composition and structure adjustment process, which suppresses the surface Pt depletion and makes the components more stable and promotes the MOR.
關鍵字(中) ★ 合金度
★ 表面偏析
★ 甲醇氧化
★ 熱處理
★ 鉑釕觸媒
關鍵字(英) ★ PtRu/C catalysts
★ heat treatment
★ methanol oxidation
★ surface segregation
★ degree of alloying
論文目次 中文摘要 … i
Abstract … iii
致謝 …V
Chapter I Introduction 1
1. History of fuel cells 2
2. Classification of fuel cell 4
3. Structure of fuel cell …5
3.1 Proton exchange membrane …5
3.2 Gas diffusion layers …8
3.3 Catalyst layers …8
4. Motivation and Approach …9
Chapter II Literature Review …10
1. Principle of DMFC …11
2. Catalysts in DMFC …17
2.1 Mechanism of methanol oxidation …17
2.2 Anode catalysts of DMFC …18
Chapter III Experimental procedures …34
1. Catalysts and Modification …35
1.1 Information of the commercial catalysts …35
1.1 Modification of the catalysts …35
2. Characterization of catalysts …38
2.1 X-ray diffraction (XRD) …38
2.2 X-ray photoelectron spectroscopy (XPS) …38
2.3 Temperature programmed reduction (TPR) …38
2.4 Cyclic-Voltammertric Oxidation of Methanol (CV) …39
Chapter IV Results and Discussion …42
1. Electrochemical performance of PtRu/C …42
1.1 Effect of heat treatments in N2 or Air at 520-620 K …42
1.2 Effect of heat treatments at 570 K on PtRu/C …42
1.3 Effect of 2nd stage heat treatments on PtRu/C …46
2. Structure characterization by XRD measurement …54
2.1 As-received and modified PtRu/C catalysts …54
2.2 Analyses of Degree of alloying and Particle Size …57
3. Surface Analyses of PtRu/C …64
3.1 XPS Analyses of PtRu/C catalysts …64
3.2 TPR characterization of PtRu/C catalysts …73
Chapter V Conclusions …80
Chapter VI Reference …82
參考文獻 [1] P. B. L. Chaurasia, Y. Ando, and T. Tanaka, Energy Conversion and Management, 2003, 44, 611.
[2] S. Song, Catalyst Today, 2002, 77, 17.
[3] G. J. K Acres, J. Power Sources, 2001, 100, 60.
[4] P. Costamagna and S. Srinvasan, J. Power Sources, 2001, 102, 242.
[5] V. A. paganin, C. L. F. Oliveira, E. A. Ticianelli, T. E. Springer, and E. R. Gonzalez, Electrochimica Acta, 1998 , 43, 3761.
[6] G. Hoogers, “Fuel cell technology”, CRC Press, New York and London, 2002.
[7] M. P. Hogarth, T. R. Ralph, Platinum Metals Rev., 2002, 46, 146.
[8] A. Hamnett, Catal. Today, 1997, 38, 445.
[9] X. Ren, M. S. Wilson, S. Gottesfeld, J. Electrochem. Soc., 1996, 143, 12.
[10] W. Vielstich and J. Braz, Chem. Soc., 2003, 14, 503.
[11] Z. Ogumi, T. Kuroe, and Z. I. Takehara, J. Electrochem. Soc., 1985, 132, 2601.
[12] J. Cruickshank and K. Scott, J. Power Sources, 1998, 70, 40.
[13] M. Watanabe, M. Uchida, and S. Moot, J. Electroanal. Chem., 1987, 229, 396.
[14] D. X. Cao and H. S. Bergens, J. Power Sources, 2004, 134, 172.
[15] M. Gotz and H. Wendt, Electrochim. Acta, 1998, 43, 3637.
[16] J. H. Choi, K. W. Park, I. S. Park, W. H. Nam, and Y. E. Sung, Electrochim. Acta, 2004, 50, 787.
[17] K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung, H. Y. Ha, S. A. Hong, H. Kim, and A. Weickowski, J. Phys. Chem. B, 2002, 106, 1869.
[18] Taiwan small fuel cells symposium, June 27-29 2006.
[19] J. Larminie and A. Dicks, “Fuel Cell Systems Explained, Second Edition”, Wiley company, 2003.
[20] T. Freelink, W. Visscher, and J. A. R.van Veen, Surf. Sci., 1995, 335, 353.
[21] M. Watanabe and S. Motoo, J. Electroanal. Chem., 1975, 60, 267.
[22] P. Stonehart , P. N. Ross, Catal. Rev.-Sci. Eng., 1975, 12, 1.
[23] R. Liu, H. Iddir, Q. Fan, G. Hou, A. Bo, K. L. Ley, and E. S. Smotkin, J. Phys. Chem. B, 2000, 104, 2518.
[24] W. F. Lin, M. S. Zei, M. Eiswirth, G. Ertl, T. Iwasita, and W. Vielsttich, J. Phys. Chem. B, 1999, 103, 6968.
[25] H. N. Dinh, X. Ren, F. H. Garzon, P. Zelenay, S. Gottesfeld, J. Electroanal. Chem., 2000, 491, 222.
[26] W. H. Lizcano-Valbuena, V. A. Paganin, E. R. Gonzalez, Electrochim. Acta., 2002, 47, 3715
[27] M. L. Sattler, P. N. Ross, Ultramicroscopy, 1986, 20, 21.
[28] M. Peuckert, T. Yoneda, R. D . Betta, M. Boudart, J. Electrochem. Soc., 1986, 133, 944.
[29] L. S. Sarma, C. H. Chen, G. R.Wang, K. L. Hsueh, C. P. Huang, H. S. Sheu, D. G. Liu, J. F. Lee, B. J. Hwang, J. Power Sources, 2007, 167, 358.
[30] E. Antolini, L. Giorgi, F. Cardellini, E. Passalacqua, J. Solid State Electrochem., 2001, 5, 131.
[31] D. R. Rolison, P.L. Hagans, K.E. Swider, J.W. Long, Langmuir, 1999, 15, 774.
[32] D. G. Liu, J. F. Lee, M. T. Tang, J. Mol. Catal. Acta, 2005, 240, 197.
[33] B. J. Hwang, L. S. Sarma, J. M Chen, C. H. Chen, S. C. Shih, G. R. Wang, D. G. Liu, J. F. Lee, M. T. Tang, J. AM. CHEM. SOC., 2005, 31, 11141
[34] X. Li, I. M. Hsing, Electrochim. Acta, 2006, 52, 1358.
[35] Z. Liu, X. Y. Ling, X. Su, J. Y. Lee, J. Phys. Chem. B, 2004, 108, 8234.
[36] W. Vogel, J. Phys. Chem. C, 2008, 112, 13475.
[37] W. Vogel, V. Le Rhun, E. Garnier, N. Alonso-Vante, J. Phys. Chem., B, 2001, 105, 5238.
[38] C. Roth, N. Martz, H. Fuess, Phys. Chem. Chem. Phys., 2001, 3, 315.
[39] S. Y. Huang, C. M. Chang, K. W. Wang, and C. T. Yeh, Chem. Phys. Chem., 2007, 8, 1774.
[40] P. Waszczuk, A. Wieckowski, P. Zelenay, S. Gottesfeld, C. Coutanceau, J. M. Leger, C. J. Lamy, Electroanal. Chem., 2001, 511, 55.
[41] P. Waszczuk, G. U. Lu, A. Wieckowski, C. Lu, C. Rice, M. I. Masel, Electrochim. Acta, 2002, 47, 36.
[42] C. Roth, N. Benker, T. Buhrmester, M. Mazurek, M. Loster, H. Fuess, D. C. Koningsberger, D. E. Ramaker, J. Am. Chem. Soc., 2005, 127, 14607.
[43] C. Lu, C. Rice,; M. I. Masel, P. K. Babu, P. Waszczuk, H. S. Kim, E. Oldfield, A. Wieckowski, J. Phys. Chem. B, 2002, 106, 9581.
[44] E. Antolini, F. Cardellini, L. Giorni, E. Passalacqua, J. Mater. Sci. Lett., 2000, 19, 2099.
[45] E. Antolini, Mater. Chem. Phys., 2003, 78, 563.
[46] G.A. Camara, personal communication, 2001.
[47] E. Antolina, F. Cardellini, J. Alloys Compd., 2001, 315, 118.
[48] E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, C. M. Lukehart, J. Phys. Chem. B, 2001, 105, 8097.
[49] Y. C. Wei, C. W. Liu, K. W. Wang, ChemPhysChem, 2009, 00, 1.
[50] S. Y. Huang, S. M. Chang, C.L. Lin, C. H. Chen, and C. T. Yeh, J. Phys. Chem. B, 2006, 110, 234.
[51] N. Y. Hsu, C. C. Chien, K. T. Jeng, Applied Catalysis B: Environmental, 2008, 84, 196.
[52] V. Radmilovi′c, H. A. Gasteiger, P. N. Ross, J. Catal., 1995, 154, 98.
[53] D. Chu, S. Gilman, J. Electrochem. Soc., 1996, 143, 1686.
[54] H. A. Gasteiger, P. N. Ross, E. J. Cairns, Surf. Sci., 1993, 293, 67.
[55] T. Page, R. Johnson, J. Hormes, S. Noding, B. Rambabu, Electrochim. Acta, 2000, 485, 34.
指導教授 王冠文(Kung-wen Wang) 審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明