博碩士論文 963209011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.238.107.166
姓名 張鈞凱(Chun-kai Chang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 Mg1-xNix(X=5-35 wt%)合金中Mg2Ni催化Mg之效應研究
(Effect of Mg2Ni catalyst on Mg of Mg1-xNix(X=5-35 wt%) alloy)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用熔煉法製備Mg1-xNix(X=5-35 wt%)合金,觀察合金微結構變化對儲放氫特性之影響。經PCI測試發現,過共晶合金較亞共晶合金易達理論吸氫量。由過共晶微結構可知,其為初晶Mg2Ni與共晶層狀(Mg+Mg2Ni)所組成,亞共晶為初晶Mg與共晶結構。亞共晶合金中,初晶Mg面積大與Mg2Ni接觸面積少較不易受Mg2Ni的催化,過共晶合金中不僅Mg與Mg2Ni的界面多,Mg2Ni也較多,相界為氫原子擴散之途徑,故吸氫速率快,吸氫量也較易達理論值。共晶合金為Mg與Mg2Ni層狀結構,具有最多之界面,Mg2Ni更易催化Mg,導致共晶合金之吸氫速率與吸氫量皆有極佳的表現。而藉由球磨可減小合金粉末顆粒,增加缺陷與比表面積,致使合金更易活化。但於PCI測試中發現,球磨合金中Mg與Mg2Ni的平台長度相較於鑄態合金皆有減少的現象,推測因鋼球的撞擊導致延性較佳之Mg包覆Mg2Ni,以致Mg難以受Mg2Ni催化,降低合金吸氫量與吸氫速率。
摘要(英) This research plans to utilize casting method to prepare Mg1-xNix (x= 5、10、15、23.5、35 wt%) , and then studies the effect of Mg2Ni catalyst on Mg of hydrogen storage characteristic with different microstructure. The hypereutectic alloy consists of primary Mg2Ni and eutectic (Mg+Mg2Ni). The microstructure of hypoeutectic alloy is primary Mg and eutectic (Mg+Mg2Ni). The eutectic (Mg+Mg2Ni) structure is lamella-type layer. After PCI test, we observe that the hydrogen capacity of hypereutectic alloy and eutectic alloy are easy getting the theoretic hydrogen capacity. Because the contact area of Mg and Mg2Ni to hypereutectic alloy and eutectic alloy are larger than hypoeutectic alloy,Mg2Ni catalyzes Mg more effectively. The larger primary Mg of hypoeutectic alloy which can not be catalyzed by Mg2Ni easily. And the phase boundaries of Mg and Mg2Ni are diffusion path of hydrogen atom so eutectic alloy has the best capability for hydrogen capacity and absorption rate. After ball milling, the alloys increase the defects and surface area which make alloys activate more easily. But we observe that the Mg and Mg2Ni plateau length of PCI curves are reduced after ball milling. It presumes that the more brittle Mg2Ni is embedded into the more ductile Ni powders. The hydrogen capacity and absorption rate are reduced after ball milling.
關鍵字(中) ★ 儲氫合金
★ Mg-Ni合金
★ 催化
關鍵字(英) ★ catalyze
★ Mg-Ni alloy
★ hydrogen storage alloy
論文目次 總目錄
中文摘要…………………………………………………………………i
英文摘要 ………………………………………………………………ii
誌謝……………………………………………………………………iii
總目錄 …………………………………………………………………iv
圖目錄 …………………………………………………………………vi
表目錄 ………………………………………………………………viii
一、前言與文獻回顧……………………………………………………1
1.1 儲氫合金發展介紹…………………………………………………1
1.2 儲氫合金吸放氫原理概述…………………………………………3
1.2.1 動力學特性………………………………………………………3
1.2.2 熱力學性質………………………………………………………5
1.3 儲氫合金種類介紹…………………………………………………8
1.4 Mg-Ni儲氫合金簡介 ………………………………………………9
1.5 研究背景與目的 …………………………………………………12
二、實驗步驟與方法 …………………………………………………13
2.1 合金製備流程 ……………………………………………………14
2.2 X光粉末繞射分析 (X-Ray powder diffraction,
XRD)……………………………………………………………14
2.3 微結構分析 ………………………………………………………14
2.3.1 金相觀察(OM) …………………………………………………14
2.3.2 電子微探儀分析 (EPMA)………………………………………15
2.4 合金球磨流程 ……………………………………………………15
2.5 合金儲氫特性測試 ………………………………………………15
2.6 Mg-Ni合金理論儲氫量之計算……………………………………17
三、結果與討論 ………………………………………………………18
3.1合金結構分析………………………………………………………18
3.2儲放氫特性分析……………………………………………………22
3.2.1活化測試…………………………………………………………22
3.2.2吸氫動力學測試…………………………………………………29
3.2.3 PCI曲線測試……………………………………………………32
四、結論 ………………………………………………………………39
五、未來研究方向 ……………………………………………………40
六、參考文獻 …………………………………………………………41
參考文獻 [1] Jian Hua, “Prospects for renewable energy for seaborne transportation—Taiwan example”, Renewable Energy, Vol. 33, pp.1056-1063, 2008.
[2] T. Nejat Veziroglu,“21st Century’s energy: Hydrogen energy system”, Energy Conversion and Management, Vol.49, pp.1820-1831, 2008.
[3] U. Eberle ,”Hydrogen storage in metal–hydrogen systems and their derivatives”, Journal of Power Sources, Vol.154 , pp.456-460, 2006.
[4] T. Graham“On the Relation of Hydrogen to Palladium”, Journal of the Franklin Institute, Vol. 87, pp.256-266, 1869.
[5] 廖世傑,”儲氫技術及應用簡介”,工業材料,Vol.190, p.139,2002.
[6] J.J. Reilly,“The Reaction of Hydrogen with Alloys of Magnesiumand Nickel and the Formation of Mg2NiH4”, Inorganic Chemistry, Vol. 7, pp.2254-2256, 1968.
[7] J.H.N. Vucht, “Reversible Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compound”, Philips research reports, Vol. 25, pp.133-140, 1970.
[8] J.J. Reilly, “Formation and Properties of Iron Titanium Hydride”, Inorganic Chemistry, Vol. 13, pp.218-222, 1974.
[9] Kuochih Hong, “The development of hydrogen storage alloys and the progress of nickel hydride batteries", Journal of Power Sources , Vol.96, pp.85-89, 2001.
[10] M. Martin, “Absorption and desorption kinetics of hydrogen storage alloys”, Journal of Alloys and Compounds,Vol. 238 , pp.193-201, 1996.
[11] Anaba Anani,“Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries”, Journal of Power Sources, Vol.47, pp.261 -275, 1994.
[12] Gary Sandrock,“A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, Journal of Alloys and Compounds, Vol. 293-295, pp.877-888, 1999.
[13] K. Aoki,“ Thermodynamics of Hydrogen Absorption in Amorphous Zr-Ni Alloys”, Journal of Non-Crystalline Solids, Vol. 61-62, pp. 679-684,1984.
[14] G. Principi , “The problem of solid state hydrogen storage”, Energy, pp.1- 5,2008.
[15] Huaiyu Shao,”Preparation and hydrogen storage properties of nanostructured Mg–Ni BCC alloys”, Journal of Alloys and Compounds, Vol.477 , pp. 301– 306, 2009.
[16] A. Seiler,” Surface analysis of Mg2Ni-Mg, Mg2Ni and Mg2Cu”, Journal of the Less-Common Metals, Vol.73, pp.193-199, 1980.
[17] Lei Xie,” Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH2 nanoparticles”, Journal of Alloys and Compounds,Vol.482,pp. 388–392,2009.
[18] J.A. Puszkiel,” Thermodynamic and kinetic studies of Mg–Fe–H after mechanical milling followed by sintering”, Journal of Alloys and Compounds,Vol.463,pp.134–142,2008.
[19] Hiromasa Yabe,” Thermal stability and hydrogen absorption / desorption properties of Mg17Al12 produced by bulk mechanical alloying”, Journal of Alloys and Compounds , Vol. 433,pp. 241–245,2007.
[20] Fabing Li , “ Investigations on synthesis and hydrogenation properties of Mg–20wt%Ni–1wt% TiO2 composite prepared by reactive mechanical alloying"Journal of Alloys and Compounds, Vol.452 , pp. 421–424, 2008.
[21] G. Liang,”Hydrogen storage properties of the mechanically milled MgH2 –V nanocomposite” ,Journal of Alloys and Compounds, Vol.291, pp.295- 299,1999.
[22] J. Huot,” Structure of nanocomposite metal hydrides",Journal of Alloys and Compounds,Vol.330-332,pp.727-731,2002.
[23] W. Oelerich,” Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials”, Journal of Alloys and Compounds , Vol.315,pp.237-242,2001.
[24] W. Oelerich,” Comparison of the catalytic effects of V, V2O5 , VN, and VC on the hydrogen sorption of nanocrystalline Mg”, Journal of Alloys and Compounds, Vol.322,pp.L5-L9,2001.
[25] G. Liang,” Mechanical alloying and hydrogen absorption properties of the Mg–Ni system”, Journal of Alloys and Compounds,Vol. 267,pp. 302- 306,1998.
[26] Jun Yang, “Preparation and hydrogen storage properties of Mg1-xNix (x=0–45 wt.%) composites”, Journal of Alloys and Compounds, Vol. 287, pp.251-255, 1999.
[27] M.Y.Song,”Improvement in hydrogen storage characteristics of magnasium by mechanical alloying with nickel”,Journal of Materials Science, Vol. 30, pp.1343-1351, 1995.
[28] Won Ha,” Hydrogenation and degradation of Mg–10 wt% Ni alloy after cyclic hydriding–dehydriding”, International Journal of Hydrogen Energy, Vol. 32, pp.1885-1889, 2007.
[29] A.A. Nayeb-Hashemi , “Alloy Phase Diagrams”,Vol.6, p.238, 1985.
[30] Chang Dong Yim,”Hydriding properties of Mg–xNi alloys with different microstructures”, Catalysis Today, Vol.120, pp.276-280, 2007.
[31] G.Liang,” Hydrogen absorption properties of a mechanically milled Mg–50 wt.% LaNi5 composite”, Journal of Alloys and Compounds,Vol.268,pp. 302-307,1998.
[32]Nam Hoon Goo,”Mechanism of rapid degradation of nanostructured Mg2Ni hydrogen storage alloy electrode synthesized by mechanical alloying and the effect of mechanically coating with nickel”,Journal of Alloys and Compounds,Vol.288,pp.286-293,1999.
指導教授 李勝隆(Sheng-long Lee) 審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明