博碩士論文 963211009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.15.17.60
姓名 汪君翰(Chun-han Wang)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 人工牙根與牙墩之卡榫機構的有限元素應力分析
相關論文
★ 人工膝關節術後定位系統★ 二維足型量測系統的開發與應用
★ 客製化局部表面置換型人工髖關節的設計與分析★ 可動態改變外翻力矩的治療退化性膝關節炎輔具
★ 骨釘之抗拉強度的實驗與數值分析之關聯性比較★ 高彎曲度之人工膝關節多軸向動態磨耗試驗機開發
★ 人工髖關節雙軸向動態磨耗試驗平台開發★ 大型犬人工髖關節之應力分析
★ 人體膝關節之高度彎曲電腦動態實體模型的建立★ 足型與足壓電腦輔助分析系統開發
★ 超低溫液態氮生物試片儲存槽的研發★ 腰椎人工椎間盤之運動軌跡分析
★ 表面置換型人工臏股骨關節的設計與分析★ 二維及三維足型的應用與高跟鞋足壓的量測分析
★ 心血管支架塑性成形的有限元素分析★ 靜態穿椎弓足內固定器之剛性對腰椎受力之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 臨床治療牙齒缺損有三種方式,分別為固定假牙、活動假牙與人工植牙。人工植牙不論在咬合功能、整體美學、使用壽命與牙齦狀況等均優於其他治療方式。即便如此,人工牙根發展至今已超過四十年以上的歷史,臨床上仍有超過一成以上之失敗率,其因素包括骨質狀況、手術優劣、植入區域、細菌感染、牙根零件機械失效與牙根在齒槽骨的穩定度…等。牙根零件機械失效原因包含連接桿斷裂、人工牙根螺牙斷裂、牙墩破裂以及人工牙根與牙墩卡榫機制的破壞等,而其中人工牙根與牙墩的卡榫機構對整體牙根與牙墩的強度影響很大,卡榫機構主要目的為抗扭,但在設計上不但可以保護連接桿亦可以增強牙墩的強度。
本研究利用Solidworks針對人工牙根與牙墩的卡榫機構做一系列的設計並建立九組不用的模型並做有限元素分析,包含內外六角形與梅花形卡榫比較、卡榫高度分析、管狀插銷高度分析與錐度平台的分析,分析結果顯示人工牙根卡榫機構以有管狀插銷且有錐狀平台的為較佳,卡榫高度與管狀插銷高度都是較高的較佳,因此本研究的人工牙根與牙墩卡榫設計,採用高度為1 mm的內梅花型卡榫,並包含長度為3 mm的管狀插銷與錐狀平台為最佳設計,以降低發生牙根零件失效的機率。
摘要(英) There are three ways to treat damages of tooth in clinical trial include dentures that movable ,dentures that fixed and dental implant. No matter in occlusion , aesthetics or life time ,dental implant is a better treatment than the others .Even though ,dental implant have developed more than 40 years, the failing rate was still more than 10 percent in clinic. The reason are bone mineral density (BMD),the pros and cons of surgery ,the area of surgery , bacterial infection and the mechanical failing of dental implant. The reason cause mechanical failing of dental implant are fracture of linkage, screw of implant ,abutment and the tenon of implant and abutment. And the major effect is the tenon of implant and abutment. The tenon of implant and abutment is not only to against torsion but also protect linkage and abutment.
The study designs and builds and analyzes nine models of dental implant and abutment by Solidworks. There are external and internal of hex, torx, height of tenon, height of tube and tape. The result show that a dental implant has tube and tape is better and the height of the tenon and tube are the longer one is the best. Therefore, the study used the torx shaped tenon which height is 1 mm and the best design included 3 mm height tube and tape in order to reduce the risk of mechanical failing.
關鍵字(中) ★ 人工牙根
★ 有限元素分析
★ 卡榫
★ 管狀插銷
★ 錐度平台
關鍵字(英) ★ Finite elements analysis
★ Dental implant
★ tenon
★ tube
★ taper
論文目次 中文摘要 v
Abstract vi
致謝文 vii
目錄 viii
圖目錄 x
表目錄 xiii
第一章、緒論 1
1-1 研究動機與目的 1
1-2 研究背景 1
1-2-1 齒頜解剖學與生物力學介紹 2
1-2-2 人工牙根與牙墩背景介紹 5
人工牙根手術流程 9
第二章、文獻回顧 11
2-1 人工牙根與牙墩卡榫界面文獻回顧 11
2-1-1 人工牙根與牙墩抗扭力卡榫機構設計的影響 11
2-1-2 人工牙根與牙墩的界面應力分佈與破裂模式 12
2-1-3 人工牙根與牙墩錐度平台與管狀插銷設計比較 14
2-2 有限元素模擬文獻回顧 17
2-2-1 三維模型的簡化方式的文獻回顧 18
2-2-2 材質、受力、邊界條件與分析參數文獻回顧 19
第三章、材料與方法 20
3-1 人工牙根與牙墩卡榫界面設計 20
3-1-1 內六角與外六角卡榫機構設計 22
3-1-2 內六角型與內梅花型卡榫機構設計 23
3-1-3 內六角型卡榫機構長度設計 25
3-1-4管狀插銷長度與錐狀平台機構設計 25
3-1-5 有限元素模型建立 26
3-2 模型材料性質 27
3-3 模型負載、邊界及介面條件 28
3-4 有限元素模型網格化 30
3-5 有限元素分析後處理參數 32
第四章、結果 34
4-1 線性彈性分析適用性 34
4-2 牙墩之疲勞破壞的發生位置分析結果 35
圖4.5 Type C6第一主應力色階分佈圖,圖中紅點代表最大第一主應力發生部位。4-3 最大第一主應力數值 39
4-3 最大第一主應力數值 40
第五章、 討論 43
5-1 外六角型與內六角型卡榫設計分析結果討論 43
5-3 內六角型卡榫長度設計分析結果討論 46
第六章、結論與未來展望 51
6-1 結論 51
6-2 未來展望 52
文獻回顧 54
參考文獻 [1] 林自勇、鄧志娟、 陳瑩玲等譯,「解剖生理學 Essentials of Anatomy & Physiology」,全威圖書,2001。
[2] 鄭敏雄,「口腔應用解剖學」,藝軒圖書出版社,2001。
[3] Taylor TD., “What is a dental implant? In: Peppers LG. (eds). Dental implant: Are they for me? ” Iowa: Quintessence, pp. 6-7, 1990.
[4] K. Ozeki, Y. Okuyama, Y. Fukui, H. Aoki, “Bone response to titanium implants coated with thin sputtered HA film subject to hydrothermal treatment and implanted in the canine mandible. ” Bio-Med. Mater. Eng. , Vol.16, pp.243-251, 2006.
[5] Henry PJ., “Tooth loss and implant replacement. ” Aust. Dent. J., Vol.45, pp.150-172, 2000.
[6] Hebel K., Gajjar R., Hofstede T., “Single-tooth replacement: bridge vs. implant-supported restoration. ” J. Can. Dent. Assoc., Vol.66, pp.435-438, 2000.
[7] Andersson L., Emami-Kristiansen Z., Högstrom J., “Single tooth implant treatment in the anterior region of the maxilla for treatment of tooth loss after trauma: a retrospective clinical and interview study. ” Dent. Traumatol., Vol.19(Suppl. 3), pp.126-131, 2003.
[8] Salih N. Akour, Mohammed A. Fayyad, Jamal F. Nayfeh, “Finite Element Analyses of Two Antirotational Designs of Implant Fixtures. ” Implant Dent., Vol. 14, pp.77-81, 2005.
[9] Louis T. Kirco, Carl E. Misch, “Dental implant prosthetics. ” Elsevier Mosby ,2005.
[10] Ibrahim Nergiz, Petra Schmage, Raed Shahin, “Removal of a fractured implant abutment screw: A clinical report. ” J. Prosthet. Dent., Vol 91, pp.513-517, 2004.
[11] Peter Gehrke, Günter Dhom, Jochen Brunner, Dietrich Wolf, Marco Degidi, Adriano Piattelli, “Zirconium implant abutments: Fracture strength and influence of cyclic loading on retaining-screw loosening. ” Quintessence Int., Vol. 37, pp.41-48, 2006.
[12] W. ATT, S. KURUN, T. GERDS, J. R. STRUB, “Fracture resistance of single-tooth implant-supported allceramic restorations after exposure to the artificial mouth. ” J. Oral Rehabil., Vol. 33, pp.380-386, 2006.
[13] Mariana Diniz Bisi Santos, Arthur Braga Pfeifer, Marcos Rogério Pupo Silva, Claudio Luiz Sendyk, Wilson Roberto Sendyk. , “Fracture of abutment screw supporting a cemented implant-retained prosthesis with external hexagon connection: a case report with sem evaluation.. ” J. Appl. Oral Sci., Vol 15, pp148-151, 2007.
[14] Stig Hansson. “ Implant-Abutment Interface:Biomechanical Study of Flat Top versus Conical ” Clinical Implant Dentistry and Related Research, Vol. 2, Num. 1, pp.33-41, 2000
[15] Matthias K., Lars S., Stefan W., Klaus L. “Implant–abutment interface designaffects fatigue and fracture strength of implants” Clin. Oral Impl. Res. 19, pp.1276-1284, 2008
[16] Roberto S. Pessoa, Luiza Muraru, Elcio Marcantonio Júnior, Luis Geraldo Vaz,Jos Vander Sloten, Joke Duyck, Siegfried V.N. Jaecques, “Influence of Implant Connection Type on the Biomechanical Environment of Immediately Placed Implants – CT-Based Nonlinear,Three-Dimensional Finite Element Analysis” Clinical Implant Dentistry and Related Research, ,2009.
[17] R. C. Van Staden, H. Guan, Y. C. Loo, “Appliation of the finite element method in dental implant research. Comput. Methods ”Biomech. Biomed. Eng., Vol.9, pp.257-270,2006.
[18] A. K. Patra, J.M. DePaolo, K.S. D’Souza, D. DeTolla and M.A. Meenaghan, “Guidelines for analysis and redesign of dental implants. ”Implant Dent., Vol.7, pp.355-368, 1998.
[19] D.H. DeTolla, S. Andreana, A. Patra, R. Buhite and B. Comella, “Role of the finite element model in dental implants. ” J. Oral Implantol, Vol.26, pp.77-81, 2000.
[20] J.Y. Rho, R.B. Ashman and C.H. Turner, “Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. ” J. Biomech., Vol.26, pp.111–119, 1993.
[21] R.J. Kohal, G. Papavasiliou, P. Kamposiora, A. Tripodakis and J.R. Strub, “Three-dimensional computerized stress analysis of commercially pure titanium and yttrium-partially stabilized zirconia implants. ” Int. J. Prosthodont., Vol.151, pp.189-194, 2002.
[22] I. Lewinstein, L. Banks-Sills and R. Eliasi, “A finite element analysis of a new system (IL) for supporting an implant-retained cantilever prosthesis. ” Int. J. Oral Maxillofac. Implants, Vol.10, pp.355-366, 1995.
[23] J.P. Geng, K.B. Tan and G.R. Liu, “Application of finite element analysis in implant dentistry: a review of the literature. ” J. Prosthet. Dent., Vol.85, pp.585-598, 2001.
[24] Gallas M.M., Abeleira M.T., Fernandez J.R., Burguera M., “Three-dimensional numerical simulation of dental implants as orthodontic anchorage. ” Eur. J. Orthod., Vol.27, pp.12-16, 2005.
[25] Kayabasi O., Yuzbasioglu E., Erzincanli F., “Static, dynamic and fatigue behaviors of dental implant using finite element method. ” Adv. Eng. Softw., Vol.37, pp.649-658, 2006.
[26] Yang J., Xiang H.J., “A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone. ” J. Biomech., Vol.40, pp.2377-2385, 2007.
[27] Pascal Magne, Nikolaos Perakis, Urs C. Belser, Ivo Krejci, “Stress distribution of inlay-anchored adhesive fixed partial dentures: A finiteelement analysis of the influence of restorative materials and abutment preparation design” THE JOURNAL OF PROSTHETIC DENTISTRY, Vol. 87, Num. 5,pp.516-528, 2002.
[28] Callister WD, “Properties of selected engineering materials. In: Callister WD, editor. Material science and enigeering: an introduction. 4th ed. “New York: John Wiley and Sons Inc. p. 778, 780, 1997.
指導教授 林上智(Shang-chih Lin) 審核日期 2010-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明