博碩士論文 963403021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.191.168.186
姓名 陳為展(Wei-Chan Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 新型磨粒的磁力輔助螺旋研拋加工之研究
(A study on the application of newly-developed abrasive to magneto-assisted spiral polishing.)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 螺旋研拋加工法是一種利用高速螺旋迴轉傳遞磨料進行拋光的技術,當螺桿高速旋轉時,磨料將順著螺桿的螺旋溝槽朝上移動,被傳動之磨料直接高速研磨接觸被加工件,運動行程較傳統磨粒流拋光方式行程長而達到表面均勻拋光作用,因本加工法之磨料具有循環作動功能,磨料成本低且消耗量少,可獲得『低成本』、『快速』且『有效率』去除毛邊、變質層等功能,達到被加工件『快速精拋』的加工效果。
本研究將磁力研磨拋光與螺旋研拋法相結合,利用磁力研磨拋光的磁力加強螺旋研拋加工時的加工力,改善游離磨料加工時加工力較弱的缺點,增進研磨拋光加工時的效果。磨粒在螺旋研拋加工法扮演舉足輕重的地位,本研究自行開發新型磁性磨粒,在磨粒表面披覆一層磁性粒子,使之具有磁性磨粒的功能,再者利用磨粒中高分子粒子的彈性,減低磨粒撞擊工件表面時所產生的撞擊能,有效吸收過大的衝擊力,減少過度加工的作用。將之應用在不鏽鋼內圓孔之表面研拋,由實驗可得在磁通量密度90mT、碳化矽粒徑4μm、矽油黏度2000mm2/s、磁性磨粒濃度60%、加工間隙0.6mm及主軸轉速4000rpm之加工參數,可於20分鐘內將表面粗糙度Ra由0.9μm大幅下降到0.0541μm ,改善率達到94%,可明顯縮短拋光時間並得到極佳的表面加工效果。
摘要(英) Spiral polishing mechanism is the technology of employing a high-speed turning screw rod to drive the abrasive to achieve the purpose of polishing the workpiece surface. The fast-turning screw rod drives the abrasive to move upward along the groove of the rod to keep polishing the workpiece in a recycling movement. Compared with traditional polishing methods, the long moving path of the abrasive helps achieve better polishing quality. Besides, the recycling movement of the abrasive not only effectively reduces the cost and the quantity of abrasive, but also removes the burrs in a fast, efficient, and economical way. Therefore, it is a superior method to reach good machining effect.
In this study, the magneto-assisted polishing was combined with spiral polishing mechanism. With the magnetism employed in the magneto-assisted polishing, the polishing force of the abrasive in spiral polishing was enforced and thus the polishing effect was improved. Actually, the abrasive played a crucial role in spiral polishing mechanism. In the present study, a new kind of magnetic abrasive was developed by coating each particle with a layer of magnetic particles. Moreover, the elasticity of the abrasive eased the kinetic energy generated from the polishing process on the workpiece surface, with the function of reducing the great impact during the polishing and preventing the effect of over-polishing. When this technology was applied to the polishing of the inner wall of the bore, the results of the experiment showed that with the parameter variables of magnetic flux density of 90mT, Sic size of 4μm, Silicone oil viscosity of 2000mm2/s, magneto-elastic abrasive concentration of 60%, machining gap of 0.6 mm , and the spindle revolution speed at 4000 rpm, the surface roughness (Ra) was lowered from 0.90 μm. to 0.0541 μm. in 20 minutes, at the improvement rate of 94%. The polishing time was significantly shortened and the optimal polishing effect was obtained.
關鍵字(中) ★ 螺旋研拋加工
★ 磁力研磨
★ 磁性磨粒
★ 不鏽鋼內圓孔
★ 表面粗糙度
關鍵字(英) ★ Spiral polishing machining
★ Magneto-assisted polishing
★ Magnetic abrasive
★ Inner-wall polishing
★ Surface roughness
論文目次 摘 要 i
Abstract ii
謝 誌 iv
目 錄 v
圖目錄 ix
表目錄 xii
第一章 緒論 1
1-1 研究背景 1
1-2研究動機與目的 2
1-3文獻回顧 4
1-4研究方法 9
第二章 混合磨料於不銹鋼內孔之螺旋研拋加工 10
2-1前言 10
2-2磨料螺旋研拋加工法 11
2-3加工特性 13
2-4實驗設備、材料與方法 16
2-4-1實驗設備 16
2-4-2實驗材料 19
2-4-3研究方法 25
2-4-3-1田口實驗計劃法 25
2-4-3-2直交陣列表 26
2-4-3-3訊號/噪音比 26
2-4-3-4變異數分析 28
2-4-3-5實驗設計規劃 29
2-5實驗流程 30
2-6結果與討論 31
2-6-1加工參數設定 31
2-6-1-1因子水準設定 31
2-6-1-2直交表配置 32
2-6-1-3因子效果回應分析 32
2-6-1-4變異數分析(ANOVA)及F檢定(F-test) 35
2-6-1-5驗證實驗 37
2-6-2表面粗糙度之參數因子分析 38
2-6-2-1磨粒大小對表面粗糙度之影響 39
2-6-2-2 SiC重量對表面粗糙度之影響 40
2-6-2-3 PS重量對表面粗糙度之影響 41
2-6-2-4矽油黏度對表面粗糙度之影響 42
2-6-2-5加工轉速對表面粗糙度之影響 43
2-6-2-6加工時間對表面粗糙度之影響 44
2-6-3材料移除量之參數因子分析 45
2-6-3-1磨粒大小對材料移除量之影響 45
2-6-3-2 SiC重量對材料移除量之影響 46
2-6-3-3 PS重量對材料移除量之影響 47
2-6-3-4矽油黏度對材料移除量之影響 48
2-6-3-5加工轉速對材料移除量之影響 49
2-6-3-6加工時間對材料移除量之影響 50
2-6-4磨料溫度之參數因子分析 51
2-6-4-1加工時間對加工溫度之影響 51
2-6-4-2加工轉速對加工溫度之影響 53
2-6-4-3磨粒粒徑對加工溫度之影響 54
2-6-4-4矽油黏度對加工溫度之影響 55
2-6-5表面研拋之效果 56
2-7結論 58
第三章 磁性熱熔膠粒應用於磁力與螺旋研拋複合加工 59
3-1前言 59
3-2磁性熱熔膠粒 60
3-3磁力輔助加工特性 61
3-4磁性熱熔膠粒應用於磁力輔助螺旋研拋加工 64
3-4-1實驗裝置 64
3-4-2實驗方法 65
3-5實驗流程 67
3-6結果與討論 68
3-6-1最小表面粗糙度之參數組合 68
3-6-2加工參數之分析 72
3-6-2-1磁通量密度對加工之影響 72
3-6-2-2磁性熱熔膠粒重量百分比對加工之影響 74
3-6-2-3矽油黏度對加工之影響 75
3-6-2-4加工間隙對加工之影響 76
3-6-3磨料黏度分析 78
3-6-3-1加工時間對磨料黏度的影響 79
3-6-3-2碳化矽重量對磨料黏度的影響 79
3-6-3-3碳化矽粒徑對磨料黏度的影響 79
3-6-4加工參數與磨料溫度之關係 81
3-6-4-1加工時間對磨料溫度的影響 81
3-6-4-2主軸轉速對磨料溫度的影響 82
3-7結論 84
第四章 磁彈性磨粒於磁力螺旋研拋加工之研究 85
4-1前言 85
4-2磁彈性磨粒加工特性 86
4-3磁彈性磨粒 87
4-4實驗方法 91
4-5結果與討論 93
4-5-1最適加工參數組合 93
4-5-2加工參數之探討 96
4-5-2-1磁通量密度對加工之影響 96
4-5-2-2磁彈性磨粒濃度對加工之影響 98
4-5-3磨料黏度的分析 100
4-5-4磨料溫升的分析 101
4-6結論 102
第五章 總結論 103
參考文獻 105
作者簡介 110
參考文獻 1.B. H. Yan, H. J. Tzeng, F. Y. Huang, Y. C. Lin, H. M. Chou, “Finishing effects of spiral polishing method on micro lapping surface”, International Journal of Machine Tools & Manufacture, 47(2007), pp. 920-926.
2.D. Scott, , S. Boyina, and K. P. Rajurkar, Analysis and Optimization of Parameter Combinations in Wire Electrical Discharge Machining”, International Journal of Production Research, 29(1991), pp. 2189-2207.
3.B. H. Yan, M. D. Chen, “Effect of ultrasonic vibration on electrical discharge machining characteristic of Ti-6Al-4V alloy”, Journal of Japan Institute of Light Metals, 44(1993), pp. 281-285.
4.T. Shinmura, F. H. Wang, T. Aizawa, “Study on a new finishing process of fine ceramics by magnetic abrasive machining – on the improving effect of finishing efficiency obtained by mixing diamond magnetic abrasives with ferromagnetic particles”, Journal of the japan society for precision engineering, 59(1993), pp. 1251-1256.
5.M. D. Krymsky, “Magnetic abrasive finishing”, Metal Finishing, 91(1993), pp. 21-25.
6.K. Tsuchiya, Y. Shimizu, K. Sakaki, M. Sato, “Polishing mechanism of magnetic abrasion”, Journal of the Japan Institute of Metals, 57(1993), pp. 1333-1338.
7.H. Yamaguchi, T. Shinmura, “New internal finishing process by application of magnetic abrasive machining (3rd report, effects of finishing pressure distribution on characteristics)”, Transactions of the Japan Society of Mechanical Engineers, 61(1995), pp. 2605-2611.
8.H. Yamaguchi, T. Shinmura, “Study on a new internal finishing process by application of magnetic abrasive machining (4th report, effects of diameter of magnetic abrasives on finishing characteristics)”, Transactions of the Japan Society of Mechanical Engineers, 61(1995), pp. 4470-4475.
9.P. Jayakumar, S. Ray, V. Radhakrishnan, “Optimising progress parameters of magnetic abrasive machining to reduce the surface roughness value”, Journal of Spacecraft Technology, 7(1997), pp. 58-64.
10.Y. S. Liao, J. T. Huang, H. C. Su, “A Study on The Machining-Parameters Optimization of Wire Electrical Discharge Machining”, Journal of Materials Processing Technology, 71(1997), pp. 487-493.
11.S. L. Chen, F. Y. Huang, Y. Suzuki, B. H. Yan, “Improvement of material removal rate of Ti-6Al-4V alloy by electrical discharge machining with multiple ultrasonic vibration”, Journal of Japan Institute of Light Metals, 47 (1997), pp. 220-225.
12.N. Guo, T. C. Lee, T. M. Yue and W. S. Lau, “A study of ultrasonic-aided wire electrical discharge machining”, Journal of Materials Processing Technology, 63(1997), pp. 823-828.
13.Z. Wang, Y. Luan, T. Pang, W. Liu, “Elastic and electrolytic ultraprecision polishing”, Metal Finishing, (1998), pp. 22-24.
14.J. J. Haan, P. S. Steif, “Abrasive wear due to slow flow of a concentrated suspension”, Wear, 219(1998), pp.177-183.
15.R. K. Jain, V. K. Jain, P. M. Dixit, “Modeling of material removal and surface roughness in abrasive flow machining process”, International Journal of Machine Tool & Manufacture, 39(1999), pp. 1903-1923.
16.R. K. Jain and V. K. Jain, P. K. Kalra, “Modeling of abrasive flow machining process: a neural network approach”, Wear, 231(1999), pp. 242-248.
17.H. Yamaguchi, T. Shinmura, “Study of the surface modification resulting from an internal magnetic abrasive finishing process”, Wear, 225(1999), pp. 246-255.
18.B. H. Yan, C. C. Wang, “The machining characteristics of Al2O3/6061Al composite using rotary electro-discharge machining with a tube electrode”, Journal of Materials Processing Technology, 195(1999), pp. 222-231.
19.V. K. Jain, “Simulation of surface generated in abrasive flow machining (AFM) Process”, Robotics and Computer Integrated Manufacturing, 15 (1999), pp.403-412.
20.H. Yamagguchi, T. Shinmura, “Study of an internal magnetic abrasive finishing using a pole rotation system- Discussion of the characteristic abrasive behavior”, Journal of the International Societies for Precision Engineering and Nanotechnology, 24(2000), pp. 237-244.
21.H. Yamaguchi, T. Shinmura, “Study of an internal magnetic abrasive finishing using a pole rotation system – discussion of the characteristic abrasive behavior”, Precision Engineering, 24(2000), pp. 237-244.
22.H. Ramasawmy, K. Stout, L. Blunt, “Effect of secondary processing on EDM surfaces”, Surface Engineering, 16(2000), pp. 501-505.
23.B. H. Yan, C. C. Wang, W. D. Liu and F. Y. Huang, “Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode”, The International Journal of Advanced Manufacturing Technology, 16(2000), pp. 322-333.
24.R. K. Jain, V. K. Jain, “Optimum selection of machining conditions in abrasive flow machining using neural network”, Journal of Materials Processing Technology, 108(2000), pp. 62-67.
25.V. K. Jain, P. Kumar, P. K. Behera, S. C. Jayswal, “Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process”, Wear, 250(2001), pp. 384-390.
26.Y. C. Lin, B. H. Yan, F. Y. Huang, “Surface modification of Al-Zn-Mg aluminum alloy using combined process of EDM with USM”, Journal of Materials Processing Technology, 115(2001), pp. 359-366.
27.A. B. Khairy, “Aspects of surface and edge finish by magnetoabrasive particles”, Journal of Materials Processing Technology, 116(2001), pp. 77-83.
28.V. K. Jain, C. Ranganatha, K. Muralidhar, “Evaluation of rheological properties of medium for AFM process”, Machining Science and Technology, 5(2001), pp. 151-170.
29.S. Singh, H. S. Shan, “Development of magneto abrasive flow machining process”, International Journal of Machine Tool & Manufacture, 42(2002), pp. 953-959.
30.S. Singh, H. S. Shan, P. Kumar, “Parametric optimization of magnetic-field-assisted abrasive flow machining by the Taguchi method”, Quality and Reliability engineering international, 18(2002), pp. 273-283.
31.S. Singh, H. S. Shan, “Development of magneto abrasive flow machining process”, International Journal of Machine Tools & Manufacture, 42(2002), pp. 953-959.
32.J. D. Kim, “Polishing of ultra-clean inner surfaces using magnetic force”, The Int. J. of Advanced Manufacturing Technology, 21(2003), pp. 91-97.
33.R. K. Jain, V. K. Jain, “Finite element simulation of abrasive flow machining”, Proceedings of the Institution of the Mechanical Engineering, 217(2003), pp.1723-1736.
34.S. Jha and V. K. Jain, “Design and development of the magnetorheological abrasive flow finishing (MRAFF) process”, International Journal of Machine Tools and Manufacture, 44(2004), pp.1019-1029.
35.V. K. Gorana, V. K. Jain, G. K. Lal, “Experimental investigation into cutting forces and active grain density during abrasive flow machining”, International Journal of Machine Tool & Manufacture, 44(2004), pp. 201-211.
36.R. S. Walia, H. S. Shan, P. Kumar, “Abrasive flow machining with additional centrifugal force applied to the media.”, Machining Science and Technology, 10(2006), pp.341-354.
37.A. M. Wani, V. Yadava, A. Khatri, “Simulation for the prediction of surface roughness in magnetic abrasive flow finishing (MAFF)”, Journal of Materials Processing Technology, 190(2007), pp. 282-290.
38.M. R. Sankar, S. Mondal, J. Ramkumar, V. K. Jain, “Experimental investigations and modeling of drill bit-guided abrasive flow finishing (DBG-AFF) process”, International Journal of Advanced Manufacturing Technology, 42(2008), pp. 678-688.
39.K. Hanada, H. Yamaguchi, H. Zhou, “New spherical magnetic abrasives with carried diamond particles for internal finishing of capillary tubes”, Diamond and Related Materials, 17(2008), pp. 1434-1437.
40.K. K. Kar, N. L. Ravikumar, P. B. Tailon, J. Ramkumar, D. Sathiyamoorthy, “Performance evaluation and rheological characterization of newly developed butyl rubber based media for abrasive flow machining process”, Journal of Materials Processing Technology, 209(2009), pp. 2212-2221.
41.M. R. Sankar, V. K. Jain , J. Ramkumar, “Rotational abrasive flow finishing (R-AFF) process and its effects on finished surface topography”, International Journal of Machine Tools and Manufacture, 50(2010), pp. 637-650.
42.M. R. Sankar, V. K. Jain, J. Ramkumar, “Experimental investigations into rotating workpiece abrasive flow finishing”, Wear, 267(2009), pp. 43-51.
43.M. Das, V. K. Jain, P. S. Ghoshdastidar “Nanofinishing of flat workpieces using rotational–magnetorheological abrasive flow finishing (R-MRAFF) process”, The International Journal of Advanced Manufacturing Technology, 62(2012), pp. 405-420.
44.B. Bhushan, “Introduction to tribology textbook”, John Wiley and Sons, New York (2002).
45.黎正中 譯, “實驗設計與分析”, 高立圖書.
46.T. Shinmura, K. Takazawa, E. Hatano, M. Matsunaga, “Study on Magnetic Abrasive Finishing”, Annals of the CIRP, 39(1990), pp.325-328.
指導教授 顏炳華(Biing-Hwa Yan) 審核日期 2014-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明