博碩士論文 963403030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.135.183.187
姓名 孫稟厚(Pin-hou Sun)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鎂合金AZ31細晶薄板片拉伸性質與氣壓成形特性研究
(Tensile propertie and gas blow forming characteristics of the fine-grained magnesium alloy AZ31B thin sheet)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本次研究中進行拉伸測試和氣壓成形一系列實驗,來探討細晶AZ31B-O和AZ3B-H24鎂合金薄板的金屬流動行為和快速氣壓成形性。在AZ31B-O材料為POSCO公司所生產,厚度為 0.6mm;而本次實驗所使用的AZ31B-H24鎂合金厚度為0.5mm的H24條件,是由美國MEL所生產提供。拉伸測試試片沿滾壓方向取用,初始應變速率為4×10−3 to 1×10−1 s−1溫度條件為 250℃,300℃,370℃和420℃。本次研究分析細晶AZ31B和AZ31-H24鎂合金薄板片在拉伸時流變形為和相關微結構變化。自由鼓脹測試成形是讓壓縮氬氣來使板片變形於圓柱狀腔體。壓成形進行在不同溫度條件,與其溫度分別為 200、250、300、370和420℃的利用各種加壓程序方式。減少成形時間於氣壓成形時使用階梯漸進式和恆定壓力式加壓成形,非恆定加壓程序氣壓成形來調查快速氣壓成形性。
結果顯示,應用拉伸條件使得流變應力行為變化可能是相關顯微結構產生變化結果。熱變形期間,有些冶金現象例如應變硬化、動態回復和動態再結晶(DRX)可能會同時出現,改變微結構與機械性質結果。由應力應變速率的數值結果顯示,細晶AZ31B薄板片高溫拉伸測試,在應變速率4×10‒3 到2×10‒2 s‒1時應變速率敏感指數約0.27,表示差排潛變會是一個可減少氣壓成形時間的變形機制,以拉伸測試AZ31B-H24鎂合金薄板片結果顯示,可提升了低溫氣壓成形性。動態再結晶應該是增加成形性的重要因素,因此低溫氣壓成形應該是在H24狀態下的鎂合金AZ31B(AZ31B-H24)可適用之製程。
AZ31B-O和AZ31B-H24薄板片在不同溫度下採用各種加壓程序狀態變形成半球。在較低的溫度以階梯漸進式加壓狀態應該是較適合的製程,然而,較高溫度下,在成形過程期間以恆定或者是近似恆定加壓則應該是較好的方式。細晶AZ31B-O薄板材可採用氣壓成形方式來應用在快速成形(QPF)。有鑑於實驗結果發現,AZ31B-H24在低溫環境氣壓成形成形性優於細晶AZ31B-O。鎂合金AZ31在快速氣壓成形時產生的空孔量小於鋁合金5083。成形一個較淺的長方盒狀來證明使用QPF製程可能性,採用傳統母模成形成形在高度10mm,達成成形在減少時間,成形時間低於163s。盒狀成形中彎角半徑是影響成形時間的關鍵因素。在本次研究中改良式公模氣壓成形是有預成形條件下,使成形時間低於160秒,並且適合成形於淺的長方形有高表面品質。
摘要(英) In this study, a series of experiments of tensile tests and gas blow forming was performed to explore the flow behaviors and rapid gas blow formability of the fine-grained AZ31B and AZ31B-H24 Mg alloy sheets. The AZ31B-O of material was supplied by POSCO Ltd, with a thickness of 0.6mm. The Mg alloy AZ31B-H24 sheet used in this work, with a thickness of 0.5mm in H24 temper condition, was provided by Magnesium Elektron North American Inc. (USA). Tensile tests were carried out on specimens in the rolling direction, using initial strain rates in the range of 4×10−3 to 1×10−1 s−1 at temperatures of 250, 300, 370 and 420 °C. The flow behaviors and associated microstructure changes of fined-grained wrought AZ31B-O and AZ31B-24 Mg alloy sheets deformed in tension were analyzed in this work. Free bulging tests were performed by deforming the sheet into a right cylindrical die cavity by compressed argon gas. Gas blow forming was carried out at temperatures of 200, 250, 300, 370 and 420 °C using various pressurization profiles. Decreasing the forming time in gas blow forming using stepwise pressurization profiles and constant gas blow forming, which were non-constant gas blow fotming, were conducted to investigate the rapid gas blow formability.
Results showed that variations in flow behavior under tension could be related to the changes in microstructure resulting from applied tensile conditions. During hot deformation, some metallurgical phenomena such as strain-hardening, dynamic recovery, and dynamic recrystallization (DRX) may occur simultaneously, resulting in the changes in the microstructure and mechanical properties. The stress-strain rate data showed that fine-grained AZ31B thin sheet on testing at higher temperatures exhibited strain rate sensitivity exponent values of approximately 0.27 in a strain rate ranging from 4×10‒3 and 2×10‒2 s‒1, indicating that the dislocation creep would be a possible deformation mechanism to reduce forming time in gas blow forming. The tensile test results of the AZ31B-H24 alloy sheet suggested that gas blow formability could be enhanced at lower temperatures. DRX should play an important role in enhancing formability. Thus, low temperature gas blow forming would be a possible process by using Mg alloy AZ31B in H24 condition at lower temperatures.
The AZ31B-O and AZ31B-h24 alloy sheets were successfully deformed into hemispherical domes at different temperatures under various pressurization profiles. A stepwise pressurization profile should be a suitable process at lower temperatures, whereas a constant or near constant pressure imposed during forming would be a better method at higher temperatures. The fine-grained AZ31B-O alloy sheet could be gas blow formed using Quick plastic forming (QPF) process. Whereas, the formability of AZ31B-H24 was better than that of fine-grained AZ31B-O during low temperature gas blow forming. Forming a shallow rectangular pan demonstrated the possibility of using QPF process. Cavitition level in Mg alloy AZ31B was lower than that in Al alloy 5083 during fast gas bloe forming. A significant reduction in forming time was achieved using traditional female die forming, in which a rectangular pan was formed with a height of 10 mm in less than 163 s. Fillet radius of the rectangular pan should be one of the key factors influencing forming time. An innovated male die gas forming with pre-deformation was also proposed in this study. It is feasible to form a rectangular pan with high surface quality in less than 160 s.
關鍵字(中) ★ 細晶AZ31B鎂合金
★ 超塑性
★ 快速氣壓成形
★ 動態再結晶
★ 差排潛變
關鍵字(英) ★ Superplastic forming
★ fine-grained AZ31B Mg alloy
★ Quick plastic forming
★ dynamic recrystallization
★ dislocation creep
論文目次 摘要 I
Abstract II
謝誌 IV
目錄 V
表目錄 VIII
圖目錄 IX
符號說明 XIV
第一章 緒論 1
1-1前言 1
1-1-1 吹氣成形機制 2
1-2研究方向與目的 2
第二章 理論基礎與文獻探討 5
2-1超塑性成形概論 5
2-1-1組織超塑性(Structural Superplasticity) 5
2-1-2變態型超塑性(Transformation superplastic) 5
2-1-3 超塑性成型之優點 5
2-1-4 合金元素對鎂合金的影響[5][15] 6
2-2鎂合金之晶粒細化 7
2-2-1 H 材與O 材微觀組織之差異 7
2-2-2鎂合金之晶粒細化 8
2-3溫度對於鎂合金之變形影響 8
2-3-1 細晶鎂合金AZ31超塑性特性 9
2-3-2晶界滑移現象 9
2-4回復與再結晶( recovery and recrystallization ) [34] 10
2-4-1回復 10
2-4-2再結晶(recrystallization ) 11
2-4-3晶粒成長 12
2-5材料的動態再結晶行為 12
2-6 流變應力方程式 13
2-6-1薄殼理論應力分析 13
2-7 視定塑性力學法 15
2-8 超塑性之空孔 17
2-8-1 超塑性之空孔生成 17
2-8-2 超塑性之空孔成長機制 18
2-9 超塑性空孔控制成長機制 20
2-10快速氣壓成形(QPF, Quick plastic Forming) 20
2-10-1QPF變形機制(QPF, Deformation mechanisms) 21
2-10-2 QPF變形微結構機制 23
第三章實驗方法與討論 34
3-1實驗材料 34
3-2實驗分析設備 34
3-3實驗方法與步驟 34
3-3-1高溫拉伸實驗 34
3-3-2快速氣壓成形半球自由成形 35
3-3-3成形過程之變形狀態分析 36
3-3-4成形過程應變速率之分析 37
3-3-5成形厚度之預測與假設 37
3-3-6顯微組織觀察 38
第四章 鎂合金AZ31薄板高溫拉伸 51
4-1拉伸特性研究 51
4-1-1 O材不同應變速率拉伸結果 52
4-1-2 H材於不同應變速率拉伸結果 54
4-1-3 AZ31B-O材於不同溫度來探討拉伸結果 55
4-2拉伸試片顯微結構變化研究 56
4-2-1 AZ31B-O與AZ31B-H24原材金相觀察 56
4-2-2 AZ31B-O之拉伸試片顯微組織結構 56
4-2-3 AZ31B-H24之拉伸試片金相觀察 58
4-3 鎂合金高溫變形特性 60
4-3-1 AZ31B-H24高溫應變速率敏感性 60
4-3-2 AZ31B-O高溫應變速率敏感性 61
第五章 氣壓成形實驗 81
5-1 鎂合金AZ31B半球成形分析 81
5-1-1 氣壓成形分析 81
5-2 AZ31-O鎂合金薄板半球成形 83
5-2-1 AZ31B-O成形過程半球幾何形狀分析 83
5-2-2 AZ31B-O材薄板半球成形性 83
5-2-3 鎂合金AZ31B-O半球自由成形特性 84
5-3 AZ31-H24鎂合金薄板半球成形 90
5-3-1 AZ31B-H24成形過程半球幾何形狀分析 90
5-3-2 AZ31B-H24材薄板半球成形性 90
5-3-3 鎂合金AZ31B-H24半球自由成形特性 91
5-4 低溫氣壓成形 95
5-4-1低溫氣壓成形過程半球幾何形狀分析 96
5-4-2低溫氣壓成形性分析 96
5-4-3低溫氣壓厚度變化應變分析 96
5-4-4 低溫氣壓成形之半球微結構分析 97
5-4-5低溫氣壓成形之應變分析 98
5-5 鎂合金AZ31B-O快速氣壓成形之盒狀成形 99
5-5-1傳統母模快速氣壓成形 99
5-5-2改良式公模快速氣壓成形 102
5-5-3 鎂合金快速氣壓成形實作成品 104
5-6平面應變對5083 超塑性鋁合金超塑性變形 104
第六章 結 論 182
參考文獻 184
附錄一 (實驗模具圖) 191
附錄二 (實作成品) 194
作者簡歷 197
(發表期刊論文著作) 197
參考文獻 1. I.J. Polmear, “Recent Developments in Light Alloys”, Mater. Trans., JIM, vol. 37, 1996, p.12.
2. I.J. Polmear, “Magnesium Alloys and Applications”, Mater. Sci. Technol., vol. 10, 1994, p.1.
3. Z. Zhang, A. Couture and A. Luo, “An Investigation of the Properties of Mg-Zn-Al Alloys”, Scripta Materialia., vol.39, 1998, p.45.
4. S. Kaya, T. Altan, P. Groche, C. Kloposch, “Determination of flow stress of magnesium AZ31B-O sheet at elevated temperature using the hydraulic bulge test”, International Journal of Machine Tool & Manufacture 48, 2008, pp.550.
5. Hiroyuki Watanabe, Masao Fukusumi, “Mechanical properties and texture of a superplastically deformed AZ31 magnesium alloy”, 2007, Materials Science and Engineering A.
6. K.F. Zhang, D.L. Yin and D.Z. Wu, “Formability of AZ31 magnesium alloy sheet at warm working conditions”, International Journal of Machine Tool & Manufacture 46, 2006, p.1276.
7. S.M. Fatemi-Varzaneh, A.Zarei-Hanzaki, H.Beladi, “Dynamic recrystallization in AZ31 magnesium alloy”, Materials Science and Engineering A 456, 2007, p.52.
8. A. Mwembela, E.B. Konopleva, and H.J. McQueen, “Microstructural development in Mg alloy AZ31 during hot working”, Scripta Mater.37(11), 1997, p.1789.
9. M.M. Avedesian, H. Baker, ASM Specialty Handbook Magnesium and Magnesium Alloys, Materials Park, OH, ASM International, 1999.
10. Z. Horita, M. Furukawa, K. Ohisif, M. Nemoto and T. G. Langdon:The 4th International Conference on Crystallization and Related Phenomena, Ed. T. Sakai and H. G. Suzuki, The Japan Institute of Metals, 1999, p.301.
11. J.W. Edington, K.N. Melton and C.P. Cutler, “Progress In Mat Sci.”, Vol.21, No2, 1976, p.61.
12. C.H Hamilton, A.K Ghosh and J.A. Wert, “Metals Form”, Vol.8, No.4, 1985, p.172.
13. O.A. Kaibyshev, A.I. Pshenichniuk and V.V. Astanin, “Superplastic resulting from cooperative grain boundary sliding”, Acta mater. Vol. 46, No. 14, 1998, p. 4911.
14. 賴耿陽, “非鐵金屬材料”, 復漢出版社, 新竹, 1998, pp.174~191.
15. ASM, “Magnesium Alloys”, Metals Handbook 9th Edition, Vpl.6, 1985, pp.425~434.
16. T. Lyman and H.E. Boyer, “Metallography, structure and phase diagrams” , Metals Handbook, ASM, vol. 8, 1973, p. 251.
17. G. Neite, K. Kubota, K. Higashi, and F. Hemann, Materials Science and Technology, Vol. 8, 1996, p.113.
18. J.A. Chapman, D.V. Wilson: J. Inst. Metals, 91, 1962-63, p.35.
19. 王建義, “鎂合金板材之壓形加工”, 工業材料雜誌, 170期, 90年2月
20. Yoshinaga, Ft., Horiuchi, R., “Deformation mechanisms in magnesium single crystals compressed in the direction parallel to the hexagonal axis”, Trans. JIM 4, 1963, p.1.
21. Sean R. Agnew, Ozgur Duygulu, “Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B”, International Journal of Plasticity 21, 2005, p.1161.
22. Mordike B L, EBERT T. Magnesium properties applications potential [J]. Mater Sci Eng A, 302(1), 2001, p.37.
23. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama, “Grain-boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523 K”, Mater. Trans. 44, 2003, p.445.
24. R. Panicker, A.H. Chokshi, R.K. Mishra, R. Verma, P.E. Krajewski “Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy”, Acta Materialia 57, 2009, p.3683.
25. J.C.Tan, M.J.Tan., “Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet”, Materials Science and Engineering A, 2002, p.1.
26. Yasumasa Chino, Katsuya Kimura, Mamoru Mabuchi, “Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy”, Materials Science and Engineering A 486, 2008, p.481.
27. D.V. Wilson, J. Inst. Met. 98, 1970, p.133.
28. T. Mukai, M. Yamanoi, H.Watanabe, K. Higashi, Scripta Mater.45, 2001, p.89.
29. Yasumasa Chino, Katsuya Kimura, Mamoru Mabuchi, “Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy”, Materials Science and Engineering A 486, 2008, p.481.
30. J.W. Edington, K.N. Melton and C.P. Cutler, “Superplasticity”, Prog. Mater. Sci., Vol. 21, 1976, p.61.
31. O.D. Sherby and J. Wadsworth, “Superplasticity-Recent Advances and Furture Direction”, Prog. Mater. Sci., Vol. 33, 1989, p.169.
32. G. Rai. and N. J. Grant, “Observations of Grain Boundary Sliding during Superplasticity Deformation”, Metall. Trans., Vol. 14A, 1983, p.1451.
33. M. Zhao and P. Chen, “A Complex Mechanism for Superplastic Deformation of Magnesium Alloys”, Warrendale, PA, Minerals, Metals and Materials Society, 1988, p.67.
34. T.G. Langdon, “An Evaluation of the Strain Contributed by Grain Boundary Sliding in Superplasticity”, Mater. Sci. Eng., A174, 1994, p.225.
35. J.F. Humphreys, “Recrystallization and Recovery”, in Material Science and Technology., Vol.15, ed. by R. W. Cahn, P.Haasen and E. J. Kramer, VCH, 1991, p.371.
36. A. Jäger, P. Lukáˇc, V. Gärtnerová, J. Bohlen, K.U. Kainer, “Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures”, Journal of Alloys and Compounds 378 ,2004, p.184.
37. M.M. Myshlyaev, H.J. McQueen, A. Mwembela, E. Konopleva, “Twinning, dynamic recovery and recrystallization in hot work Mg-Al-Zn alloy”,Materials Science and Engineering A337, 2002, p.121.
38. Robert E. Reed-Hill, Reza Abbaschian, “Physical Metallurgy Principles”, Baker & Taylor Books, 1991.
39. J.F. Humphreys and M. Hatherly, “Recrystallization and related annealing phenomena”, Oxford, UK, Pergamon, Tarrytown, N. Y., U.S.A., 1996, p. 363.
40. S.H. C. Park, Y.S. Sato and H. Kokawa, “Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test”, Scripta Mater., vol. 49, 2003, p.161.
41. Yamaha Motor Co. Ltd, Iwata and Shizuoka, “Dynamic recrystallization and dynamic recovery in pure aluminum at 583 K”, Acta Metall., vol. 43, 1995, p.723.
42. M. Ferry and P.R. Munroe, “The effect of subgrain size on the static recrystallization behavior of an aluminum-based metal-matrix composite”, Scripta Mater., vol. 33, 1995, p.857.
43. M.A. Michael, H. Baker, ASM-Specialty Handbook, ASM International, Materials Park, OH, 1999.
44. J.C. Tan, M.J. Tan, Mater. Sci. Eng. A 339, 2003, p.124.
45. M.R. Barnett, Mater. Sci. Forum 426–432, 2003, p.515.
46. H. Takuda, S. Kikuchi and N. Hatta, “Possibility of Grain Refinement for Superplasticity of Mg-Al-Zn Alloy by Pre-Deformation”, J. Mater. Sci., Vol. 27, 1992, p.937.
47. N. Osada, K. Ohtoshi, M. Katsuta, S. Takahashi and T. Yamada, “The Influence of the Annealing Temperature on Uniaxial and Biaxial Deformation of the AZ31 Magnesium Alloy Sheet”, J. JIM, Vol. 50(2), 2000, p.60.
48. C.A.C.Imbert, H.J.McQueen, “Peak strength, strain hardening and dynamic estoration of A2 and M2 tool steels in hot eformation” [J], Materials Science and Engineering A313, 2001, p.88.
49. T. Mohri, T. Nishiwaki, T. Kinoshita, H. Iwasaki, M. Mabuchi, M. Nakamura, T. Ashina, T. Aizawa and K. Higashi, “Microstructure and Tensile Properties of Rolled Mg-5.5mass%-0.6mass%Zr Alloy”, Mater. Trans., JIM, Vol. 41(9), 2000, p.1154.
50. D. Magers and J. Willekens, “Global Outlook on the Use of Magnesium die-Castings in Automotive Applications”, Proc.
51. B.L. Mordike and K.U. Kainer, Magnesium alloys and their applications, proceedings volume. , Matinfo Werkstoffinformationsgesellschaft, Frankfurt, 1998, p.105.
52. A. Bussiba, A. Ben Artzy, A. Shtechman, Sifergan and M. Kupiec, “Grain Refinement of AZ31 and ZK60 Mg Alloys-Towards Superplasticity Studies”, Mater. Sci. Eng., A302, 2001, p.56.
53. H.J. McQueem, N.D. Ryan, E.V. Konopleva and X. Xia, “Formation and Application of Grain Boundary Serrations”, Can. Metall. Q., Vol. 34(3), 1995, p.219.
54. T. Sakai and J.J. Jonas, “Dynamic Recrystallization: Mechanical a Microstructural Considerations”, Acta Metall., Vol. 32(2), 1984, pp. 189.
55. J.P. Sah, G.J. Richardson and C.M. Sellars, “Grain-Size Effects During Dynamic Recrystallization of Nickel”, Metal. Sci., Vol. 8(10), 1974, p. 333.
56. Yong-Qi Cheng, Hui Zhang, Zhen-Hua Chen, Kui-Feng Xian, “Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation”, 2008, p.29.
57. Z. Marciniak, J.L. Duncan and S.J. Hu, “Mechanics of Sheet Metal Forming”, p129-130, Butterworth-Heinemann.
58. VUKOTA BOLJANOVIC, “Sheet Metal Forming Processes And Die Design”, Industrial press New York
59. J. Wittenauer, W.J. Kim, O.D. Sherby, “Superplastic gas-pressure deformation of iron carbide sheet”, Materials Science and Engineering A194, 1995, p.69.
60. J. Wittenauer, T.G. Nieh and J. Wadsworth, “Superplastic gas-pressure deformation of YTZ sheet”, J. Am. Ceram. Soc., 76(7), 1993, p.1665.
61. S.W. Chung, K. Higashi, W.J. Kim, “Superplastic gas pressure forming of fine-grained AZ61 magnesium alloy sheet”, Materials Science and Engineering A 372, 2004, p.15.
62. Pin-Hou Sun, Horng-Yu Wu, Hsin-Han Tsai, Chih-Chao Huang, Ming-Da Tzou, "Effect of pressurization profile on the deformation characteristics of fine-grained AZ31B Mg alloy sheet during gas blow forming", Journal of Materials Processing Technology 210 ,2010, p.1673.
63. P.-H. Sun, H.-Y. Wu, W.-C. Hsu, H.-H. Tsai, C.-C. Huang and S. Lee, 'Deformation characteristics of fine grained magnesium alloy AZ31B thin sheet during rapid gas blow forming', Materials Science and Technology, Vol 26, NO.9, 2010, p.1095.
64. S. Kaya, T. Altan, P. Groche, C. Klopsch, “Determination of the flow stress of magnesium AZ31-O sheet at elevated temperatures using the hydraulic bulge test” International Journal of Machine Tools & Manufacture 48 , 2008, p.550.
65. Gerhard Gutscher, Hsien-Chih Wu, Gracious Ngaile, Taylan Altan, “Determination of flow stress for sheet metal forming using the viscous pressure bulge (VPB) test”, Journal of Materials Processing Technology 146, 2004, p.1.
66. R. Hill, A Theory of Plastic Bulging of a Metal Diaphragm by Lateral Pressure, Philosophical Magazine Series 7 (41) ,1950, p.1133.
67. W. Panknin, Der Hydraulische Tiefungsversuch und die Ermittlung von Fliesskurven, “The hydraulic bulge test and the determination of the flow stress curves”, Dissertation, Institute for Metal Forming, University of Stuttgart, Germany, 1959.
68. J. Pilling and N. Ridley, 3rd. Int. Aluminum-Lithium Conf. Eds. C. Backer, P.J. Gregson, S.J. Harris, and C.J. Peel, Institute of Metals, London, 1985, p184.
69. D.J. Miller and T.G. Langdon, Trans. JIM, Vol.21, 1980, p123.
70. A.H. Chokshi, J. Mat. Sci. Lett. Vol. 5, 1986, p.144
71. C.C. Bampton and J.W. Edington, Metall. Trans. Vol. 13A, 1982, p.1721
72. P. Shariat, R.B. Vastava and T.G. Langdon, Acta Metall, Vol. 30, 1982, p.258.
73. A.E. Geckinli, Metal Sci, Vol.17, 1983, p.12.
74. R.C. Gifkins, Superplastic Forming of Structural Alloys Eds. N.E. Paton and C.H. Hamilton, TMS-AIME, Warrendale, PA., USA, 1982, p.3
75. J.R. Spingan and W.D. Nix, Acta Metal, Vol.26, 1978, p1389.
76. J. Pilling, B. Geary and N. Ridley, ICSMA 7, Ed. H. J. McQueen and J.P. Bailon, Pergamon Press. Oxford, 1985, p.823
77. Clark, M. A., and C.H. Hamilton, Metallurical Transactions, Vol. p.1195
78. C.H. Hamilton, B.A. Ash, D. Sherwood, and H.C. Heikkinen, Superplasticity Areospace, Ed. H.C. Heikkinen and T.R. McNelley, The Metallurgical Socity, Inc, Warrendale, Pennsylvania, 1988, p.29
79. D. S. Wilkinson and C. H. Caceres, Journal of Material Science Letters, Vol. 3, 1984, p.395
80. S.Y. Lin, Master Thesis, Depatment of Mechanical Engineering, National Central University, Chung-Li, Taiwan, 1991, p.16
81. H.Y. wu, J.T. Chern and S. Lee, Manufacturing, Vol, 10, 1995, p.319
82. R. Raj and M.F. Ashby, Acta Metal, 35, 1987, p1089
83. J.W. Hanconk, Metal Sci., Vol.10, 1976, p.319
84. A.K. Chokshi and T.G. Langdon, Acta Metal, 35, 1987, p.1089
85. N. Ridley, NATO/AGARD Lecture Serirs No.168, Superplasticity, Oct, 1989, Ch.4
86. J. Pilling and N. Ridley, Acta Metal, 34, 1986, p.699
87. D.W. Livesey and N. Ridley, Metal. Sci, Vol. 16, 1982, p.563
88. A. Varloteaux and M. Suery, Superplasticity in Aerospace-Aluminum, Eds. R. Pearce and L. Kelly, SIS, Cranfield, Bedford, England, 1985, p.55
89. C.C. Bampton and R. RAJ, Acta Metal, Vol.30, 1982, p.2043
90. J.Pilling, Mat. Sci. and Technol, Vol.1, 1985, p.461
91. Y.Q. Song J. Zhao, A Mechanical Analysis of the Superplastic Free Buling of Metal Sheet, Materical Science and Engineering 84, 1986, p.111
92. T.G. Nieh, C.H. Henshall, J. Wadsworth, Scripta Metall, 18, 1984, p.1405.
93. T.G. Nieh, P., Gilman, J. Wadsworth, Scripta Metall, 19, 1985, p.1375.
94. M. Mabuchi and K. Higashi, JOM, June, 1998, 34.
95. C.J. Lee, J.C. Huang, Acta Materialia, 52, 2004, p.3111.
96. H.K. Lin, J.C. Huang, T.G. Langdon, Mater. Sci. Eng. A, A402, 2005, p.250.
97. O.D. Sherby and J. Wadsworth: Progr. Mater. Sci., 33, 1989, p.169.
98. O.D. Sherby, M. Burke, Prog. Mater. Sci., 13, 1966, p.323.
99. J.W. Edington, K.N. Melton and C.P. Cutler, Prog. Mater. Sci.21, 1976, p. 67.
100. W.J. Kim, J.D. Park, U.S. Yoon, “Superplasticity and superplastic forming of Mg-Al-Zn alloy sheets fabricated by strip casting method”, J.Alloys Compd. 464, 2008, p.197.
101. J.A. Del Valle, M.T. Perez-Prado, O.A. Ruano, Metall. Mater. Trans., 36A, 2005, p.1427.
102. H. Watanabe, H. Tsutsui, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi, Intern. J. Plast. 17, 2001, p.387.
103. H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi, Acta mater., 47, 1999, p.3753.
104. S.S. Vagarali, T.G. Langdon, Acta Metall., 30, 1982, p.1157.
105. J.J. Blandin, D. Giunchi, M. Suéry, E. Evangelista, Mater. Sc. Tech., 18, 2002, pp.333.
106. Boissiere, S. Terzi, J.J. Blandin, L. Salvo, 6th EUROSPF Conference, EuroSPF08, Carcassonne, France from 3-5 September 2008, p.1.
107. C.F. Martin, J.J. Blandin, L. Salvo, Mater. Sc. Eng. A, A297, 2001, p. 212.
108. F.K. Abu-Farhra, M.K. Khraisheh, Adv. Eng. Mater., 9, 2007, pp.777.
109. D.H. Sastry, Y.V.R.K. Prasad, K.I. Vasu, Scripta Mater., 3, 1969, p.927.
110. Y. Chino, M. Kobata, H. Iwasaki, M. Mabuchi, Acta Mater., 51, 2003, p.3309.
111. H. Somekawa, T. Mukai, Scripta Mater., 54, 2006, 633.
112. H. Watanabe, H. Tsutsui, T. Mukai, H. Ishikawa, Y. Okanda, M. Kohzu, K. Higashi, Mater. Trans., 42, 2001, p.1200.
113. D.L. Yin, K.F. Zhang, G.F. Wang, W.B. Han, Mater.Sci.Eng.A, A392, 2005, p.320.
114. K. Hirai, H. Somekawa, Y. Takigawa and K. Higashi, Scripta Mater., 56, 2007, p.237.
115. Eric M. Taleff, Louis G. Hector Jr., John R. Bradley, Ravi Verma, Paul E. Krajewski, Acta Mater., 57, 2009, p.2812.
116. M. Mabuchi, K. Higashi, Acta Mater., 44, 1996, p.4611.
117. A. Galiyev, R. Kaibyshev, G. Gottstein, Acta mater, 49, 2001, p.1199.
118. X.Y. Yang, M. Sanada, H. Miura, T. Sakai, Mater. Sci. Forum, 488-489, 2005, 223.
119. H. Yoshinaga, R. Horiuchi, Trans. JIM 5 (1963) 14–21.
120. Y.N. Wang, J.C. Huang, “The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy”, Acta Materialia 55, 2007, p.897
121. Yasumasa Chino, Katsuya Kimura, Masataka Hakamada, Mamoru Mabuchi, “Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy”, Materials Science and Engineering A 485, 2008, p.311
122. J. Koike, T. Kobayashi, T. Mukai, H.Watanabe, M. Suzuki, K. Maruyama, K. Higashi, Acta Mater. 51, 2003, p.2055.
123. Yasumasa Chino, Kensuke Sassa, Akira Kamiya, Mamoru Mabuchi, “Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet”, Materials Science and Engineering A 441, 2006, p.349
124. H.J. McQueen, M. Myshlaev, M. Sauerborn and A. Mwembela In: H.I. Kaplan, J. Hryn and B. Clow, Editors, Magnesium Technology 2000, TMMMS, Warrendale, 2000, p. 355.
125. S.B.Yi, J.Bohlen, F.Heinemann, D.Letzig, “Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets”, ActaMater.58, 2010, p.592.
126. R. Panicker, A.H. Chokshi, R.K. Mishra, R. Verma, P.E. Krajewski, “Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy”, Acta Materialia.57, 2009, p.3683.
127. H.Somekawa, K.Hirai, H.Watanabe, Y.Takigawa, K.Higashi, “Dislocation creep behavior in Mg-Al-Zn alloys”, Mater.Sci.Eng.A, 407 ,2005, p.53–61.
128. H.Watanabe, H.Tsutsui, T.Mukai, M.Kohzu, S.Tanabe, K.Higashi, “Deformation Mechanism in a Coarse-Grained Mg-Al-Zn Alloy at Elevated Temperature”, Int.J.Plast.17, 2001, p.387.
129. K. Siegert, S. Jäger and M. Vulcan, “Pneumatic Bulging of Magnesium AZ 31 Sheet Metals at Elevated Temperatures”, CIRP Annals - Manufacturing Technology Volume 52, Issue 1, 2003, p.241.
130. Donato Sorgente, Leonardo Daniele Scintilla, Gianfranco Palumbo, Luigi Tricarico, “Blow forming of AZ31 magnesium alloy at elevated temperatures”, Int J Mater Form, 2010, 3, p.13.
131. M.K. Khraisheha, F.K. Abu-Farhaa, M.A. Nazzala and K.J. Weinmann, “Combined Mechanics-Materials Based Optimization of Superplastic Forming of Magnesium AZ31 Alloy”, CIRP Annals - Manufacturing Technology Volume 55, Issue 1, 2006, p.233.
132. Palaniswamy H, Ngaile G, Altan T. “Finite element simulation of magnesium alloy sheet forming at elevated temperatures”, J Mater Process Technol, 2004,146, p.52.
133. Y.-M. Hwang, H.S. Lay, J.C. Huang, “Study on superplastic blow-forming of 8090 Al–Li sheets in an ellip-cylindrical closed-die”, International Journal of Machine Tools & Manufacture 42, 2002, p1363.
134. Y.M. Hwang, J.M. Liew , T.R. Chen and J.C. Huang, “Analysis of superplastic blow-forming in a circular closed-die”, Journal of Materials Processing Technology 57, 1996, p.360.
指導教授 李雄(Shyong Lee) 審核日期 2011-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明