博碩士論文 963209006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.234.210.89
姓名 張宏臺(Hung-Tai Chang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 利用原子力顯微鏡結合選擇性化學蝕刻法分析自組裝矽鍺量子點成分分佈之研究
(The Composition Analysis of Self-Assembled Si-Ge Quantum Dots by Combination of Atomic Force Microscopy and Selective Chemical Etching)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 氫離子佈植對矽鍺/矽異質結構應變釋放之研究及矽鍺奈米線之製作★ 利用新穎奈米遮罩製備低維度矽鍺奈米結構及其光電性質之研究
★ 利用奈米球微影術與金輔助化學蝕刻法形成矽鍺奈米柱陣列之研究★ 第三元素對於鎳矽化物形成於矽及矽碳基板之影響
★ 應用於太陽光電之自潔性及低反射率之矽與矽鍺奈米孔洞陣列★ 奈米結構化氧化鋁鋅薄膜之製作與光電性質研究
★ 鉑矽化物於矽碳磊晶層上生成行為及其熱穩定性之探討★ 離子佈植對鎳合金矽化物之影響
★ 以靜電紡絲技術製備二氧化鈦奈米纖維之研究★ 二氧化鈦基表面增強拉曼基板之製作與檢測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在現今的科技中,自我排列之鍺量子點已經引起十分廣泛的興趣,不僅在光電材料與元件有潛在的應用性,更可與現今矽製程相整合。有著適當的晶格差異(4.2%),鍺/矽在奈米等級下的製程和探討顯示出一個典範的系統。
在本論文中,藉由選擇性濕式蝕刻的特性,可得知矽鍺量子點之內部成份分佈,其原因在於矽鍺量子點之發光特性及吸收光譜等的物理特性,與其之形狀、結構、應力狀態、成份分佈、生長條件有著息息相關的關係。
在半導體產業方面,由於加工的需要所以必須經由矽披覆過程才能繼續下一道的製程,再者,對於光電元件方面,矽鍺量子點需要矽披覆過程才能產生量子侷限效應。由此可知,研究矽鍺量子點經由矽披覆後產生之結構以及成份改變,可了解未來產業上之應用。
藉由濕式選擇性蝕刻結合原子力顯微鏡以及穿透式電子顯微鏡、拉曼光譜分析儀,可以徹底了解矽鍺量子點之成份分佈、表面形態、原子排列以及應力狀態。
摘要(英) Recently, self assembled Ge islands have attracted considerable interest for the promising applications in future optoelectronic devices compatible with Si technology. With a moderate lattice mismatch (4.2%), Ge/Si has emerged as a model system for the fabrication and investigation of nanoscale heteroepitaxy.
In this thesis, with the special property of the selective wet chemical etching, the composition distribution of SiGe quantum dot can be investigated. The optical properties of SiGe quantum dot are strongly influenced by their size, shape, composition, strain condition and growth conditions.
For practical applications relying on a quantum confinement, the SiGe islands usually undergo a Si capping process to be embedded in a semiconductor matrix. Moreover, the SiGe islands needs to be embedded by Si capping in order to continue next process in semiconductor industry. In this way, to utilize the change of composition and structure of the SiGe islands capped by Si can understand the application of future industry.
It has been shown that selective wet etching combined with atomic force microscopy (AFM), transmission electron microscopy (TEM) and Raman spectrum can be used to obtained useful information about the isocomposition profiles in the SiGe islands.
關鍵字(中) ★ 矽鍺
★ 自我排列
★ 量子點
★ 超高真空化學氣相沉積
關鍵字(英) ★ Self-assembled
★ UHV/CVD
★ Quantum dot
★ SiGe
★ Island
論文目次 Contents
中文摘要
Abstract
List of Figures-------------------------------------------------------III
Chapter 1 Introduction
1.1 Background and Motivation----------------------------------------------------------1
1.2 Organization----------------------------------------------------------------------------3
Chapter 2 Ge Redistribution of Self-Assembled Ge
Islands on Si (001) During Annealing
2.1 Introduction-----------------------------------------------------------------------------5
2.2 The Principle of Etching -------------------------------------------------------------7
2.3 Selective Wet Chemical Etching---------------------------------------------------9
2.4 Experimental Procedures------------------------------------------------------------11
2.5 Results and Discussion -------------------------------------------------------------12
2.6 Conclusions---------------------------------------------------------------------------26
Chapter 3 Evolution of Composition Distribution of
Si-Capped Ge Islands on Si(001)
3.1 Introduction---------------------------------------------------------------------------27
3.2 Selective Wet Chemical Etching (TMAH)----------------------------------------29
3.3 Experimental Procedures------------------------------------------------------------31
3.3 Results and Discussion--------------------------------------------------------------32
3.4 Conclusions---------------------------------------------------------------------------43
Chapter 4 Evolution of composition distribution in
stacked Ge/Si/Ge quantum dots with a thin Si
spacer
4.1 Introduction---------------------------------------------------------------------------44
4.2 Experimental Procedures------------------------------------------------------------46
4.3 Results and Discussion--------------------------------------------------------------49
4.4 Conclusions---------------------------------------------------------------------------60
Chapter 5 Summary and Future Work
5.1 Summary------------------------------------------------------------------------------61
5.2 Future Work---------------------------------------------------------------------------62
References----------------------------------------------------------------------------------63
Related Publication-------------------------------------------------------------73
參考文獻 References
Chapter 1
[1] K. Eberl, M.O. Lipinski, Y.M. Manz, W. Winter, N.Y. Jin-Phillipp, O.G. Schmidt,
Physica E 9 (2001) 164.
[2] L. Vescan, K. Schmidt, C. Dieker, H.P. Tang, T. Vescan, H. Lüth. Thin Solid Films 222(1992) 5-9.
[3] M. Gromova, A. Mehta, K. Baert, A. Witvrouw. Thin Solid Films 130-131(2006) 403-410.
[4] C. L. Andre, J. J. Boeckl, D. M. Wilt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, S. A. Ringel. Appl. Phys. Lett. 84 (2004) 3447.
[5] K. Eberl, M.O. Lipinski, Y.M. Manz, W. Winter, N.Y. Jin-Phillipp, O.G. Schmidt,
Physica E 9 (2001) 164.
[6] K.L. Wang, J.L. Liu, G. Jin, J. Cryst. Growth 237 (2002) 1892.
[7] S.W. Lee, Y.L. Chueh, L.J. Chen, L.J. Chou, P.S. Chen, M.-J. Tsai, C.W. Liu, J. Appl. Phys. Lett. 98 (2005) 073506.
[8] L. Vescan, T. Stoica, O. Chretien, M. Goryll, E. Mateeva, A. Mück, J. Appl. Phys. Lett. 87 (2000) 7275.
[9] W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, Appl. Phys. Lett. 83 (2003) 2958.
[10] M.L. Lee, R. Venkatasubramanian, Appl. Phys. Lett. 92 (2008) 053112.
[11] S. W. Lee, L. J. Chen, P. S. Chen, M.-J. Tsai, C. W. Liu, T. Y. Chien and C. T. Chia. Appl. Phys. Lett. 83 (2003) 5283.
[12] G. Katsaros, A. Rastelli, M. Stoffel, G. Costantini, O. G. Schmidt, K. Kern, J. Tersoff, E. Müller and H. von Känel. Appl. Phys. Lett. 89 (2006) 253105.
[13] O. G. Schmidt, U. Denker, S. Christiansen, and F. Ernst, Appl. Phys. Lett. 81(2002), 2614.
[14] J. Stangl, A. Hesse, V. Holý, Z. Zhong, G. Bauer, U. Denker, and O. G. Schmidt, Appl. Phys. Lett. 82 (2003), 2251.
Chapter 2
[1] K. Eberl, M.O. Lipinski, Y.M. Manz, W. Winter, N.Y. Jin-Phillipp, O.G. Schmidt,
Physica E 9 (2001) 164.
[2] K.L. Wang, J.L. Liu, G. Jin, J. Cryst. Growth 237 (2002) 1892.
[3] S.W. Lee, Y.L. Chueh, L.J. Chen, L.J. Chou, P.S. Chen, M.-J. Tsai, C.W. Liu, J. Appl. Phys. Lett. 98 (2005) 073506.
[4] H.C. Chen, S.W. Lee, L.J. Chen, Adv. Mater. 19 (2007) 222.
[5] J.T. Robinson, A. Rastelli, O. Schmidt, O.D. Dubon, Nanotechnology 20 (2009) 085708.
[6] R. A. Soref, Proc. IEEE 81 (1993), 1687.
[7] P. M. Mooney and J. O. Chu, Annu. Rev. Mater. Sci. 30 (2000), 335.
[8] M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, J. Appl. Phys. Lett. 97 (2005), 011101.
[9] L. Vescan, T. Stoica, O. Chretien, M. Goryll, E. Mateeva, A. Mück, J. Appl. Phys. Lett. 87 (2000) 7275.
[10] W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, Appl. Phys. Lett. 83 (2003) 2958.
[11] M.L. Lee, R. Venkatasubramanian, Appl. Phys. Lett. 92 (2008) 053112.
[12] G. Medeiros-Ribeiro, A.M. Brathovski, T.I. Kamins, D.A.A. Ohlberg, R.S. Williams, Science 279 (1998) 353.
[13] A. Rastelli, M. Kummer, H. von Känel, Phys. Rev. Lett. 87 (2001) 256101-1.
[14] G. Medeiros-Ribeiro, R.S. Williams, Nano Lett. 7 (2007) 223.
[15] Y.Q. Wu, J. Zou, F.H. Li, J. Cui, J.H. Lin, R.Wu, Z.M. Jiang, Nanotechnology 18 (2007) 025404.
[16] S.W. Lee, L.J. Chen, P.S. Chen, M.-J. Tsai, C.W. Liu, T.Y. Chien, C.T. Chia, Appl. Phys. Lett. 83 (2003) 5283.
[17] T.U. Schülli, J. Stangl, Z. Zhong, R.T. Lechner, M. Sztucki, T.H. Metzger, G. Bauer, Phys. Rev. Lett. 90 (2003) 066105.
[18] A. V. Kolobov, H. Oyanagi, S. Wei, K. Brunner, G. Abstreiter, K. Tanaka, Phys. Rev. B 66 (2002) 075319.
[19] G. Katsaros, A. Rastelli, M. Stoffel, G. Isella, H. von Känel, A.M. Bittner, J. Tersoff, U. Denker, O.G. Schmidt, G. Costantini, K. Kern, Surf. Sci. 600 (2006) 2608.
[20] G. Katsaros, G. Costantini, M. Stoffel, R. Esteban, A.M. Bittner, A. Rastelli, U. Denker, O.G. Schmidt, K. Kern, Phys. Rev. B 72 (2005) 195320.
[21] F.H. Li, Y.L. Fan, X.J. Yang, Z.M. Jiang, Y.Q. Wu, J. Zou, Appl. Phys. Lett. 89 (2006)103108.
[22] S.W. Lee, C.-H. Lee, H.T. Chang, S.L. Cheng, C.W. Liu, Thin Solid Films (2009, in press).
[23] U. Denker, A. Rastelli, M. Stoffel, J. Tersoff, G. Katsaros, G. Costantini, L. Kern, N.Y. Jin-Phillipp, D.E. Jesson, O.G. Schmidt, Phys. Rev. Lett. 94 (2005) 216103.
[24] G. Capellini, M.D. Seta, F. Evangelisti, C. Spinella, Mater. Sci. Eng. B 101 (2003) 106.
Chapter 3
[1] W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, Appl. Phys. Lett. 83 (2003) 2958.
[2] A. Bernardi, J.O. Ossó, M.I. Alonso, A.R. Goñi, M. Garriga, Nanotechnology 17 (2006) 2602.
[3] H.C. Chen, S.W. Lee, L.J. Chen, Adv. Mater. 19 (2007) 222.
[4] G. Medeiros-Ribeiro, R. Stanely Williams, Nano Lett. 7 (2007) 223.
[5] F.M. Ross, J.Tersoff, R.M. Tromp, Phys. Rev. Lett. 80 (1998) 984.
[6] G. Medeiros-Ribeiro, A.M. Brathovski, T.I. Kamins, D.A.A. Ohlberg, R.S. Williams, Science 279 (1998) 353.
[7] L. Vescan, T. Stoica, O. Chretien, M. Goryll, E. Mateeva, A. Mück, Appl. Phys. Lett. 87 (2000) 7275.
[8] T.I. Kaimins, G. Mederiros-Ribeiros, D.A.A. Ohlberg, R. Stanely Williams, J. Appl. Phys. Lett. 85 (1999) 1159.
[9] S. W. Lee, L. J. Chen, P. S. Chen, M.-J. Tsai, C. W. Liu, T. Y. Chien, C. T. Chia, Appl. Phys. Lett. 83 (2003) 5283.
[10] U. Denker, M. Stoffel, O.G. Schmidt, Phys. Rev. Lett. 90 (2003) 196102.
[11] G. Katsaros, G. Costantini, M. Stoffel, R. Esteban, A.M. Bittner, A. Rastelli, U. Denker, O.G. Schmidt, K. Kern, Phys. Rev. B 72 (2005) 195320.
[12] G. Katsaros, A. Rastelli, M. Stoffel, G. Isella, H. von Känel, A.M. Bittner, J. Tersoff, U. Denker, O.G. Schmidt, G. Costantini, K. Kern, Surf. Sci. 600 (2006) 2608.
[13] T.S. Drake, C.N. Chleirigh, M.L. Lee, A.J. Pitera, E.A. Fitzgerald, D.A. Antoniadis, D.H. Anjum, J. Li, R. Hull, N. Klymko, J.L. Hoyt, J. Elec. Mater. 32 (2003) 972.
[14] A. Rastelli, M. Kummer, H. von Känel, Phys. Rev. Lett. 87 (2001) 256101.
[15] U. Denker, A. Rastelli, M. Stoffel, J. Tersoff, G. Katsaros, G. Costantini, L. Kern, N.Y. Jin-Phillipp, D.E. Jesson, O.G. Schmidt, Phys. Rev. Lett. 94 (2005) 216103.
[16] F.H. Li, Y.L. Fan, X.J. Yang, Z.M. Jiang, Y.Q. Wu, J. Zou, Appl. Phys. Lett. 89 (2006) 103108.
[17] A.V. Kolobov, K. Morita, K.M. Itoh, E.E. Haller, Appl. Phys. Lett. 81 (2002) 3855.
Chapter 4
[1] L. Vescan, T. Stoica, O. Chretien, M. Goryll, E. Mateeva, A. Mück, J. Appl. Phys. Lett. 87 (2000) 7275.
[2] W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, Appl. Phys. Lett. 83 (2003) 2958.
[3] M.L. Lee, R. Venkatasubramanian, Appl. Phys. Lett. 92 (2008) 053112.
[4] O. G. Schmidt, O. Kienzle, Y. Hao, K. Eberl, and F. Ernst, Appl. Phys. Lett. 74 (1999) 1272.
[5]T. Sidiki, S. H. Christiansen, S. Chabert, W. B. de Boer, C. Ferrari, H. P. Strunk and C. M. Sotomayor Torres. Thin Solid Films.369 (2000) 431-435.
[6] F. M. Ross, J. Tersoff, and R. M. Tromp, Phys. Rev. Lett. 80 (1998) 984.
[7] U. Denker, M. Stoffel, O.G. Schmidt, Phys. Rev. Lett. 90 (2003) 196102.
[8] G. Katsaros, G. Costantini, M. Stoffel, R. Esteban, A.M. Bittner, A. Rastelli, U. Denker, O.G. Schmidt, K. Kern, Phys. Rev. B 72 (2005) 195320.
[9] F.H. Li, Y.L. Fan, X.J. Yang, Z.M. Jiang, Y.Q. Wu, J. Zou, Appl. Phys. Lett. 89 (2006) 103108.
[10] S.W. Lee, C.-H. Lee, H.T. Chang, S.L. Cheng, C.W. Liu, Thin Solid Films (2009, in press).
[11] J. Tersoff, C. Teichert, and M. G. Lagally, Phys. Rev. Lett. 76 (1996) 1675.
[12] G. Katsaros, A. Rastelli, M. Stoffel, G. Isella, H. von Känel, A.M. Bittner, J. Tersoff, U. Denker, O.G. Schmidt, G. Costantini, K. Kern, Surf. Sci. 600 (2006) 2608.
[13] T.S. Drake, C.N. Chleirigh, M.L. Lee, A.J. Pitera, E.A. Fitzgerald, D.A. Antoniadis, D.H. Anjum, J. Li, R. Hull, N. Klymko, J.L. Hoyt, J. Elec. Mater. 32 (2003) 972.
[14] S. W. Lee, L. J. Chen, P. S. Chen, M.-J. Tsai, C. W. Liu, T. Y. Chien and C. T. Chia. Appl. Phys. Lett. 83 (2003) 5283.
[15] Z. M. Jiang, X. M. Jiang, W. R. Jiang, Q. J. Jia, W. L. Zheng, and D. C. Qian. Appl. Phys. Lett. 76 (2000) 3397.
[16] E. Carlino, L. Tapfer, and H. v. Känel, Appl. Phys. Lett. 69(1996) 2546.
[17] P. S. Chen, S. W. Lee, Y. H. Peng, C. W. Liu and M.-J. Tsai. phys. stat. sol. (b) 241 (2004), No. 15, 3650–3655
[18] A.V. Kolobov, K. Morita, K.M. Itoh, E.E. Haller, Appl. Phys. Lett. 81 (2002) 3855.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2009-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明