博碩士論文 963209009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:3.139.72.148
姓名 陳苡諺(Yi-Yan Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 ZnO:Al透明導電薄膜之特性分析與新穎表面粗糙化結構製備
(The Properties of ZnO:Al Transparent Conducting Thin Films and Fabriction of Novel Surface Texturing Structures)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究藉由射頻磁控濺鍍系統進行ZnO:Al透明導電薄膜沉積,分別針對平整ZnO:Al薄膜經真空熱處理前後之結構、表面形貌、顯微組織與光、電特性等方面進行探討,研究中並成功結合奈米球微影技術,使ZnO:Al透明導電薄膜的表面具有碗形-蜂巢狀規則有序之奈米粗糙化結構。
在平整ZnO:Al透明導電薄膜方面,由X光繞射與TEM選區電子繞射可以得知初鍍膜與經真空退火熱處理後的ZnO:Al薄膜為多晶六方晶系結構。TEM橫截面影像更可發現ZnO:Al透明導電薄膜為柱狀晶結構,擇優成長方向為[002]。在X光繞射圖中,經過300-500 ℃真空退火後之ZnO:Al透明導電薄膜,其(002)繞射峰所對應的角度位置,會明顯往高角度偏移。而由ZnO:Al透明導薄膜化學定量元素分析結果顯示,其在薄膜中各化學元素分布相當均勻,且ZnO:Al薄膜經退火前後Zn:O比例皆約1:1。
ZnO:Al透明導電薄膜的電阻率隨退火溫度的提高,會有下降的趨勢。在紫外光-可見光光譜(UV-VIS)中,可觀察到退火後ZnO:Al透明導電薄膜之零度角平均光穿透率與光學能隙會高於初鍍膜ZnO:Al薄膜,且光學能隙會有藍位移的現象。在本研究中,濺鍍功率90 W所沉積之ZnO:Al透明導電薄膜經400 ℃真空退火1小時後擁有最佳的光、電特性,其零度角平均光穿透率與電阻率分別為2.9×10-3 Ω-cm與85.7% (400 nm-800 nm波長範圍)。
表面具有碗形-蜂巢狀規則有序奈米結構之ZnO:Al透明導電薄膜於400 ℃真空退火1小時後,發現其光散射性較平整薄膜可大幅提高。而此種表面具有規則有序奈米結構之ZnO:Al透明導電薄膜,在400 nm-1600 nm波長之光穿透率皆可>80%。此外,在電阻率及FTC (Figure of merit)值之表現上,具有奈米結構的ZnO:Al透明導電薄膜仍保有與平整薄膜相近的結果。
摘要(英) In this study, ZnO:Al transparent conducting oxide thin films were deposited on glass by RF magnetron sputtering system. The structural, surface morphology, mircostructure, optical and electrical properties of flat ZnO:Al thin films before and after annealing have been investigated. In addition, the ZnO:Al films with periodic nonclose-packed, bowl-like nanostructures were successfully fabricated by using the nanosphere lithography (NSL) combined with the sputtering technique.
From XRD and SAED analyses, the as-deposited and post-annealed ZnO:Al thin films were poly-crystalline and exhibited hexagonal structure. According to the cross-sectional TEM examinations, it is clearly revealed that the ZnO:Al thin films exhibit preferred orientation of [002] with columnar structures. In the XRD spetra, peak positions of ZnO:Al (002) plane were found to shift slightly toward higher angles after post-annealing at 300-500 ℃. The EDS line-scan profiles clearly demonstrated that the distributions of Zn, O and Al before and after annealing were uniform throughout the ZnO:Al films. Furthermore, the atomic concentrations of Zn and O in the as-deposited sample were found to be the same as that in the 400 ℃ annealed samples.
The resistivity of ZnO:Al thin films was found to decrease with increasing annealing temperatures. Based on UV-VIS spectra, both the average transmittance and band-gap energies of annealed ZnO:Al thin films were found to be larger than those of as-deposited samples. The ZnO:Al thin films deposited at 90 W and annealed at 400 ℃ in vacuum for 1 h have the optimal electrical and optical properties. Its resisitivity and transmittance were measured to be about 2.9×10-3 Ω-cm and 85.7% (400 nm-800 nm wavelength), respectively.
The light scattering for the 400 ℃ vacuum annealed ZnO:Al thin films with periodic bowl-like nanostructured textures was significantly enhanced. The transmittance of the ZnO:Al thin films with periodic nanostructured textures were > 80% in the ranges of 400-1600 nm. In addition, the resistivity of ZnO:Al thin films with periodic nanostructured textures were similar to that of flat ZnO:Al thin films.
關鍵字(中) ★ 光學能隙
★ 摻雜
★ 磁控濺鍍
★ ZnO:Al
★ 表面粗糙化
關鍵字(英) ★ ZnO:Al
★ Magnetron Sputtering
★ Doping
★ Bandgap Energy
★ Surface Texturing
論文目次 目錄 I
第一章 簡介與文獻回顧 1
1-1 前言 1
1-2 太陽能電池 2
1-3 矽晶太陽能電池 2
1-3-1 非晶矽與微晶矽太陽能電池 3
1-3-2 堆疊型太陽能電池結構 4
1-4 透明導電氧化物(Transparent Conducting Oxide Film, TCO)薄膜 4
1-4-1 透明導電薄膜材料 5
1-4-2 透明氧化物導電薄膜導電機制 6
1-4-3 氧化銦透明電極 7
1-4-4 氧化錫透明電極 8
1-4-5 氧化鋅透明電極 9
1-5 透明導電氧化物薄膜中之Burstein-Moss效應 10
1-6 ZnO:Al薄膜表面粗糙化製程 12
1-7 ZnO:Al透明導電薄膜的製備 14
1-8 濺鍍條件對ZnO:Al薄膜性質的影響 15
1-8-1 基板溫度 15
1-8-2 靶材成分(摻雜濃度)與濺鍍功率 16
1-8-3 鍍膜壓力與鍍膜氣氛 16
1-8-4 靶材位置 17
1-9 研究動機與實驗目的 18
第二章 實驗步驟 20
2-1 實驗步驟 20
2-1-1 ZnO:Al透明導電薄膜薄膜特性分析 20
2-1-2 ZnO:Al透明導電薄膜表面粗糙化製程 20
2-2 實驗材料與前處理 21
2-3 實驗設備 21
2-3-1 濺鍍系統(Sputtering System) 21
2-3-2 真空退火系統(Vacuum Annealing System) 22
2-3-3 高密度電漿蝕刻機(HDP) 22
2-4 實驗分析設備 22
2-4-1 四點探針 22
2-4-2 紫外光-可見光光譜儀 23
2-4-3 XRD繞射分析 24
2-4-4 掃描式電子顯微鏡(SEM) 24
2-4-5 穿透式電子顯微鏡(TEM) 24
2-4-6 高分辨穿透式電子顯微鏡(HRTEM)與能量散佈光譜儀(EDS) 25
第三章 結果與討論 26
3-1 ZnO:Al透明導電薄膜之製備 26
3-1-1 濺鍍法製備ZnO:Al透明導電薄膜 26
3-1-2 ZnO:Al透明導電薄膜之真空熱退火處理 27
3-2 ZnO:Al透明導電薄膜顯微結構 30
3-3 退火對於ZnO:Al透明導電薄膜之結構與光、電特性的影響 32
3-4 ZnO:Al (002)平面之X光繞射角度偏移機制 35
3-5 ZnO:Al透明導電薄膜表面規則奈米結構粗糙化製程與分析 37
3-5-1 ZnO:Al透明導電薄膜表面規則排列奈米球陣列 38
3-5-2 兩階段ZnO:Al透明導電薄膜沉積 39
3-5-3 碗形-蜂巢狀ZnO:Al規則奈米結構之光、電特性 41
第四章 結論與未來展望 44
4-1 結論 44
4-2 未來展望 45
4-2-1 太陽能電池前電極 45
4-2-2 太陽能電池背電極(反射電極層) 46
參考文獻 47
表目錄 55
圖目錄 60
參考文獻 [1] H. Tsubomura and H. Kobayashi, “Solar Cells,” Crit. Rev. Solid State Mater. Sci. 18 (1993) 261-326.
[2] C. G. Granqvist, “Radiative Heating and Cooling with Spectrally Selective Surfaces,” Appl. Opt. 20 (1981) 2606-2615.
[3] B. Lim, S. Hermann, K. Bothe, J. Schmidt, and R. Brendel, “Solar Cells on Low-Resistivity Boron-Doped Czochralski-Grown Silicon with Stabilized Efficiencies of 20%,” Appl. Phys. Letter. 93 (2008) 162102~3.
[4] U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, “Comparative Study of Different Approaches of Multicrystalline Silicon Texturing for Solar Cell Fabrication,” Solar Energy Materials and Solar cells 91 (2007) 285-289.
[5] A. Gordijn, J. K. Rath, and R. E. I. Schropp, “High-Efficiency μc-Si Solar Cells Made by Very High-Frequency Plasma-Enhanced Chemical Vapor Deposition,” Prog. Photovoltaics Res. Appl. 14 (2006) 305-311.
[6] J. Woerdenweber, T. Merdzhanova, R. Schmitz, A. Mück, U. Zastrow, L. Niessen, A. Gordijn, R. Carius, W. Beyer, H. Stiebig, and U. Rau, “Influence of Base Pressure and Atmospheric Contaminants on a-Si:H Solar Cell Propertied,” J. Appl. Phys. 104 (2008) 094507-1~6.
[7] R. Hull, R. M. Osgood, J. Parisi, and H. Warlimint, “Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cell,” Chapter 1、2、8, 2007, Springer.
[8] H. Keppner, J. Meier, P. Torres, D. Fischer, and A. Shah, “Microcrystalline Silicon and Micromorph Tandem Solar Cells,” Appl. Phys. A 69 (1999) 169-177.
[9] D. Domine, P. Buehlmann, J. Bailat, A. Billet, A. Feltrin, and C. Ballif, “Optical Management in High-Efficiency Thin-Film Silicon Micromorph Solar Cells with a Silicon Oxide Based Intermediate Reflector,” Phys. Stat. Sol. (PRL) 2, (2008) 163-165.
[10] H. Fujiwara and M. Kondo, “Effects of a-Si:H Layer Thickness on the Performance of a-Si:H/c-Si Heterojunction Solar Cells,” J. Appl. Phys. 101 (2007) 054516-1~9.
[11] J. Krc, K. Brecl, F. Smole, and M. Topic, “The Effects of Enhanced Light Trapping in Tandem Micromorph Silicon Solar Cells,” Sol. Energy Mater. Sol. Cell. 90 (2006) 3393-3344.
[12] P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving Thin-Film Crystalline Silicon Solar Cell Efficiencies with Photonic Crystals,” Optics. Express 15 (2007) 16986-17000.
[13] K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi, M. Kondo, T. Sasaki, and Y. Tawada, “A High Efficiency Thin Film Silicon Solar Cell and Module,” Sol. Energy 77 (2004) 939-949.
[14] W. Beyer, J. Hüpkes, and H. Sriebig, “Transparent Conducting Oxide Films for Thin Film Silicon Photovoltaics,” Thin Solid Films 516 (2007) 147-154.
[15] K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, “Texturing of Large Area Multi-Crystalline Silicon Wafers Through Different Chemical Approaches for Solar Cell Fabrication,” Sol. Energy Mater. Sol. Cells. 92 (2008) 960-968.
[16] J. A. A. Selvan, A. E. Delahoy, S. Guo, and Y. M. Li, “A New Light Trapping TCO for nc-Si:H Solar Cells,” Sol. Energy Mater. Sol. Cells. 90 (2006) 3371-3376.
[17] M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, and B. Rech, “The Effect of Front ZnO:Al Surface Texture and Optical Transparency on Efficient Light Trapping in Silicon Thin-Film Solar Cells,” J. Appl. Phys. 101 (2007) 074903-1~11
[18] A. J. Moulson and J. M. Herbert, “Electroceramics: Materials, Properties, Applications. 2nd Edition,” Chapter 2, 2003, John Wiley and Sons.
[19] A. Kono, Z. Feng, N. Nouchi, and F. Shoji, “Fabrication of Low Resistivity Tin-Indium Oxide Films with High Electron Carrier Densities by a Plasma Sputtering Method,” Vacuum 83 (2009) 548-551.
[20] T. Sathiaraj, “Effect of Annealing on the Structural, Optical and Electrical Properties of ITO Films by RF Sputtering under Low Vacuum Level,” Microelectron. J. 39 (2008) 1444-1451.
[21] Y. C. Lin, W. Q. Shi, and Z. Z. Chen, “Effect of Deflection on the Mechanical and Optoelectronic Properties of Indium Tin Oxide Films Deposited on Polyethylene Terephthalate Substrates by Pulse Magnetron Sputtering,” Thin Solid Films 517 (2009) 1701-1705.
[22] D. K. Maurya, “Effects of Post-Thermal Treatment on the Properties of rf Reactive Sputtered ITO Films,” Microelectron. J. 38 (2007) 76-79.
[23] C. H. Yang, S. C. Lee, T. C. Lin, and W. Y. Zhuang, “Effect of Tin Doping on the Properties of Indium-Tin-Oxide Films Deposited by Radio Frequency Magnetron Sputtering,” Mater. Sci. Eng., B 138 (2007) 271-276.
[24] H. N. Cui, V. Teixeira, L. J. Meng, R. Martins, and E. Fortunato, “Influence of Oxygen/Argon Pressure Ratio on the Morphology, Optical and Electrical Properties of ITO Thin Films Deposited at Room Temperature,” Vacuum 82 (2008) 1507-1511.
[25] S. U. Lee, W. S. Choi, and B. Hong, “Synthesis and Characterization of SnO2:Sb Film by dc Magnetron Sputtering Method for Applications to Transparent Electrodes,” Phys. Scr. T129 (2007) 312-315.
[26] J. Lee, “Effects of Oxygen Concentration on the Properties of Sputtered SnO2:Sb Films Deposited at Low Temperature,” Thin Solid Films 516 (2008) 1386-1390.
[27] J. Ma, X. Hao, S. Huang, J. Huang, Y. Yang, and H. Ma, “Comparison of the Electrical and Optical Properties for SnO2:Sb Films Deposited on Polyimide and Glass Substrates,” Appl. Surf. Sci. 214 (2003) 208-213.
[28] K. K. Purushothman, M. Dhanashankar, and G. Muralidharan, “Preparation and Characterization of F doped SnO2 Films and Electrochromic Properties of FTO/NiO Films,” Curr. Appl Phys. 9 (2006) 67-72.
[29] H. Kim, G. P. Kushto, R. C. Y. Auyeung, and A. Piqué, “Optimization of F-Doping SnO2 Electrodes for Organic Photovoltaic Devices,” Appl. Phys. A 93 (2008) 521-526.
[30] S. J. Ikhmayies and R. N. Ahmad-Bitar, “The Effects of the Post-Treatments on the Photovoltaic Properties of Spray-Deposited SnO2:F Thin Films,” Appl. Surf. Sci. 255 (2008) 2627-2631.
[31] C. Jagadish and S. J. Pearton, “Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications,” Chapter 1, 2006, Elsevier.
[32] K. I. Hagemark and P. E. Toren, “Determination of Excess Zn in ZnO the Phase Boundary Zn-Zn1+XO,” J. Electrochem. Soc. 122 (1975) 992-994.
[33] Y. K. Moon, S. H. Kim, and J. W. Park, “The Influence of Substrate Temperature on the Properties of Aluminum-Doped Zinc Oxide Thin Films Deposited by DC Magnetron Sputtering,” J. Mater. Sci.: Mater. Electron 17 (2006) 973-977.
[34] Q. B. Ma, Z. Z. Ye, H. P. He, S. H. Hu, J. R. Wang, L. P. Zhu, Y. Z. Zhang, and B. H. Zhao, “Structural, Electrical, and Optical Properties of Transparent Conductive ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering,” J. Cryst. Growth 304 (2007) 64-68.
[35] L. Dunlop, A. Kursumovic, and J. L. MacManus-Driscoll, “Reproducible Growth of p-Type ZnO:N Using a Modified Atomic Layer Deposition Process Combined with Dark Annealing,” Appl. Phys. Lett. 93 (2008) 172111-1~3.
[36] H. S. Kim, S. J. Pearton, D. P. Norton, and F. Ren, “Behavior of Rapid Thermal Annealed ZnO:P Films Grown by Pulsed Laser Deposition,” J. Appl. Phys. 102 (2007) 104904-1~8.
[37] O. Lopatiuk-Tirpak, L. Chernyak, F. X. Xiu, J. L. Liu, S. Jang, F. Ren, S. J. Pearton, K. Gartsman, Y. Feldman, A. Osinsky, and P. Chow, “Studies of Minority Carrier Diffusion Length Increase in p-Type ZnO:Sb,” J. Appl. Phys. 100 (2006) 086101-1~3.
[38] C. Agashe, O. Kluth, G. Schöpe, H. Siekmann, J. Hüpkes, and B. Rech, “Optimization of the Electrical Properties of Magnetron Sputtered Aluminun-Doped Zinc Oxide Films for Opto-Electronic Applications,” Thin Solid Films 442 (2003) 167-172.
[39] J. Yoo, J. Lee, S. Kim, K. Yoon, I. J. Park, S. K. Dhungel, B. Karunagaran, D. Mangalaraj, and J. Yi, “High Transmittance and Low Resistive ZnO:Al Films for Thin Film Solar Cells,” Thin Solid Films 480-481 (2005) 213-217.
[40] S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of Hydrogen Plasma Treatment on Transparent Conducting Oxides,” Appl. Phys. Lett. 49 (1986) 394-396.
[41] O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture Etched ZnO:Al Coated Glass Substrates for Silicon Based Thin Film Solar Cells,” Thin Solid Films 351 (1999) 247-253.
[42] E. Burstein, “Anomalous Optical Absorption Limit in InSb,” Phys. Rev. 93 (1954) 632-633.
[43] T. S. Moss, “The Interpretation of the Properties of Indium Antimonide,” Proc. Phys. Soc. London, Sect. B 67 (1954) 775-782.
[44] I. Hamberg, C. G. Granqvist, K.-F Berggren, B. E. Sernelius, and L. Engström “Band-Gap Widening in Heavily Sn-Doping In2O3,” Phys. Rev. B 30 (1984) 3240-3249.
[45] L. A. Dobrzanski, A. Drygala, K. Golombek, P . Panek, E. Bielanska, and P. Zieba, “Laser Surface Treatment of Muticrystalline Silicon for Enhancing Optical Properties,” J. Mater. Process. Technol. 201 (2008) 291-296.
[46] O. Schultz, S. W. Glunz, and G. P. Willeke, “Muticrystalline Silicon Solar Cells Exceeding 20% Efficiency,” Prog. Photovoltaics Res. Appl. 12 (2004) 533-558.
[47] M. Edwards, S. Bowden, U. Das, and M. Burrows, “Effect of Texturing and Surface Preparation on Lifetime and Cell Performance in Heterojunction Silicon Solar Cells,” Sol. Energy Mater. Sol. Cells. 92 (2008) 1373-1377.
[48] K. Kobayashi, Y. Kondo, Y. Tomita, Y. Maeda, and S. Matsushima, “Low Wet Etching Rates of ZnO Films Prepared by Sputtering of Mixed ZnO and AlN Powder Targets,” Thin Solid Films 516 (2008) 4894-4898.
[49] J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and Light Trapping in Silicon Thin Film Solar Cells,” Sol. Energy 77 (2004) 917-930.
[50] K. Ip, M. E. Overberg, K. W. Baik, R. G. Wilson, S. O. Kucheyev, J. S. Williams, C. Jagadish, F. Ren, Y. W. Heo, D. P. Norton, J. M. Zavada, and S. J. Pearton, “ICP Dry Etching of ZnO and Effects of Hydrogen,” Solid State Electron. 47 (2003) 2289-2294.
[51] C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic Light Coupler Gratings in Amorphous Thin Film Solar Cells,” J. Appl. Phys. 89 (2001) 7722-7726.
[52] N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-Film Solar Cells with Periodic Grating Coupler,” Thin Solid Films 451-452 (2004) 397-401.
[53] A. J. Haes, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Self-Assembled Photonic and Magnetic Materials,” Mat. Res. Soc. Symp. 636 (2001) D4.8.1-6.
[54] M. Ratner and D. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big Idea,” Chapter 4, 2003, Prentice Hall.
[55] E. Miyauchi, H. Arimoto, and H. Kitada, “Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes,” Nucl. Instrum. Methods B 39 (1989) 515-520.
[56] M. Zharnikov, A. Shaporenko, A. Paul, A. Go1lzha1user, and A. Scholl, “X-ray Absorption Spectromicroscopy Studies for the Development of Lithography with a Monomolecular Resist,” J. Phys. Chem. B 109 (1999) 5168-5174.
[57] L. Chen, J. Huang, Z. Ye, H. He, Y. Zeng, S. Wang, and H. Wu, “Controllable Synthesis of Ordered ZnO Nanodots Arrays by Nanosphere Lithography,” Cryst. Growth Des. 8 (2008) 2917-2920.
[58] Z. Liu, Z. Jin, W. Li, and J. Qiu, “Assembly of Ordered ZnO Porous Thin Films by Cooperative Assembly Method Using Polystyrene Spheres and Ultrafine ZnO Particles,” Mater. Res. Bull. 41 (2006) 119-127.
[59] Y. Wang, J. Zhang, X. Chen, X. Li, Z. Sun, K. Zhang, D. Wang, and B. Yang, “Morphology-Controlled Fabrication of Polygonal ZnO Nanobowls Templated from Spherical Polymeric Nanowell Arrays,” J. Colloid Interface Sci. 322 (2008) 327-332.
[60] S. M. Rozati and S. Akesteh, “Characterization of ZnO:Al Thin Films Obtained by Spray Pyrolysis Technique,” Mater. Charact. 58 (2007) 319-322.
[61] D. R. Sheu, S. Y. Lin, and J. L. Huang, “Investigation of Conductive and Transparent Al-Doped ZnO/Ag/Al-Doped ZnO Mutilayer Coatings by Electron Beam Evaporation,” Thin Solid Films 516 (2008) 4728-4732.
[62] D. R. Sheu, S. Y. Lin, and J. L. Huang, “Improved Properties of Al-Doped ZnO Film by Electron Beam Evaporation Technique,” Microelectron. J. 38 (2007) 245-250.
[63] T. Ohshima, R. K. Thareja, T. Ikegami, and K. Ebihara, “Preparation of ZnO Thin Films on Various Substrates by Pulsed Laser Deposition,” Surf. Coat. Technol. 169-170 (2003) 517-520.
[64] M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, “Optical and Structural Investigation of ZnO Thin Films Prepared by Chemical Vapor Deposition (CVD) ,” Thin Solid Films 403-404 (2002) 485-488.
[65] K. E. Lee, M. Wang, E. J. Kim, and S. H. Hahn, “Structural, Electrical and Optical Properties of Sol-Gel AZO Thin Films,” Curr. Appl. Phys. 9 (2009) 683-687.
[66] M. J. Keum, B. J. Cho, H. W. Choi, S. J. Park, and K. H. Kim, “Preparation of Al Doped ZnO Thin Films as a Function of Substrate Temperature by a Facing Target Sputtering System,” J. Ceram. Process. Res. 8 (2007) 56-58.
[67] X. Chen, W. Guan, G. Fang, and X. Z. Zhao, “Influence of Substrate Temperature and Post-Treatment on the Properties of ZnO:Al Thin Films Prepared by Plused Laser Deposition,” Appl. Surf. Sci. 252 (2005) 1561-1567.
[68] B. Y. Oh, M. C. Jeong, W. Lee, and J. M. Myoung, “Properties of Transparent Conductive ZnO:Al Films Prepared by co-Sputtering,” J. Cryst. Growth 274 (2005) 453-457.
[69] J. Lee, D. Lee, D. Lim, and K. Yang, “Structural, Electrical and Optical Properties of ZnO:Al Films Deposited on Flexible Organic Substrates for Solar Cell Applications,” Thin Solid Films 515 (2007) 6094-6098.
[70] W. J. Jeong, S. K. Kim, and G. C. Park, “Preparation and Characteristic of ZnO Thin Film with High and Low Resistivity for an Application of Solar Cell,” Thin Solid Films 506-507 (2006) 180-183.
[71] D. Song, A. G. Aberle, and J. Xia, “Optimization of ZnO:Al Films by Change of Sputter Gas Pressure for Solar Cell Application,” Appl. Surf. Sci. 195 (2002) 291-196.
[72] O. Kluth, G. Schöpe, B. Rech, R. Menner, M. Oertel, K. Orgassa, and H. W. Schock, “Comparative Material Study on RF and DC Magnetron Sputtered ZnO:Al Films,” Thin Solid Films 502 (2006) 311-316.
[73] F. Couzinié-Devy, N. Barreau, and J. Kessler, “Dependence of ZnO:Al Properties on the Substrate to Target Position in RF Sputtering,” Thin Solid Films 516 (2008) 7094-7079.
[74] V. Srikant and D. R. Clarke, “Optical Absorption Edge of ZnO Thin Films: The Effect of Substrate,” J. Appl. Phys. 81 (1997) 6357-6364.
[75] X. Chen, W. Guan, G. Fang, and X. Z. Zhao, “Influence of Substrate Temperature and Post-Treatment on the Properties of ZnO:Al Thin Films Prepared by Pulsed Laser Deposition,” Appl. Surf. Sci. 252 (2005) 1561-1567.
[76] S. S. Lin, J. L. Huang, and P. Šajgalik, “The Properties of Heavily Al-Doped ZnO Films before and after Annealing in the Different Atmosphere,” Surf. Coat. Technol. 185 (2004) 254-263.
[77] S. Y. Kuo, W. C. Chen, F. I. Lai, C. P. Cheng, H. C. Kuo, S. C. Wang, and W. F. Hsieh, “Effects of Doping Concentration and Annealing Temperature on Properties of Highly-Oriented Al-Doped ZnO Films,” J. Cryst. Growth 287 (2006) 78-84.
[78] B. D. Cullity and S. R. Stock, “Elements of X-Ray Diffraction, 3nd Edition,” Chapter 5, 2001, Pearson Eduction International.
[79] C. Guillén and J. Herrero, “Structure, Optical, and Electrical Properties of Indium Tin Oxide Thin Films Prepared by Sputtering at Room Temperature and Annealed in Air or Nitrogen,” J. Appl. Phys. 101 (2007) 073514-1~7.
[80] Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, “Effects of Heat Treatment on Properties of ITO Films Prepared by rf Magnetron Sputtering,” Vacuum 75 (2004) 183-188.
[81] D. Mergel, W. Stass, and G. Ehl, D. Barthel, “Oxygen Incorporation in Thin Films of In2O3:Sn Prepared by Radio Frequency Sputtering,” J. Appl. Phys. 88 (2000) 2437-2442.
[82] K. C. Park, D. Y. Ma, and K. H. Kim, “The Physical Properties of Al-Doped Zinc Oxide Films Prepared by RF Magnetron Sputtering,” Thin Solid Films 305 (1997) 201-209.
[83] V. Gupta and A. Mansingh, “Influence of Postdeposition Annealing on the Structural and Opitcal Properties of Sputtered Zinc Oxide Film,” J. Appl. Phys. 80 (1996) 1063-1073.
[84] J. Zhao, A. Wang, P. Campbell, and M. A. Green, “A 19.8% Efficient Honeycomb Multicrystalline Silicon Solar Cell with Improved Light Trapping,” IEEE Trans. Electron Devices 46 (1999) 1978-1983.
[85] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloids Surf., A 219 (2003) 1-6.
[86] Y. J. Huang, C. H. Lai, and P. W. Wu, “Fabrication of Large-Area Colloidal Crystals by Electrophoretic Deposition in Vertical Arrangement,” Electrochem. Solid-State Lett. 11 (2008) 20-22.
[87] P. Yang, J. Huang, A. R. Tao, S. Connor, and R. He, “A General Method for Assembling Single Colloidal Particle Lines,” Nano Lett. 6 (2006) 524-529.
[88] D. Lan, Yinmin Zhang, and Y. Wang, “From Hexagonally Arrayed Nanorods to Ordered Porous Film through Controlling the Morphology of ZnO Crystals,” Appl. Surf. Sci. 254 (2008) 5849-5853.
[89] J. Hu and R. G. Gordon, “Textured Aluminum-Doped Zinc Oxide Thin Films from Atmospheric Pressure Chemical-Vapor Deposition,” J. Appl. Phys. 71 (1992) 880-890.
[90] P. Nunes, E. Fortunato, and R. Martins, “Influence of the Post-Treatment on the Properties of ZnO Thin Films,” Thin Solid Films 383 (2001) 277-280.
[91] Y. C. Lin, Y. C. Jian, and J. H. Jian, “A Study in the Etching Behavior of AZO (ZnO:Al) Transparent Conducting Film,” Appl. Surf. Sci. 254 (2008) 2671-2677.
[92] T. Tohsophon, J. Hüpkes, H. Siekmann, B. Rech, M. Schultheis, and N. Sirikulrat, “High Rate Direct Current Magnetron Sputtered and Texture-Etched Zinc Oxide Films for Silicon Thin Film Solar Cells,” Thin Solid Films 516 (2008) 4268-4632.
[93] H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of Light Trapping in Thin-Film Hydrogenated Microcrystalline Si Solar Cells Using Back Reflectors with Self-Ordered Dimple Pattern,” Appl. Phys. Lett. 93 (2008) 143501-1~3.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明