博碩士論文 963404001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.148.107.131
姓名 蔡介中(Chieh-chung Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討光品質和漁業廢棄物對Chlorella sp. 和Saccharomyces cerevisiae 共培養生產油脂之影響
(Effects of light quality and fish waste on the accumulation of oil in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 小球藻 (Chlorella) 相較於陸生產油作物如棕梠、痲瘋樹、大豆和油菜籽而言,小球藻具有較高的含油量且較短的生長時間,因此小球藻乃生質柴油料源之首要選擇。
小球藻 (Chlorella) 和 酵母菌 (Saccharomyces cerevisiae) 混合培養是一種創新的發酵策略,和傳統式微藻單一培養相比較,小球藻 (Chlorella) 和 酵母菌 (S. cerevisiae) 混合培養不僅可增加二氧化碳固定效率同時增加油脂產量。
小球藻 (Chlorella) 和 酵母菌 (S. cerevisiae) 混合培養主要是一種共生關係,經由實驗結過顯示,細胞乾重和油脂含量相較於微藻單一培養分別增加128.1 % 和165.2% 達1884 mg L-1 和358 mg L-1 。在不同光強度實驗中,光強度範圍介於1000 lux到8000 lux,光強度對混合培養下細胞生長和產物生成之影響非常顯著,且不同的光強度有不同的影響;最適合細胞生長的光強度為5000 lux,而8000 lux下具有最佳之單位生物質量對產物之轉化率。同時,共培養的二氧化碳固定速率可達到64.76 mg L-1 h-1和導入空氣且單一培養之小球藻 (Chlorella) 實驗結果相比較可提升195 %。在生質柴油品質分析部分,利用混合培養所生產之生質柴油具有較低之不飽和度,相較於微藻單一培養之生質柴油品質,混合培養之生質柴油具有較高品質之氧化穩定性和點火延遲時間特性。
在文獻上,不論是單一培養或混合培養,光品質對於微藻生成油脂的影響都相當的模糊不一致,本研究利用不同光波長和強度之LED光生物反應器用以提出具成本效益的油脂生產操作策略。在不同光條件下,小球藻 (Chlorella) 和酵母菌 (S. cerevisiae) 混合培養之油脂產量均高於單一培養之油脂產量。在光品質對混合培養的實驗結果指出,最適合Biomass生長的光波長和強度分別為紅光1000 lux,而最適合油脂生成的光條件則是藍光1000 lux。由於發酵條件上的差異,本研究提出一種創新二階段LED光操作策略,實驗結果得到了最佳的產物濃度和產率分別為261 mg L-1和8.16 mg L-1 h-1。兩階段光控制發酵程序相較於藍光1000 lux培養其產率可提升96 %,相較於紅光1000 lux培養其產率可提升10 %。本研究成功得證明使用創新的二階段LED光操作策略進行混合培養實驗可達到最佳的微藻生產油之效益。
相較於微藻修飾瓦因培養基 (modified Walne’s medium),廢棄魚內臟水解培養基 (fish waste hydrolysate, FWH) 運用在微藻生產油脂上更具經濟效益。利用廢棄魚內臟水解培養基作為混合培養之營養源其最佳之最佳產物濃度和產率分別為1154 mg L-1和20.61mg L-1 h-1,和微藻修飾瓦因培養基相比較,其分別增加222 % 和176 %。考量低成本的優點,廢棄魚內臟水解培養基將是個具發展潛力的營養源同時亦可取代商業複合培養基,此外,廢棄魚內臟水解培養基也兼具環保特性。
摘要(英) Chlorella strains as compared to terrestrial oil crops such as palm, jatropha, soybean and rapeseed having higher oil content and shorter generation time have been considered as the promising candidates for alternative biodiesel.
Mixed culture of Chlorella sp. and Saccharomyces cerevisiae was proposed as a novel strategy for enhancing CO2 biofixation rate and oil formation as compared with the traditional monoculture of microalgae.
A symbiotic relationship was observed between S. cerevisiae and Chlorella sp., resulting in the improvements of cellular biomass and oil accumulation reached 128.1 % and 165.2 %, respectively. Influence of light intensity ranging from 1000 to 8000 lux on the cell growth and product formation of the mixed culture was significant but different; the optimal light intensity for cell growth was at 5000 lux, but the highest specific product yield was at 8000 lux. The CO2 biofixation rate of a mixed culture reached 64.76 mg L-1 h-1, which was 195 % improvement as compared to that of the monoculture of Chlorella sp. aerated with air. The biodiesel from the mixed culture would show low degree of unsaturation (71.74), resulting in better quality in terms of oxidative stability and ignition delay time property as compared to those from the monoculture.
Since the influence of light quality on oil formation of microalgae in either monoculture or mixed culture in literature was either inconsistent or ambiguous, a light-emitting diode (LED) photo-bioreactor with different light sources and intensities was used in this study to propose a cost-effective lipid production process. The oil accumulation in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae was higher than that of the monoculture in spite of different light sources used. Results of the influence of light quality on the mixed culture indicated that the optimal light wavelength and intensity for biomass formation was red LED light at 1000 lux, whereas the optimum for oil formation was blue LED light at 1000 lux. A novel two-stage LED photo-bioreactor was thus proposed and the highest Pmax and productivity in this section were obtained as 261 mg L−1 and 8.16 mg L−1 h−1, respectively. The improvements of the productivity of the two-stage light control fermentation process over the cultures of blue LED light and red LED light under 1000 lux were 96% and 10%, respectively. A novel two-stage LED photo-bioreactor of a mixed culture was proposed to optimize microalgal oil production and successfully demonstrated in this study.
Compared with the modified Walne’s medium, the fish waste hydrolysate (FWH) medium had more efficiency in biodiesel production. The highest product concentration and productivity in this section were obtained as 1154 mg L−1 and 20.61 mg L−1 h−1, respectively. The improvement of product concentration and productivity of FWH medium condition were 222 % and 176 %, respectively, as compared with Walne’s medium condition. Considering its low-cost, FWH medium could be a potential nutrient and a substitute for commercial complex medium, with an environmental solution in addition.
關鍵字(中) ★ 小球藻
★ 微藻
★ 共培養
★ 光
關鍵字(英) ★ Chlorella
★ Microalgae
★ Mixed-culture
★ Light
論文目次 摘要 i
Abstract iv
目錄 vii
圖目錄 xi
表目錄 xiv
第一章 緒論 1
1.1研究背景 1
1.2研究目的 3
第二章 文獻回顧 4
2-1 微藻 4
2-1.1 微藻介紹 4
2-1.2 小球藻介紹 5
2-1.3 微藻培養環境因子 7
2-1.4 微藻培養模式 12
2-1.5光合作用 15
2-1.6微生物光反應器 23
2-2 釀酒酵母菌 27
2-3 生物燃料介紹 29
2-3.1微藻生質柴油介紹 30
2-3.2生質柴油品質評估 37
2-4 漁業加工廢棄物再利用 46
2-5 生物精煉概念 49
第三章 實驗規劃、材料與方法 53
3-1 實驗規劃 53
3-2 實驗材料 54
3-2.1 實驗菌株 54
3-2.2實驗藥品 56
3-2.3實驗儀器與設備 58
3-3實驗方法 60
3-3.1 菌種保存 60
3-3.2培養基組成 60
3-3.3 發酵槽培養實驗 66
3-4 分析方法 70
3-4.1 分析流程 70
3-4.2 細胞乾重及細胞密度對光學密度之檢量線 71
3-4.3 細胞密度對葉綠素吸收值之檢量線 73
3-4.4 油脂定量 74
3-4.5 脂肪酸成分分析 75
3-4.6 有機酸分析 77
3-4.7 固碳效率之計算 79
3-4.8 不飽和度及十六烷值之計算 79
3-5 統計分析 80
第四章 探討白光強度對於混合培養生產油脂之影響 81
4-1 培養基修飾 81
4-2 微藻與酵母菌發酵動力學 84
4-3 混合培養發酵動力學 87
4-4 不同白光強度對於混合培養之影響 91
4-5 微藻於不同培養條件及白光強度下之固碳效率 93
4-6 生質柴油特性評估 96
4-6.1單一培養和混合培養模式生產之生質柴油特性評估 96
4-6.2不同白光強度混合培養生產之生質柴油特性評估 99
4-7 結論 103
第五章 探討光波長對於混合培養生產油脂之影響 105
5-1葉綠素吸收波長與光波長之關聯性 105
5-2光反應器設計 107
5-3藍色LED光對於混合培養之影響 109
5-4綠色LED光對於混合培養之影響 111
5-5紅色LED光對於混合培養之影響 113
5-6藍光LED和紅光LED培養模式之發酵動力曲線 115
5-7兩階段發酵結果與動力曲線 118
5-8 生質柴油特性評估 124
5-9 結論 128
第六章 探討廢棄魚內臟水解培養基對於混合培養生產油脂之影響 130
6-1 培養基比較 131
6-2 不同廢棄魚內臟水解培養基濃度對於混合培養之影響 132
6-3 混合培養發酵動力學 134
6-4 微藻Chlorella sp. 之異營培養與混營培養 136
6-5有機酸代謝與利用 139
6-6 生質柴油特性評估 142
6-7 結論 146
第七章 總結與建議 148
7-1 總結 148
7-2 建議 150
參考文獻 151
參考文獻 Atadashi I.M., Aroua M.K., Aziz A.A., 2010. High quality biodiesel and its diesel engine application: A review. Renewable and Sustainable Energy Reviews 14, 1999-2008.
Aguilera J., Gordillo F.J.L., Karsten U., Figueroa F.L., Niell F.X., 2000. Light quality effect on photosynthesis and effciency of carbon assimilation in the red alga Porphyra leucosticta. Journal of Plant Physiology. 157, 86-92.
Beer L.L., Boyd E.S., Peters J.W., Posewitz M.C., 2009. Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology. 20, 264-271.
Bhaskar N., Benila T., Radha C., Lalitha R.G., 2008. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresource Technology 99, 335-343.
Bruckmann A., Hensbergen P.J., Balog C.I.A., Deelder A.M., Brandt R., Snoek I.S.I., Steensma H.Y., Heusden G.P.H., 2009. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells. Journal Of Proteomics. 71, 662-669.
Cai S.Q., Hu C.Q., Du S.B., 2007. Comparisons of Growth and Biochemical Composition between Mixed Culture of Alga and Yeast and Monocultures. Journal of Bioscience and Bioengineering. 104, 391-397.
Cheirsilp B., Suwannarat W., Niyomdecha R., 2011. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnology. 28, 362-368.
Chen C.Y., Yeh K.L., Aisyah R., Lee D.J., Chang J.S., 2011. Cultivation,
photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology. 102, 71-81.
Chiu S.Y., Kao C.Y., Chen C.H., Kuan T.C., Ong S.C., Lin C.S., 2008. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology. 99, 3389-3396.
Chisti Y, 2007. Biodiesel from microalgae. Biotechnology Advances. 25,
294-306.
Converti A., Casazza A.A., Ortiz E.Y., Perego P., Borghi M.D., 2009. Effect temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensifiction. 48, 1146-1151.
Costa. J.A.V., Morais M.G., 2011. The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology. 102, 2-9.
Das P., Wang L., Aziz S.S., Obbard J.P., 2011. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology. 102, 3883-3887.
Demirbas A., Demirbas M.F., 2010. Importance of algae oil as a source of biodiesel. Energy Conversion and Management. 52, 163-170.
Dionisio M.L., Mikio T., Miyachi S., 1989. Blue light Induction of carbonic anhydrase activity in Chlamydomonas reinhardtii. Plant and Cell Physiology. 30, 215-219.
Dong Q.L., Zhao X.M., 2004. In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma. Catalysis Today. 98, 537-544.
Fan L., Zhang Y., Cheng L., Zhang L., Tang D., Chen H., 2007. Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane photobioreactor. Chemical Engineering and Technology. 30, 1094-1099.
Fukuda H., Kondo A., Noda H., 2001. Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering. 92, 405-416.
Gao M.T., Hirata M., Toorisaka E., Hano T., 2006. Acid-hydrolysis of fish wastes for lactic acid fermentation. Bioresource Technology. 97, 2414-2420.
Heredia-Arroyo T., Wei W., Hu B., 2010. Oil Accumulation via Heterotrophic/Mixotrophic Chlorella protothecoides. 162, 1978-1995.
Hsieh C.H., Wu W.T., 2009. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technology. 100, 3921-3926.
Huang G.H., Chen F., Wei D., Zhang X.W., Chen G., 2010. Biodiesel production by microalgal biotechnology. Applied Energy. 87, 38-46.
Illman A.M., Scragg A.H., Shales S.W., 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology. 27,631-635.
Imamoglu E., Dalay M.C., Sukan F.V., 2009. Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. New Biotechnology. 26, 199-204.
Izumo A., Fujiwara S., Oyama Y., Satoh A., Fujita N., Nakamura N., Tsuzuki M., 2007. Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth: Comparison of structure and properties of pyrenoid and stroma starch. Plant Science. 172, 1138-1147.
Kalyanasundaram K., Graetzel M., 2010. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage. Current Opinion in Biotechnology. 21, 298-310.
Khotimchenko S.V., Yakovleva I. M., 2005. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry. 66, 73-79.
Khozin-Goldberg I., Cohen Z., 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry. 67, 696-701.
Knothe G., 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology 86, 1059 -1070.
Knothe G., 2008.“Designer” Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties. Energy and Fuels. 22, 1358-1364.
Knothe G., Matheaus A.C., Ryan III T.W., 2003. Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel. 82, 971-975.
Kołodziejska I., Skierka E., Sadowska M., Kołodziejski W., Niecikowska C., 2008. Effect of extracting time and temperature on yield of gelatin from different fish offal. Food Chemistry, 107, 700-.706
Kruse O., Hankamer B., 2010. Microalgal hydrogen production. Current Opinion in Biotechnology. 21, 238-243.
Lapuerta M., Rodrı’guez-Ferna’ndez J., Mora E.F., 2009. Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number. Energy Policy. 37, 4337-4344.
Lehr F., Posten C., 2009. Closed photo-bioreactors as tools for biofuel production. Current Opinion in Biotechnology. 20, 280-285.
Liang Y.N., Sarkany N., Cui Y., 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters. 31, 1043-1049.
Liu J., Huang J.C., Sun Z., Zhong Y.J., Chen F., 2011. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresource Technology. 102, 106-110.
Mata T.M., Martins A.A., Caetano N.S., 2010. Microalgae for biodiesel production and other applications: a review. Renew. Renewable and Sustainable Energy Reviews. 14, 217-232.
Matthijs H.C.P., Balke H., Van Hes U.M., 1995. Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnology and Bioengineering. 50, 98-107.
Odmana P., Johansenb C. L., Olssona L., Gernaeyc K.V., Lantz A. E., 2009. On-line estimation of biomass, glucose and ethanol in Saccharomyces cerevisiae cultivations using in-situ multi-wavelength fluorescence and software sensors. Journal of Biotechnology. 144, 102-112.
Ohmori S., Nawata Y., Kiyono K., Murata H., Tsuboi S., Ikeda M., Akagi R., Morohashi K.I., Ono B.I., 1999. Saccharomyces cerevisiae cultured under aerobic and anaerobicconditions: air-level oxygen stress and protection against stress. Biochimica et Biophysica Acta 1472, 587-594.
Ogbonna J.C., Tanaka H., 2000. Light requirement and photosynthetic cell cultivation – Development of processes for efficient light utilization in photobioreactors. Journal of Applied Phycology. 12, 207-218.
Ovissipour M., Abedian A., Motamedzadegan A., Rasco B., Safari R., Shahiri H., 2009. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115, 238-242.
Petkov G., Garcia G., 2007. Which are fatty acids of the green alga Chlorella? Biochemical Systematics and Ecology. 35, 281-285.
Pulz O., 2001. Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology. 57, 287-293.
Ramanathan V., 1988. The greenhouse theory of climate change: a test by an inadvertent global experiment. Science. 240, 293-299.
Ramos M.J., Fernandez C.M., Casas A., Rodriguez L., Perez A., 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology. 100, 261-268.
Ravelonandro P.H., Ratianarivo D.H., Joannis-Cassan C., Isambert A., Raherimandimby M., 2008. Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. Journal of Chemical Technology and Biotechnology. 83,842-848.
Rocha J.M.S., Garcia J.E.C., Henriques M.H.F., 2003. Growth aspects of the marine microalga Nannochloropsis gaditana. Biomolecular Engineering. 20, 237-242.
Rodolfi L., Chin Z.G., Bassi N., Padovani G., Biondi N., Bonini G., Tredici M.R., 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering. 102,100-112.
Roessler P., 1990. Environmental control of glycerol lipid metabolism in microalgae: commercial implications and future research directions. Journal of Phycology. 26, 393-399.
Roscher E., Zetsche K., 1986. The effects of light quality and intensity on the synthesis of ribulose-l,5-bisphosphate carboxylase and its mRNAs in the green alga Chlorogonium elongatum. Planta. 167, 582-286.
Rosenberg J.N., Oyler G.A., Wilkinson L., Betenbaugh M.J., 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology. 19, 430-436.
Ryu K., 2010. The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants. Bioresource Technology. 101, 78-82.
Sato N., Tsuzuki M., Kawaguchi A., 2003. Glycerolipid synthesis in Chlorella kessleri 11h II. Effect of the CO2 concentration during growth. Biochimica et Biophysica Acta. 1633, 35- 42.
Scott S.A., Davey M.P., Dennis J.S., Horst I., Howe C.J., Lea-Smith D.J., Smith A.G., 2010. Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology. 21, 277-286.
Sharma R., Chisti Y., Banerjee U.C., 2001. Production, purification, characterization, and applications of lipases. Biotechnology Advances. 19, 627-662.
Shih I.L., Chen L.G., Yu T.S., Chang W.T., Wang S.L., 2003. Microbial reclamation of fish processing wastes for the production of fish sauce. Enzyme and Microbial Technology, 33, 154-162.
Singh J., Gu S., 2010. Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews. 14, 2596-2610.
Singh S.P., Singh D., 2010. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Review. 14, 200-216.
Smith V.H., Sturm B.S.M., Noyelles F.J., Billings S.A., 2010. The ecology of algal biodiesel production. Trends in Ecology and Evolution. 25,301-309.
Sobczuk T.M., Camacho F.G., Rubio F.C., Fernandez F.G.A., Grima E.M., 2000. Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnology and Bioengineering. 67, 465-475.
Shu C.H., Huang C.K., Tsai C.C., 2009. Effects of light wavelength and intensity on the production of ethanol by Saccharomyces cerevisiae in batch cultures. Journal of Chemical Technology and Biotechnology. 84, 1156-1162.
SteinbiB J., Zetsche K., 1986. Light and metabolite regulation of the synthesis of ribulosebisphosphate carboxylase/oxygenase and the corresponding mRNAs in the unicellular alga Chlorogonium. Planta. 167, 575-581.
Suh I.S., Lee C.G., Photobioreactor engineering: Design and performance. Biotechnology and Bioprocess Engineering. 8, 313-321.
Sung K.D., Lee J.S., Shin C.S., Park S.C., Choih M.J., 1999. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresource Technology. 68, 269-273.
Sydney E.B., Sturm W., Carvalho J.C., Thomaz-Soccol V., Larroche C., Pandey A., Soccol C.R., 2010. Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology. 101, 5892-5896.
Tang D., Han W., Li P.L., Miao X.L., Zhong J.J., 2010. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology. 102, 3071-3076.
Terry K.L, 1986. Photosynthesis in modulated light quantitative dependence of photosynthetic enhancement on flashing rate. Biotechnology and Bioengineering. 988-995.
Torzillo G., Giovannetti L., Bocci F., Materassi R., 1984. Effect of oxygen concentration on the protein content of Spirulina biomass. Biotechnology and Bioengineering. 26, 1134-1135.
Ugwu C.U., Aoyagi H., Uchiyama H., 2007. Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana. Photosynthetica. 45, 309-311.
Ugwu C.U., Aoyagi H., Uchiyama H., 2007. Photobioreactors for mass cultivation of algae. Bioresurce technology. 99, 4021-4028.
Vonshak A., Torzillo G., Accolla P., Tomaselli L., 1996. Light and oxygen stress in Spirulina platensis (cyanobacteria) grown outdoors in tubular reactors. Physiologia Plantarum. 97, 175-179.
Wackett L.P., 2010. Engineering microbes to produce biofuels. Current Opinion in Biotechnology. 22,1-6.
Wang C.Y., Fu C.C., Liu Y.C., 2007. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal. 37, 21-25.
Xin J., Imahara H., Saka S., 2008. Oxidation stability of biodiesel fuel as prepared by supercritical methanol. Fuel. 87, 1807-1813.
Xiong W., Li X.F., Xiang J.Y., Wu Q.Y., 2008. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology. 78, 29-36.
Xu H., Miao X.L., Wu Q.Y., 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology. 126, 499-507.
Xue F., Miao J., Zhang X., Tan T. 2010. A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis. Applied Biochemistry and Biotechnology. 160, 498-503.
Yeh K.L., Chang J.S., Chen W.M., 2010. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Engineering in Life Sciences. 10, 201-208.
You T., Barnett S.M., 2004. Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochemical Engineering Journal. 19, 251-258.
指導教授 徐敬衡(Chin-hang Shu) 審核日期 2011-11-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明