博碩士論文 963306027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.231.229.89
姓名 吳明鴻(ming-hung wu)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 都市廢棄物固態發酵高溫產氫之研究
(Hydrogen production characteristics by thermophilic solid state fermentation from manucipial waste)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂
★ Thermite反應熔融處理都市垃圾焚化飛灰之研究★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究
★ 廢棄物衍生Thermite 熔融劑之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究
★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究★ 廢鑄砂及石材污泥取代水泥生料之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究★ 廢棄物衍生鋁熱熔融劑處理鉻污泥
★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究
★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響★ 下水污泥焚化灰渣燒成輕質骨材特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用牛糞於50~80℃篩選具活性尖峰產氫特性之共生菌群作為植種來源,並以都市下水道污泥為該菌群之營養源,從而轉化都市廢棄物中之生質部分。控制原料含水率80%進行固態發酵,藉此發展出高產氫轉換率與無酸液廢水之產氫系統。本研究將溫度控制作為產氫菌篩選因子,在產氫過程中得以抑制甲烷菌生長,並可排除傳統中溫液態產氫發酵過程中產出之副產物,如脂肪酸、乙酸、丙酸及丁酸等。
本研究採50、55、60、65、70、75及80℃等七系列恆溫溫度控制,在2.5L厭氧發酵槽進行批次高溫固態發酵,於80小時內均完成產氫生長週期,較傳統中溫液態發酵產氫期程長達數週甚至數月,具有較佳之管控優勢。實驗結果顯示:實施60℃系列高溫固態發酵,有明顯的二次尖峰生長週期,產氫累積量最高且其氫氣濃度維持在60%以上,比氫產生率及比氫轉換率亦相對較高,分別為39 (mL-H2/g-VS) 及 17.65(g-H2/g-H of VS,%);而pH 的變化趨勢,在七個系列高溫發酵期間均維持在4.5~7之間,對實驗則無顯著影響性,可推論無繼續酸化產生酸性物質或酸性廢液等二次污染問題。
摘要(英) This research focus on cow manure as symbiotic bacteria as planting that cultures active hydrogen production characteristics between 50 and 80°C, more and more, the manucipial sweage sludge as substrate as nutrition source convese into the biomass. Controlling the moisture littler than 80% cultures the solid sate fermentation to develop the hydrogen production system with high conversate rate and non acidic-liquid waste. This study siezes the hydrogen production bacteria by temperature controlling, which can inhibit the growth of the methonogenious during the hydrogen yield, as well as, it can eliminate the by-products, voltaic fat acid, in the conventional mesophilic fermentation process such as acetic, propanoic and butyric, etc.
This study adapt 2.5 litter anaerobic fermenter to batch thermophilic solid state fermentation by seven kinds thermostatic series in 50 ,55 ,60 ,65 ,70 ,75 ,and 80°C, respectively. Every hydrogen production growth period all completed within 80 hours, which have better management merits than conventional monderate iquid fermentation period for weeks or even months. The demonstrate show that the 60℃ series thermophilic solid state fermentation has obviously two peak growth periods, the accumulate hydrogen production is the highest and the hydrogen concentration keep it higher than 60%. The specific hydrogen yield and the specific hydrogen conversation rate were 39 (mL-H2/g-VS) and 17.65(g-H2/g-H of VS,%), respectively. Much more, aforementioned seven kinds thermostatic series’s pH is maintained between 4.5 and 7, which show that no obviously effect in the thermophilic solid state fermentation, as the result, it can infer that there is no duplicative pollution as continuous acidification or acid waste production.
關鍵字(中) ★ 都市下水道污泥
★ 牛糞
★ 固態發酵
★ 共生菌群
關鍵字(英) ★ manucipial sweage sludge
★ cow manure
★ solid state fermentation
★ symbiotic bacteria
論文目次 摘 要......................................................................................................................i
Abstract .................................................................................................................. ii
誌 謝................................................................................................................... iii
目 錄................................................................................................................... iv
圖目錄................................................................................................................... vi
表目錄................................................................................................................. viii
一、 緒論...............................................................................................................1
1.1 研究動機.....................................................................................................................1
1.2 研究目的.....................................................................................................................2
二、 文獻回顧.......................................................................................................3
2.1 能源需求.....................................................................................................................3
2.2 生物產氫.....................................................................................................................7
2.2.1 厭氧發酵產氫程序..........................................................................................7
2.2.2 厭氧生物產氫機制..........................................................................................8
2.3 固態高溫發酵產氫提升...........................................................................................12
2.4 溫度、pH對菌種產氫之影響..................................................................................14
2.4.1 溫度................................................................................................................14
2.4.2 pH值................................................................................................................15
三、 研究方法與步驟.........................................................................................16
3.1 研究之流程...............................................................................................................16
3.2 實驗材料...................................................................................................................18
3.2.1 牛糞成份之特徵............................................................................................19
3.2.2 廚餘成份........................................................................................................22
v
3.2.3 活性污泥來源及特性....................................................................................23
3.2.4 鹿沼土............................................................................................................24
3.3 實驗方法與步驟.......................................................................................................26
3.3.1 實驗方法........................................................................................................26
3.3.2 實驗步驟........................................................................................................27
3.4 實驗設備...................................................................................................................29
3.4.1 設備................................................................................................................29
3.5 實驗分析...................................................................................................................32
3.5.1 植種和基質成份分析....................................................................................32
3.5.2 氣體分析........................................................................................................35
3.5.3 分析流程........................................................................................................36
3.6 比氫產生率、比氫轉換率與Rate、Ravg ...............................................................37
四、 結果與討論.................................................................................................38
4.1 pH、溫度對固態發酵產氫率的影響.......................................................................38
4.2 溫度對氣體產生率和產氫濃度的影響...................................................................48
4.3 溫度對固態發酵產氫率之比較...............................................................................57
4.4 溫度對固態發酵產氫累積產出的比較...................................................................62
4.5 溫度對固態發酵產氫濃度的比較...........................................................................67
4.6 溫度對批次固態發酵產氫之綜合討論...................................................................69
五、 結論與建議.................................................................................................72
5.1 結論...........................................................................................................................72
5.2 建議...........................................................................................................................73
參考文獻...............................................................................................................74
參考文獻 Beneman, J. (1996) Hydrogen biotechnology-progress and prospect. Nature biotechnol., 14, 1101.
Commission of the European Communities (1997) Whiet Paper for a community strategy and action plan: energy for the future: renewable sources of energy. com, 599, Brussels.
Ferchichi, M., Crabbe, E., Hintz, W., Gill, G. H. and Almadidy A. (2005) Influence of culture paramenters on biological hydrogen production by Clostridium
Iyer P, Bruns MA, Zhang H, Ginkel SV, Logan B E. H2-producingbacterial communities from a heat-treated soil inoculum. ApplMicrobiol Biotechnol 2004;66:166-173.
Imhoff J.F. and Truper H.G. (1992). The Genus Rhodospirillum and relate Genera. New York: Bacterial metabolism, 2nd edition, The Prokaryotes, Vol.3,pp.2141-2155,Springer-Verlag.
Kidby, D.W. & Nedwell, D.B. (1991) An investigation into the Suitability of Biogas Hydrogen Concentration as a Performance Monitor for Anearobic Sewage Sludge Digesters. Water Research, 25(8), 1007-1012.
Lewis, S. M., Montgomery, L., Garleb, K. A., Berger, L.L., Fahey, G.C. Jr. (1988) Effects of alkaline hydrogen peroxide treatment on in vitro degradation of cellulosic substrates by mixed ruminal microorganism and Bacteroides succinogenes S85. Appl. Environ. Microbiol., 54, 1163-1169.
Lee KS, Lin PJ, Chang JS. Temperature effect on biohydrogenproduction in a granular sludge bed induced by activated carboncarriers. Int J Hydrogen Energy 2006;31:465-472.
Ohta, Y., J. Frank. and A. Mitsui. 1981. Hydrogen production by marine photosynthetic bacteria-effect of environment factors and substrate specificity on growth of a hydrogen-producing marine photosynthetic bacterium, Chromatium sp. Miami PBS 1071. J. Hydrogen Energ. 6(5): 451~460.
Odom J.M. and Wall J.D. (1983). Photoproduction of H2 from cellulose by an anaerobic bacteri co-culture. Applies and Environmental Microbiology. Vol. 45, No. 4, pp. 1300-1305.
Shin HS, Youn JH, Kim SH. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrogen Energy 2004;29:1353-1363.
saccharoperbutylacetonicum ATCC 27021. W.J. Microbiol. Biotechnol., 21, 855-862.
Das, D. and Veziroglu, T. Nejat (2001) Hydrogen production by biological Processes: a survey of Iiterautre. Int. J. Hydrogen Energy, 26, 13-28.
Scragg, A. (1999) Environmental Biotechnology. Addition Wesley Longman Singapore, pp. 174-176.
Sparling, R., Risbey, D., & Poggi-Varaldo, H.M. (1997) Hydrogen Porduction from Inhibited Anaerobic Composters. International Journal Hydrogen Energy. 22(6), 563-566.
Yokoi H., Ohkawara T., Hirose J., Hayashi S. and Takasaki Y. (1995) Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. Journal of Fermentation and Bioengineer, Vol. 80, No. 6, pp. 571-574.
Zhang T, Liu H, Fang HHP. Biohydrogen production from starch inwastewater under thermophilic condition. J Environ Management2003;69:149-156.
Stevens, P., C. Vertoghen, P.D. Vos, and J. D. Ley. 1984. The effect of temperature and light intensity on hydrogen gas production by different Rhodopseudomonas capsulate strains. Biotechnol. Lett. 6(5): 277~282.
Sasikala, K., C. V. Ramana, and P. R. Rao. 1991. Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U.001. J. Hydrogen Energ. 16(9): 597~601.Rheinheimer G. The influence of environmental factors on the development of microorganism. Rehinheimer G. eds., Aquatic Microbiology., pp. 111-147, Baffins Lane, 1992, England.
Reynolds. T. D. and Richards. P. A., 1995. Unit Operations and processes in Enivronmental Engineering., second edition.
Georgia Antonopoulou, Hariklia N. Gavala, Ioannis V. Skiadas, K. Angelopoulos and Gerasimos Lyberatos, Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass, Bioresource Technology 99 (2008) 110–119.
F. Taguchi, N. Mizukami, T. Saito-Taki and K. Hasegawa, Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. Strain No. 2, Can J Microbiol 41 (1995), pp. 536–540.
K.S. Lee, P.J. Lin and J.S. Chang, Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers, Int J Hydrogen Energy 31 (2006), pp. 465–472.
X. Chen, Y. Sun, Z. Xiu, X. Li and D. Zhang, Stoichiometric analysis of biological hydrogen production by fermentative bacteria, Int J Hydrogen Energy 31 (2006), pp. 539–549.
H.L. Chin, Z.S. Chen and C.P. Chou, Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production, Biotechnol Prog 19 (2003), pp. 383–388.
H.Q. Yu, Z.H. Zhu, W.R. Hu and H.S. Zhang, Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures, Int J Hydrogen Energy 69 (2002), pp. 1359–1365.
C.Y. Lin, C.C. Wu and C.H. Hung, Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures, International Journal of Hydrogen Energy 33 (2008), 43–50.
Y. Wang, H. Wang, X. Feng, X. Wang and J. Huang, Biohydrogen production from cornstalk wastes by anaerobic fermentation with activated sludge, international journal of hydrogen energy xxx (2009), 1–8.
H. H. P. Fang and H. Liu, Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technol. 82 (2002), 87–93.
C.Y. Lin, R.C. Chang, Fermentative hydrogen production at ambient temperature. International Journal of Hydrogen Energy 29 (2004) 715 – 720.
O. Mizuno, R. Dinsdale, F.R. Hawkes, D.L. Hawkes and T. Noike, Enhancement of hydrogen production from glucose by nitrogen gas sparging, Bioresource Technology 73 (2000) 59-65.
H.N. Gavala, I.V. Skiadas and B.K. Ahring, Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int. J. Hydrogen Energy 31 (9), 1164–1175.
G. Antonopoulou, H.N. Gavala, I.V. Skiadas, K. Angelopoulos, G. Lyberatos, Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresource Technology 99 (2008) 110–119.
Yohei Akutsu, Yu-You Li, Madan Tandukar, Kengo Kubota and Hideki Harada, Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch. International Journal of Hydrogen Energy 33 (2008) 6541–6548
H. Yokoyama, N. Moriya, H. Ohmori, M. Waki, A. Ogino, Y. Tanaka, Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates. Appl Microbiol Biotechnol (2007) 77: 213-222.
Hang-Sik Shin, Jong-Ho Youn and Sang-Hyoun Kim, Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis, International Journal of Hydrogen Energy 29 (2004) 1355 – 1363.
Standard Test Method for Ash from Petroleum Products, ASTM D482 - 95, 1995。
Standard Test Method for Moisture in the Analysis Sample of Coal and Coke, ASTM D3173 - 02, 2002。
Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal, ASTM D3174 - 02, 2002。
Denac, M., Miguel, A. and Dunn, I. J. (1988) “Modeling Dynamic Experiments on the Anaerobic Degradation of Molasses Wastewater.” Biotechnology and Bioengineering, 31, pp. 1-10.
Chang, H. T. and Rittmann, R. E. (1987a) “Mathematical Modeling of Biofilm on Activated Carbon.” Environmental Science and Technology, 21, pp. 273-279.
Chang, H. T., Rittmann, B. E., (1987b) “Verification of the model of biofilm on activated carbon.” Environmental Science Technology, 21, pp.280-288.
鄭幸雄、白明德、張仕旻、吳坤龍、陳文欽、陳文卿,2000,厭氧生物分解水解污泥量產氫之可行性研究,第二十五屆廢水處理研究會,305-309,雲林。12月1日。
蕭嘉瑢,複合基質厭氧氫醱酵生物程序控制之功能評估及分生檢測生態之研究,成功大學環境工程學系碩士論文,台南 (2004)。
黃正怡,營養鹽濃度對於含梭狀芽孢桿菌之植種材料利用有機廢棄物產氫之影響,國立高雄第一科技大學環境與安全衛生工程研究所,高雄 (2001)。
李國鏞與游若荻, 微生物學,華香園出版社,第四版,台北市,pp.126-145 (1992)。
林明正,CSTR 厭氧產氫反應槽之啟動及操作,逢甲大學碩士論文,台中 (2000)。
黃俊霖。(2001)。以分子生物技術探討厭氧生物產氫程序之菌群結構,中央大學環境工程研究所碩士論文。
吳耿東,李宏台。(2004)。生質能源化腐朽為能源。科學發展,383期,20-27。
王馨儀。(2005)。以牛糞中嗜熱厭氧菌群分解纖維素產乙醇之研究,東海大學環境科學與工程究所碩士論文。
行政院衛生署環境保護局,垃圾採樣分析手冊,民國 73 年 5 月(1984 年)。
日本厚生省環境衛生局水道環境部環境整備課,燒卻施設各種試驗方法,昭和 58 年(1983)。
日本工業分析標準方法,JIS M8813,煤碳與焦碳類–元素分析方法,2002。
黃昱翔,有機廢棄物高溫厭氧發酵產氫特性之研究,國立中央大學環境工程研究所碩士論文(2010)。
李雙安,多孔材料添加廢玻璃燒結調濕陶瓷之探討,國立中央大學環境工程研究
所碩士論文(2009)
指導教授 王鯤生(Kuen-Sheng Wang) 審核日期 2010-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明