博碩士論文 963403031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.226.185.44
姓名 邱泳棠(Yung-Tang Chiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 固態氧化物燃料電池連接板用不銹鋼之潛變與熱機疲勞性質研究
(Creep and Thermo-Mechanical Fatigue Properties of Ferritic Stainless Steels for Use in Solid Oxide Fuel Cell Interconnect)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對平板式固態氧化物燃料電池連接板用兩款肥粒鐵系不銹鋼(Crofer 22 APU及Crofer 22 H)之潛變與熱機疲勞性質進行分析。高溫拉伸試驗分別在室溫、600oC、650oC、700oC、750oC及800oC的溫度環境中進行,以建立Crofer 22 APU和Crofer 22 H不銹鋼在上述不同溫度環境下的應力-應變關係。而兩款不銹鋼之潛變試驗分別在650oC、700oC、750oC及800oC進行,以建立基本的潛變應變—時間曲線及應力—斷裂時間曲線,並進一步求得不同應力下第二階段的最小應變率。另外,導入幾種壽命評估分析模式,找出潛變斷裂時間與施加應力或最小應變率的關聯性,以預估兩款不銹鋼的潛變壽命。並比較Crofer 22 APU及Crofer 22 H兩款不銹鋼拉伸及潛變性質,以了解多添加Nb及W微量元素的Crofer 22 H鋼對拉伸性質及潛變機制之影響。此外,Crofer 22 H不銹鋼之異相熱機疲勞試驗在週期性溫度(25oC-800oC)及異相應力作用下進行,而熱機疲勞—潛變交互作用試驗則在800oC最小施加應力給予額外持時100小時,以探討Crofer 22 H不銹鋼於平板式固態氧化物燃料電池長期運轉條件下之耐久機械行為,並定量分析各種損傷機制對此款不銹鋼熱機疲勞壽命的影響程度。
研究結果顯示Crofer 22 APU鋼材之降伏強度隨溫度的變化可藉由S型關係式伴隨不同變形機制得到不錯的描述,其降伏強度在300oC至500oC主要是受到高溫軟化及動態應變時效機制影響,而在700oC以上主要是受到高溫軟化及動態析出機制的交互作用。此外,根據潛變應力指數、活化能及微結構觀察,得知Crofer 22 APU的潛變變形機制主要為擴散控制之差排潛變,而Crofer 22 H的潛變機制乃是差排潛變伴隨即時析出強化效應。比較此兩款金屬連接板材料,發現Crofer 22 H比Crofer 22 APU有較佳的拉伸及潛變強度,此可歸因於Crofer 22 H鋼中Laves相的析出強化效果。而Laves相的粗大化為Crofer 22 H在800oC長時間低應力下抗潛變能力減弱的主要原因。在潛變壽命評估方面,發現利用Monkman-Grant關係式來描述Crofer 22 APU及Crofer 22 H之潛變行為有相當不錯的結果。另外,將不同溫度下的施加應力以抗拉強度正規化後,發現以此正規化參數來預測兩款不銹鋼潛變壽命的結果相當不錯。而利用Larson-Miller關係式來整合兩款不銹鋼之潛變壽命、施加應力與溫度也有不錯的效果。此外,Crofer 22 APU及Crofer 22 H試片經潛變試驗後,破斷面具有許多韌窩之延性破裂特徵。
Crofer 22 H鋼之熱機疲勞研究結果顯示,未持時熱機疲勞負荷下循環壽命數會隨著800oC施加應力的增加而減少,而與室溫時施加應力值幾乎無關。此外,未持時熱機疲勞壽命主要受到週期性高溫軟化塑性變形機制的影響。在持時熱機疲勞負荷方面,於800oC施加應力持時100小時會導致循環壽命數明顯減少,主要歸因於疲勞與潛變機制的加乘作用所致。另外,持時熱機疲勞損傷主要是由潛變與潛變—疲勞交互作用兩種機制所造成,其中的潛變損傷比率會隨著800oC施加應力減少而增加,而隨著循環壽命數增加而上升。
摘要(英) Creep and thermo-mechanical fatigue (TMF) properties of newly developed ferritic stainless steels (Crofer 22 APU and Crofer 22 H) are investigated at 25oC-800oC for use in planar solid oxide fuel cell (pSOFC) interconnect. Tensile properties of both Crofer 22 APU and Crofer 22 H steels are evaluated at temperatures of 25oC to 800oC. Creep properties of the given steels are evaluated by constant-load tests at 650oC to 800oC. Several creep lifetime models are applied to correlate the creep rupture time with applied stress or minimum creep rate. Comprehensive comparisons between Crofer 22 APU and Crofer 22 H steels are made on the tensile strength and creep resistance so as to characterize the influence of additions of refractory elements (Nb and W). Out-of-phase TMF tests as well as TMF-creep interaction tests under various combinations of cyclic mechanical and thermal loadings are conducted at a temperature range of 25oC-800oC for Crofer 22 H to study its long-term durability for applications in pSOFCs.
Experimental results show the variation of yield strength with temperature in Crofer 22 APU can be described by a sigmoidal curve for different deformation mechanisms. According to the creep stress exponent, activation energy, and microstructural observations, a diffusion-controlled dislocation creep mechanism is involved in the creep behavior of Crofer 22 APU steels at 650oC-800oC, while a power-law dislocation creep mechanism interacting with an in-situ precipitation strengthening mechanism is involved in the creep behavior of Crofer 22 H steels at 650oC-800oC. A significantly improved tensile and creep strength of Crofer 22 H over Crofer 22 APU for pSOFC interconnect is observed and attributed to a precipitation strengthening effect of the Laves phase. A significant coarsening of the Laves phase is responsible for a reduced improvement of creep resistance in Crofer 22 H at the low-stress, long-term region of 800oC. In addition, creep rupture time of the Crofer 22 APU and Crofer 22 H steels can be described by a Monkman-Grant relation. The relation between creep rupture time and normalized stress for both steels is well fitted by a universal simple power law for all of the given testing temperatures. Larson-Miller relationship is also applied and shows good results in correlating the creep rupture time with applied stress and temperature for both steels. Fractographic and microstructural observations indicate a ductile, dimpled fracture pattern with considerable necking is identified for the Crofer 22 APU and Crofer 22 H specimens after creep test.
Experimental results of Crofer 22 H steels under TMF loadings show the number of cycles to failure for non-hold-time TMF loading is decreased with an increase in the minimum stress applied at 800oC. There is very little effect of maximum stress applied at 25oC on the number of cycles to failure. The non-hold-time TMF life is dominated by a fatigue mechanism involving cyclic high-temperature softening plastic deformation. A hold-time of 100 h for the minimum stress applied at 800oC causes a significant drop of number of cycles to failure due to a synergistic action of fatigue and creep. Creep and creep-fatigue interaction mechanisms are the two primary contributors to the hold-time TMF damage. The creep damage ratio in the hold-time TMF damage is increased with a decrease in applied stress at 800oC and an increase in number of cycles to failure.
關鍵字(中) ★ 熱機疲勞性質
★ 肥粒鐵系不銹鋼
★ 平板式固態氧化物燃料電池
★ 連接板
★ 潛變
關鍵字(英) ★ Thermo-mechanical fatigue
★ Creep properties
★ Planar solid oxide fuel cell
★ Ferritic stainless steel
★ Interconnect
論文目次 LIST OF TABLES VIII
LIST OF FIGURES IX
LIST OF ABBREVIATIONS XIII
NOMENCLATURE XIV
1. INTRODUCTION 1
1.1 Background 1
1.2 Literature Review 3
1.3 Purpose and Scope 9
2. EXPERIMENTAL PROCEDURES 12
2.1 Materials and Specimen Geometry 12
2.2 Tensile Test 12
2.3 Creep Test 13
2.4 Out-of-Phase TMF Test 14
2.5 Microstructural and Fractography Analyses 15
3. RESULTS AND DISCUSSION 17
3.1 Effect of Temperature on Tensile Strength 17
3.1.1 Crofer 22 APU steel 17
3.1.2 Crofer 22 H steel 19
3.1.3 Comparison of tensile strength between Crofer 22 APU and Crofer 22 H steels 20
3.2 Creep Behavior 21
3.2.1 Crofer 22 APU steel 22
3.2.2 Crofer 22 H steel 24
3.2.3 Comparison of creep behavior between Crofer 22 APU and Crofer 22 H steels 26
3.3 Creep Lifetime Analysis 28
3.3.1 Crofer 22 APU steel 28
3.3.2 Crofer 22 H steel 32
3.3.3 Comparison of creep lifetime between Crofer 22 APU and Crofer 22 H steels 35
3.4 Thermo-Mechanical Fatigue Behavior of Crofer 22 H Steel 35
3.4.1 Thermo-mechanical fatigue without hold time 36
3.4.2 Thermo-mechanical fatigue with a hold time 38
3.4.3 Thermo-mechanical fatigue life and damage analyses 39
3.5 Microstructural and Fractography Analyses 43
3.5.1 Crofer 22 APU steel 43
3.5.2 Crofer 22 H steel 45
3.5.3 Comparison of microstructure between Crofer 22 APU and Crofer 22 H steels 48
3.5.4 Crofer 22 H steel under TMF loadings 52
4. CONCLUSIONS 54
5. APPLICATIONS IN LIFETIME PREDICTION OF SOFC INTERCONNECT 58
REFERENCES 60
TABLES 70
FIGURES 75
PUBLICATIONS 133
參考文獻 1. A. Weber and E. Ivers-Tiffée, “Materials and Concepts for Solid Oxide Fuel Cells (SOFCs) in Stationary and Mobile Applications,” Journal of Power Sources, Vol. 127, pp. 273-283, 2004.
2. H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji, “Recent Developments in Solid Oxide Fuel Cell Materials,” Fuel Cells, Vol. 1, pp. 117-131, 2001.
3. W. Z. Zhu and S. C. Deevi, “A Review on the Status of Anode Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering, Vol. A 362, pp. 228-239, 2003.
4. K. Kendall, N. Q. Minh, and S. C. Singhal, “Cell and Stack Designs,” Chapter 8 in High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, edited by S. C. Singhal and K. Kendall, Elsevier, Kidlington, UK, 2003.
5. N. Q. Minh, “Solid Oxide Fuel Cell Technology-Features and Applications,” Solid State Ionics, Vol. 174, pp. 271-277, 2004.
6. H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji, “Recent Developments in Solid Oxide Fuel Cell Materials,” Fuel Cells, Vol. 1, pp. 117-131, 2001.
7. T.-L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Hie, and W. Huang, “Material Research for Planar SOFC Stack,” Solid State Ionics, Vol. 148, pp. 513-519, 2002.
8. P. A. Lessing, “A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells,” Journal of Materials Science, Vol. 42, pp. 3465-3476, 2007.
9. I. W. Donald, “Preparation, Properties and Chemistry of Glass- and Glass-Ceramic-to-Metal Seals and Coatings.” Journal of Materials Science, Vol. 28, pp. 2841-2886, 1993.
10. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, pp. 46-57, 2005.
11. K. S. Weil, “The State-of-the-Art in Sealing Technology for Solid Oxide Fuel Cells,” JOM Journal of the Minerals, Metals and Materials Society, Vol. 58, pp. 37-44, 2006.
12. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, pp. 238-251, 2007.
13. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,” Journal of Power Sources, Vol. 192, pp. 515-524, 2009.
14. W. Z. Zhu and S. C. Deevi, “Development of Interconnect Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering, Vol. 348, pp. 227-243, 2003.
15. N. Q. Minh, C. R. Horne, F. S. Liu, D. M. Moffatt, P. R. Staszak, T. L. Stillwagon, and J. J. VanAckeren, “Fabrication and Characterization of Monolithic Solid Oxide Fuel Cells,” pp. 230-234 in Proceedings of the Twenty Fifth Intersociety Energy Conversion Engineering Conference, Vol. 13, American Institute of Chemical Engineers, New York, 1990.
16. S. C. Singhal, “Progress in Tubular Solid Oxide Fule Cell Technology,” pp. 39-51 in Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells, edited by S.C. Singhal and M. Dokiya, Honolulu, Hawaii, Octocber 17-22, 1999.
17. N. Q. Minh, “Ceramic Fuel Cells,” Journal of the American Ceramic Society, Vol. 76, pp. 563-588, 1993.
18. S. P. S. Badwal, “Stability of Solid Oxide Fuel Cell Components,” Solid State Ionics, Vol.143, pp. 39-46, 2001.
19. H. Tsuneizumi, “Development of Solid Oxide Fuel Cell with Metallic Separator,” pp. 293-296 in Proceedings of the International Fuel Cell Conference, NEDO/MITI, Tokyo, Japan, 1992.
20. J. H. Hirschenhofer, D. B. Stauffer, R. R. Engleman, and M. G. Klett, Fuel Cell Handbook, U.S. Department of Energy, Morgantown, West Virginia, USA, p. 13, 1998.
21. I. G. Wright, B. A. Pint, C. S. Simpson, and P. F. Tortorelli, “The High-Temperature Oxidation Behavior of ODS-Fe3Al,” Materials Science Forum, Vols. 251-254, pp. 195-202, 1997.
22. K. Foger, R. Donelson, and R. Ratnarj, “Demonstration of Anode Supported Cell Technology in KW Class Stack,” pp. 95-100 in Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells, edited by S. C. Singhal and M. Dokiya, Honolulu, Hawaii, Octocber 17-22, 1999.
23. M. Hsu, “Zirconia Fuel Cell Power System,” p. 115 in Abstracts of Fuel Cell Seminar, Tucson, Arizona, May 19-22, 1985.
24. A. Pramuanjaroenkij, S. Kakac, and X.-Y. Zhou, “Mathematical Analysis of Planar Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy, Vol. 33, pp. 2547-2565, 2008.
25. S. Linderoth, P. V. Hendriksen, M. Mogensen, and N. Langvad, “Investigations of Metallic Alloys for Use as Interconnects in Solid Oxide Fuel Cell Stacks,” Journal of Materials Science, Vol. 31, pp. 5077-5082, 1996.
26. W. J. Quadakkers, H. Greiner, and W. Kock, “Metals and Alloys for High Temperature SOFC Application,” pp. 525-541 in Proceedings of the First European Solid Oxide Fuel Cell Forum, Vol. 1, edited by V. Bossel, Lucerne, Switzerland, Octocber 3-7, 1994.
27. S. Taniguchi, M. Kadowaki, H. Kawamura, T. Yasuo, Y. Akiyama, Y. Miyake, and T. Saitoh, “Degradation Phenomena in the Cathode of a Solid Oxide Fuel Cell with an Alloy Separator,” Journal of Power Sources, Vol. 55, pp. 73-79, 1995.
28. J. W. Fergus, “Effect of Cathode and Electrolyte Transport Properties on Chromium Poisoning in Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy, Vol. 32, pp. 3664-3671, 2007.
29. J. W. Fergus, “Metallic Interconnects for Solid Oxide Fuel Cells,” Materials Science and Engineering, Vol. A 397, pp. 271-283, 2005.
30. W. J. Quadakkers, J. Piron-Abellan, V. Shemet, and L. Singheiser, “Metallic Interconnectors for Solid Oxide Fuel Cells-a Review,” Materials at High Temperatures, Vol. 20, pp. 115-127, 2003.
31. K. Huang, P. Hou, and J. Goodenough, “Characterization of Iron-based Alloy Interconnects for Reduced Temperature Solid Oxide Fuel Cells,” Solid State Ionics, Vol. 129, pp. 237-250, 2000.
32. Z. G. Yang, K. S. Weil, D. M. Paxton, and J. W. Stevenson, “Selection and Evaluation of Heat-Resistant Alloys for Planar SOFC Interconnect Applications,” pp. 522-525 in 2002 Fuel Cell Seminar: Fuel Cells-Reliable, Clean Energy for the World FC Seminar, Palm Springs, California, November 19-21, 2002.
33. S. Linderoth and P. H. Larsen, “Investigations of Fe-Cr Ferritic Steels as SOFC Interconnect Material,” pp. 325-330 in Proceedings of New Materials for Batteries and Fuel Cells Materials Symposium, edited by D. H. Doughty, L. F. Nazar, M. Arakawa, H. P. Brack, and K. Naoi, , San Francisco, California, USA, April 5-8, 1999.
34. I. Antepara, I. Villarreal, L. M. Rodr′ıguez-Mart′ınez, N. Lecanda, U. Castro, and A. Laresgoiti, “Evaluation of Ferritic Steels for Use as Interconnects and Porous Metal Supports in IT-SOFCs,” Journal of Power Sources, Vol. 151, pp. 103-107, 2005.
35. H. Nabielek, “Review of SOFC Manufacturing Technologies,” in Proceedings of Taiwan SOFC Workshop, edited by C.-B. Ma, Longtan, Taiwan, June 6-8, 2006.
36. K. Fujita, K. Ogaswara, Y. Matsuzaki, and T. Sakurai, “Prevention of SOFC Cathode Degradation in Contact with Cr-Containing Alloy,” Journal of Power Sources, Vol. 131, pp. 261-269, 2004.
37. S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, and M. Sennour, “Metallic Interconnects for SOFC: Characterisation of Corrosion Resistance and Conductivity Evaluation at Operating Temperature of Differently Coated Alloys,” Journal of Power Sources, Vol. 171, pp. 652-662, 2007.
38. L. Mikkelsen, M. Chen, P. V. Hendriksen, A. Persson, N. Pryds, and K. Rodrigo, “Deposition of La0.8Sr0.2Cr0.97V0.03O3 and MnCr2O4 Thin Films on Ferritic Alloy for Solid Oxide Fuel Cell Application,” Surface and Coatings Technology, Vol. 202, pp. 1262-1266, 2007.
39. X. Montero, F. Tietz, D. Sebold, H. R. Buchkremer, A. Ringuede, M. Cassir, A. Laresgoiti, and I. Villarreal, “MnCo1.9Fe0.1O4 Spinel Protection Layer on Commercial Ferritic Steels for Interconnect Applications in Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 184, pp. 172-179, 2008.
40. N. Shaigan, W. Qu, D. G. Ivey, and W. Chen, “A Review of Recent Progress in Coatings, Surface Modifications and Alloy Developments for Solid Oxide Fuel Cell Ferritic Stainless Steel Interconnects,” Journal of Power Sources, Vol. 195, pp. 1529-1542, 2010.
41. K. P. Recknagle, R. E. Williford, L. A. Chick, D. R. Rector, and M. A. Khaleel, “Three-Dimensional Thermo-Fluid Electochemical Modeling of Planar SOFC Stacks,” Journal of Power Sources, Vol. 113, pp. 109-114, 2003.
42. P. Lamp, J. Tachtler, O. Finkenwirth, S. Mukerjee, and S. Shaffer, “Development of an Auxiliary Power Unit with Solid Oxide Fuel Cells for Automotive Applications,” Fuel Cells, Vol. 3, pp. 146-152, 2003.
43. H. Apfel, M. Rzepka, H. Tu, and U. Stimming, “Thermal Start-up Behaviour and Thermal Management of SOFC’s,” Journal of Power Sources, Vol. 154, pp. 370-378, 2006.
44. H. Kurokawa, K. Kawamura, and T. Maruyama, “Oxidation Behavior of Fe-16Cr Alloy Interconnect for SOFC under Hydrogen Potential Gradient,” Solid State Ionics, Vol. 168, pp. 13-21, 2004.
45. Z. Yang, G.-G. Xia, M. S. Walker, C.-M. Wang, J. W. Stevenson, and P. Singh, “High Temperature Oxidation/Corrosion Behavior of Metals and Alloys under a Hydrogen Gradient,” International Journal of Hydrogen Energy, Vol. 32, pp. 3770-3777, 2007.
46. S. J. Geng, J. H. Zhu, and Z. G. Lu, “Evaluation of Haynes 242 Alloy as SOFC Interconnect Material,” Solid State Ionics, Vol. 32, pp. 559-568, 2006.
47. P. E. Gannon, C. T. Tripp, A. K. Knospe, C. V. Ramana, M. Deibert, R. J. Smith, V. I. Gorokhovsky, V. Shutthanandan, and D. Gelles, “High-Temperature Oxidation Resistance and Surface Electrical Conductivity of Stainless Steels with Filtered Arc Cr-Al-N Multilayer and/or Superlattice Coatings,” Surface and Coatings Technology, Vols. 188-189, pp. 55-61, 2004.
48. S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, and M. Sennour, “Metallic Interconnects for SOFC: Characterisation of Corrosion Resistance and Conductivity Evaluation at Operating Temperature of Differently Coated Alloys,” Journal of Power Sources, Vol. 171, pp. 652-662, 2007.
49. J. Froitzheim, G. H. Meier, L. Niewolak, P. J. Ennis, H. Hattendorf, L. Singheiser, and W. J. Quadakkers, “Development of High Strength Ferritic Steel for Interconnect Application in SOFCs,” Journal of Power Sources, Vol. 178, pp. 163-173, 2008.
50. B. Kuhn, C. A. Jimenez, L. Niewolak, T. Hüttel, T. Beck, H. Hattendorf, L. Singheiser, and W. J. Quadakkers, “Effect of Laves Phase Strengthening on the Mechanical Properties of High Cr Ferritic Steels for Solid Oxide Fuel Cell Interconnect Application,” Materials Science and Engineering, Vol. A 528, pp. 5888-5899, 2011.
51. N. Fujita, K. Ohmura, M. Kikuchi, T. Suzuki, S. Funaki, and I. Hiroshige, “Effect of Nb on High-temperature Properties for Ferritic Stainless Steel,” Scripta Materialia, Vol. 35, pp. 705-710, 1996.
52. T. Onizawa, T. Wakai, M. Ando, and K. Aoto, “Effect of V and Nb on Precipitation Behavior and Mechanical Properties of High Cr Steel,” Nuclear Engineering and Design, Vol. 238, pp. 408-416, 2008.
53. G.-M. Sim, J.-C. Ahn, S.-C. Hong, K.-J. Lee, and K.-S. Lee, “Effect of Nb Precipitate Coarsening on the High Temperature Strength in Nb Containing Ferritic Stainless Steels,” Materials Science and Engineering, Vol. A 396, pp. 159-165, 2005.
54. F. Abe, “Creep Rates and Strengthening Mechanisms in Tungsten-Strengthened 9Cr Steels,” Materials Science and Engineering, Vols. A 319-321, pp. 770-773, 2001.
55. J. Hald, “Metallurgy and Creep Properties of New 9-12%Cr Steels,” Steel Research, Vol. 67, pp. 369-374, 1996.
56. Material Data Sheet No. 4046: Crofer 22 APU, http://www.thyssenkruppvdm.Com/en/downloads/data-sheets/?no cache=1 (accessed 10.10.11).
57. Material Data Sheet No. 4050: Crofer 22 H, http://www.thyssenkruppvdm.com/en/downloads/data-sheets/?no cache=1 (accessed 10.10.11).
58. L. Paul, H. Hattendorf, L. Niewolak, B. Kuhn, O. Ibas, and W. J. Quadakkers, “Crofer 22 H-a New High Strength Ferritic Steel for Interconnectors in SOFCs,” in Proceedings of the 2010 Fuel Cell Seminar and Exposition, San Antonio, TX, USA, October, 2010.
59. Y.-P. Chyou, T.-D. Chung, J.-S. Chen, and R.-F. Shie, “Integrated Thermal Engineering Analyses with Heat Transfer at Periphery of Planar Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 139, pp. 126-140, 2005.
60. “Standard Test Method for Tension Testing of Metallic Materials,” ASTM Standard E8/E8M-09, ASTM International, West Conshohocken, PA, USA, pp. 1-27, 2009.
61. T. R. McNelly and S. F. Gates, “Inverse Strain-Rate Sensitivity and the Portevin-Le Chatelier Effect,” Acta Metallurgica, Vol. 26, pp. 1605-1614, 1978.
62. L. P. Kubin, K. Chihab, and Y. Estrin, “The Rate Dependence of the Portevin-Le Chatelier Effect,” Acta Metallurgica, Vol. 36, pp. 2707-2718, 1988.
63. J. Chen, B. Young, and B. Uy, “Behavior of High Strength Structural Steel at Elevated Temperatures,” Journal of Structural Engineering, Vol. 132, pp. 1948-1954, 2006.
64. J. Chen and B. Young, “Design of High Strength Steel Columns at Elevated Temperatures,” Journal of Constructional Steel Research, Vol. 64, pp. 689-703, 2008.
65. J. D. Baird and A. Jamieson, “Effects of Manganese and Nitrogen on the Tensile Properties of Iron in the Range 20-600oC,” Journal of the Iron and Steel Institute, Vol. 204, pp. 793-803, 1966.
66. H. Yan, H. Bi, X. Li, and Z. Xu, “Precipitation and Mechanical Properties of Nb-Modified Ferritic Stainless Steel During Isothermal Aging,” Materials Characterization, Vol. 60, pp. 204-209, 2009.
67. S.-G. Hong, W.-B. Lee, and C.-G. Park, “The Effects of Tungsten Addition on the Microstructural Stability of 9Cr-Mo Steels,” Journal of Nuclear Materials, Vol. 288, pp. 202–207, 2001.
68. N. Fujita, K. Ohmura, and A. Yamamoto, “Changes of Microstructures and High Temperature Properties During High Temperature Service of Niobium Added Ferritic Stainless Steels,” Materials Science and Engineering, Vol. A 351, pp. 272-281, 2003.
69. K. Yamamoto, Y. Kimura, F.-G. Wei, and Y. Mishima, “Design of Laves Phase Strengthened Ferritic Heat Resisting Steel in Fe-Cr-Nb(-Ni) System,” Materials Science and Engineering, Vols. A 329-331, pp. 249-254, 2002.
70. A. Miyazaki, K. Takao, and O. Furukimi, “Effect of Nb on the Proof Strength of Ferritic Stainless Steels at Elevated Temperatures,” Iron and Steel Institute of Japan International, Vol. 42, pp. 916-920, 2002.
71. A. K. Mukherjee, J. E. Bird, and J. E. Dorn, “Experimental Correlation for High-Temperature Creep,” Transactions of the American Society for Metals, Vol. 62, pp. 155-179, 1969.
72. N. E. Dowling, Mechanical Behavior of Materials, 3rd Ed., Pearson Education, Inc., New Jersey, USA, 2007.
73. K. Maruyama, H. Ghassemi Armaki, R. P. Chen, K. Yoshimi, M. Yoshizawa, and M. Igarashi, “Cr Concentration Dependence of Overestimation of Long Term Creep Life in Strength Enhanced High Cr Ferritic Steels,” International Journal of Pressure Vessels and Piping, Vol. 87, pp. 276-281, 2010.
74. E. Arzt and D. S. Wilkinson, “Threshold Stresses for Dislocation Climb over Hard Particles: The Effect of an Attractive Interaction,” Acta Metallurgica, Vol. 34, pp. 1893-1898, 1986.
75. S. C. Tjong and Z. Y. Ma, “Creep Behaviour of Ferritic Fe-19Cr-4Ni-2Al Alloy,” Materials Letters, Vol. 56, pp. 59-64, 2002.
76. G. Schoeck, “The Activation Energy of Dislocation Movement,” Physica Status Solidi, Vol. 8, pp. 499-507, 1965.
77. F. C. Monkman and N. J. Grant, “An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests,” Proceedings of the American Society of Testing and Materials, Vol. 56, pp. 593-620, 1956.
78. P. J. Ennis and A. Czyrska-Filemonowicz, “Recent Advances in Creep Resistant Steels for Power Plant Applications,” Power Plants: Operation, Maintenance and Material Issues, Vol. 1, pp. 1-28, 2002.
79. M. E. Kassner and T. A. Hayes, “Cavitation in Metals,” International Journal of Plasticity, Vol. 19, pp. 1715-1748, 2003.
80. P. F. Giroux, F. Dalle, M. Sauzay, J. Malaplate, B. Fournier, and A. F. Gourgues-Lorenzon, “Mechanical and Microstructural Stability of P92 Steel under Uniaxial Tension at High Temperature”, Materials Science and Engineering, Vol. A 527, pp. 3984-3993, 2010.
81. M. A. Sokolov, D. T. Hoelzer, R. E. Stoller, and D. A. McClintock, “Fracture Toughness and Tensile Properties of Nano-Structured Ferritic Steel 12YWT,” Journal of Nuclear Materials, Vols. 367-370, pp. 213-216, 2007.
82. F. Colombo, E. Mazza, S. R. Holdsworth, and R. P. Skelton, “Thermo-Mechanical Fatigue Tests on Uniaxial and Component-Like 1CrMoV Rotor Steel Specimens,” International Journal of Fatigue, Vol. 30, pp. 241-248, 2008.
83. D.-Q. Shi, J.-L. Liu, X.-G. Yang, H.-Y. Qi, and J.-K. Wang, “Experimental Investigation on Low Cycle Fatigue and Creep–Fatigue Interaction of DZ125 in Different Dwell Time at Elevated Temperatures,” Materials Science and Engineering, Vol. A 528, pp. 233-238, 2010.
84. J. W. Morris, “The Influence of Grain Size on the Mechanical Properties of Steel,” pp. 34-41 in Proceedings of International Symposium on Ultrafine Grained Steels, edited by S. Takaki and T. Maki, Iron and Steel Institute, Tokyo, Japan, 2001.
85. C. R. Barrett, J. L. Lytton, and O. D. Sherby, “Effect of Grain Size and Annealing Treatment on Steady State Creep of Copper,” Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, Vol. 239, pp. 170-180, 1967.
86. X.-F Shi and G. -G. Cheng, “Study on Mechanism of TiN Formation and Precipitation in 430 Stainless Steel,” Steelmaking, Vol. 24, pp. 36-39, 2008.
87. D.-S. Bae, M.-H. Hong, and K. Miyahara, “TEM Investigation of the Interaction Between Dislocation and Nitride Precipitates in Deformed High Manganese-Chromium Austenitic Steels,” Solid State Communications, Vol. 125, pp. 347-350, 2003.
88. M.-H. Yoo and H. Trinkaus, “Crack and Cavity Nucleation at Interfaces During Creep,” Metallurgical and Materials Transactions, Vol. A 14, pp. 547-561, 1983.
89. A. S. Argon, I.-W. Chen, and C.-W. Lau, “Intergranular Cavitation in Creep: Theory and Experiments,” pp. 46-83 in Creep-Fatigue-Environment Interactions, edited by R. M. Pelloux and N. S. Stoloff, American Institute of Mining, Metallurgical and Petroleum Engineers, New York, USA, 1980.
90. A. J. Craven, K. He, L. A. J. Garvie, and T. N. Baker, “Complex Heterogeneous Precipitation in Titanium-Niobium Microalloyed Al-Killed HSLA Steels-I. (Ti,Nb)(C,N) Particles,” Acta Materialia, Vol. 48, pp. 3857-3868, 2000.
91. X.-J. Zhuoa, X.-H. Wang, W.-J. Wang, and H.-G. Lee, “Nature of Large (Ti,Nb)(C,N) Particles Precipitated During the Solidification of Ti,Nb HSLA Steel ,” Journal of University of Science and Technology Beijing, Vol. 14, pp. 112-117, 2007.
92. S.-Q. Yuan and G.-L. Liang, “Dissolving Behaviour of Second Phase Particles in Nb-Ti Microalloyed Steel,” Materials Letters, Vol. 63, pp. 2324-2326, 2009.
93. W.-Q. Wei, H.-W. Wang, Z.-X. Gau, and Z.-J. Wei, “Microstructure Evolution of As-Cast Nb-Ti-C Alloys,” Transactions of Nonferrous Metals Society of China, Vol. 19, pp. s440-s443, 2009.
94. J.-N. Moon, S.-H. Kim, H.-C. Jeong, J.-B. Lee, and C.-H. Lee, “Influence of Nb Addition on the Particle Coarsening and Microstructure Evolution in a Ti-Containing Steel Weld HAZ,” Materials Science and Engineering, Vols. A 454-455, pp. 648-653, 2007.
95. H. Cui, F. Sun, K. Chen, L.-T. Zhang, R.-C. Wan, A.-D. Shan, and J.-S. Wu, “Precipitation Behavior of Laves Phase in 10%Cr Steel X12CrMoWVNbN10-1-1 During Short-Term Creep Exposure,” Materials Science and Engineering, Vol. A 527, pp. 7505-7509, 2010.
96. D. R. Askeland and P. P. Fulay, Essentials of Materials Science and Engineering, 2nd Ed., Cengage Learning, Inc., Florida, USA, 2010.
97. J. Hald and Z. Kubon, “Thermodynamic Prediction of Microstructure,” pp. 159-178 in Microstructural Development and Stability in High Chromium Ferritic Power Plant Steels, edited by A. Strang and D. J. Gooch, Institute of Materials, Cambridge, USA, 1997.
98. V. Sklenicka, K. Kucharova, M. Svoboda, L. Kloc, J. Bursik, and A. Kroupa, “Long-Term Creep Behavior of 9-12%Cr Power Plant Steels,” Materials Characterization, Vol. 51, pp. 35-48, 2003.
99. N. Tsuji, Y. Matsubara, and Y. Saito, “Dynamic Recrystallization of Ferrite in Interstitial Free Steel,” Scripta Materialia, Vol. 37, pp. 477-484, 1997.
100. N. Tsuji, Y. Saito, and T. Maki, “Nucleation Condition of Dynamic Recrystallization in Ferritic Iron,” pp. 253-258 in The Fourth International Conference on Recrystallization and Related Phenomena, edited by T. Sakai and H. G. Suzuki, The Japan Institute of Metals, Japan, , 1999.
101. G. R. Stewart, J. J. Jonas, and F. Montheillet, “Kinetics and Critical Conditions for the Initiation of Dynamic Recrystallization in 304 Stainless Steel,” Iron and Steel Institute of Japan International, Vol. 44, pp. 1581-1589, 2004.
102. G. R. Stewart, A. M. Elwazri, S. Yue, and J. J. Jonas, “Modelling of Dynamic Recrystallisation Kinetics in Austenitic Stainless and Hypereutectoid Steels,” Materials Science and Technology, Vol. 22, pp. 519-524, 2006.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2012-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明