博碩士論文 963404003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.118.137.243
姓名 陳怡如(Yi-ju Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
(Study of Mask-free Wet Etching on Sapphire Substrate and Its Application on Light Emitting Diodes)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ N-GaN表面之六角錐成長機制及其光學特性分析
★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用
★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立★ 通過水熱和溶劑熱法合成銅奈米晶體之研究
★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究★ 含銅鎳之錫薄膜線之電致遷移研究
★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究★ 電遷移誘發銅墊層消耗動力學之研究
★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究★ 錫鎳覆晶接點之電遷移研究
★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響★ 覆晶凸塊封裝之兩界面反應交互作用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究不同酸蝕液(純磷酸、純硫酸和混酸H3PO4/H2SO4)在藍寶石基材上的蝕刻反應,其中混酸在310 ℃下可得到最快得蝕刻速度(1.5 μ/min) ,相較下,純硫酸的蝕刻速度則相當緩慢。 有趣的是,雖然硫酸蝕刻藍寶石基材的速度相當緩慢,但卻可以在其上形成,和藍寶石基材晶格結構相異的四面金字塔的圖案化藍寶石基材,不需要任何微影製程。 在本文裡,我們探討金字塔在藍寶石基材上形成的機制,及不同蝕刻時間、溫度下對金字塔角度變化的影響。並建立隨蝕刻時間變化其金字塔形成的模型。 我們將其應用在氮化鎵藍光發光二極體的薄膜成長,並利用XRD及PL證實氮化銦鎵薄膜沉積在此金字塔圖案化藍寶石基材相較於磊在平的藍寶石基材有更佳的薄膜品質,且在LED晶片的光強上有37 %的增益。 並利用垂直式LED結構搭配模擬結果推測37 %的增益裡有5.7 %是來自於薄膜品質的改善(即IQE增益)。 其餘的增益則為來自於圖案化的結構,破壞了全反射效應使光可以被散射而逃脫出來。 接著我們利用不同蝕刻溫度及蝕刻時間,得到不同圖案及不同覆蓋率的圖案化藍寶石基材,並探討不同圖案及覆蓋率間對薄膜品質及光取出效益的影響(LEE)。 從結果中顯示當圖案覆蓋率達39%時,缺陷密度相較於氮化鎵成長在平的藍寶石基材減少了一半。 但是隨覆蓋率再增加,缺陷密度並沒因為側向成長區域增加而有更多的減少。 而在光的表現上,光的外部取出效率(LEE)也並非成正比的增加。 當覆蓋率大於於39 %時,光取出效率隨著覆蓋率增加的效用趨緩,直到圖案的覆蓋率高於67 %時,光取出效率才有再明顯的增加。
摘要(英) Chemical wet-etching on c-plane sapphire wafers by three etching solutions (H3PO4, H2SO4 and H3PO4/H2SO4 mixing solution) were studied. Among these etching agents, the mixing H3PO4/H2SO4 solution has the fastest etching rate (1.5 µm/min.). Interestingly, we found that H2SO4 does not etch the c-plane sapphire wafer in thickness, instead, a facet pyramidal pattern formed on the c-plane sapphire wafer which was formed by the etched products. GaN LED expitaxial structure was grown on the sapphire wafer with the pyramidal pattern and the standard flat sapphire wafer. XRD and PL measurement show that the pyramidal pattern on the sapphire wafer improved crystalline quality but augmented the compressive stress level in the GaN LED epi-layer. The horizontal LED chips fabricated on the pyramidal-patterned sapphire wafer has a larger light out-put than that of the LED chips fabricated on the standard flat sapphire wafer by 35 %. Beside, the IQE was evidenced to get improvement about 5.7% when pattern coverage increasing from 13.6 % to 53.8% when n-pss wafer was applied into thin-GaN LED structure. .
Also, various pyramidal pattern coverage is processed on patterned sapphire substrates by mask-free wet-etching process. Internal quantum efficiency and light extraction efficiency of GaN epitaxial layers grown on patterned sapphire substrates with different pattern coverage were studied. Internal quantum efficiency can be enhanced in the initial increase of pattern coverage. As pattern coverage over 39%, the effectiveness of the pattern on enhancing internal quantum efficiency is drenched. The light extraction efficiency increases with pattern coverage less than 39 % and over 67%. As the pattern coverage in between 39% ~ 67%, the light extraction efficiency is very similar.
關鍵字(中) ★ 溼式蝕刻
★ 垂直式發光二極體
★ 圖案化藍寶石基材
★ 發光二極體
關鍵字(英) ★ Thin-GaN LED
★ pattern sapphire substrate
★ light emitting diodes
論文目次 Abstract (Chinese) I
Abstract (English) II
Table of contents III
Table captions: IV
Figure captions: V
Chapter 1 1
1-1 Background 1
1-2 Dislocation formation in GaN 3
1-3 Epitaxial lateral overgrowth 7
1-4 Light extraction efficiency 9
1-5 Patterned` sapphire substrate 10
Chapter 2 13
2-1 Experimental procedure for sapphire etching 13
2-2 Conventional LED structure 15
2-3 Vertical LED structure 16
Chapter 3 17
3-1 Etching sapphire wafers by different etching solutions 17
3-2 Etched mechanism of H2SO4 on sapphire 25
3-2-1 Formation mechanism of pyramid 25
3-2-2 Temperature effect on sapphire etching 32
Chapter 4 44
4-1 Epitaxial GaN LED epi-layers grown on n-pss and standard flat sapphire wafers 44
4-2 Horizontal LED chip fabrications and characterizations 50
4-3 Fabrication of vertical thin-GaN light-emitting diode by using natural patterned sapphire substrate 51
4-3-1 Introduction 51
4-3-2 Result and discussion 52
4-3-3 Summary 55
Chapter 5 57
5-1 Introduction 57
5-2 Experimental procedure 58
5-3 Result and discussion 58
Chapter 6 66
Reference 67
參考文獻 1. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler and M. A. Banas, Appl. Phys. Lett. Vol. 91, pp. 231114 (2007)
2. C. F. Lin, Z. J Yang, J. H. Zheng and Jing-Jie Dai, IEEE Photon. Technol. Lett., Vol. 17, No. 10, pp. 2038 (2005)
3. H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita and H. Shiomi, Jpn. J. Appl. Phys., Vol. 44, No. 10, 2005, pp. 7414 (2005)
4. L. Liu and J.H. Edgar, Materials Science and Engineering R 37, pp.61 (2002)
5. M. Shiojiria, C. C. Chuob and J. T. Hsu, J. R. Yang and H. Saijo, J. Appl. Phys. Vol. 99, pp. 073505 (2006)
6. J. S. Speck and S. J. Rosner, Physica B, pp. 273 (1999)
7. M. Wzorek, A. Czerwinski, J. Ratajczak, R. Dylewicz, J. Katcki, Micron, Vol, 40 pp. 37, (2009)
8. W. K. Wang, D. S. Wuu, S. H. Lin, P. Han, R. H. Horng, T. C. Hsu, Donald T. C. Huo, M. J. Jou, Y. H. Yu, and Aikey Lin, IEEE J. Quantum electron., Vol. 41, No. 11, pp. 1403 (2005)
9. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, Appl. Phys. Lett., Vol, 89, pp. 161105 (2006)
10. X. Ni, Ü. Özgür, A. A. Baski, H. Morkoç L. Zhou and D. J. Smith, C. A. Tran, Appl. Phys. Lett., Vol. 90, pp. 182109 (207)
11. N. W. Hsu and J. I. Chyi “Luminescence investigation of semi-polar {1-101} and {11-22}InGaN/GaN light emitting diodes selectively grown on c-plane sapphire”, Chapter 2, (2008)
12. C. C. Kao, H. C. Kuo, Member, IEEE, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, Member, IEEE, C. C. Yu, and C. F. Lin, IEEE Photon. Technol. Lett,, Vol. 17, No. 1, JANUARY (2005)
13. K. Kim,_J. Choi, S. C. Jeon, J. S. Kim, and H. M. Lee, Appl. Phys. Lett., Vol. 90, pp. 181115 (2007)
14. S. H. Huang, R. H. Horng, S. C. HSU, T. Y. Chen and D. S. Wuu, Jpn. J. Appl. Phys., Vol. 44, No. 5A, pp. 3028 (2005)
15. J. H. Lee, Senior Member, IEEE, D. Y. Lee, B. W. Oh, and J. H. Lee, Senior Member, IEEE, IEEE Transactions on Electron Devices, Vol. 57, No. 1, pp. 157, JANUARY (2010)
16. Q. Hu, T. B. Wei, R. F. Duan, J. K. Yang, Z. Q.Huo, T. C. Lu Tie-Cheng and Y. P. Zeng, Chin. Phys. Lett. Vol. 26, No. 9, pp. 096801 (2009)
17. Y. J. Lee, H. C. Kuo, T. C. Lu, B. J. Su, and S. C. Wang, J. Electrochem. Soc, Vol. 153, No. 12 pp. G1106 (2006)
18. S. Kissinger, S. M. Jeong, S. H. Yun, S. J. Lee, D. W. Kim, I. H. Lee and C. R. Lee, Solid-State Electronics Vol. 54, pp. 509 (2010)
19. J. J. Chen, Y. K. Su, Fellow, IEEE, C. L. Lin, S. M. Chen, W. L. Li and C. C. Kao, IEEE Photon. Technol. Lett., Vol. 20, No. 13, pp. 1193 (2008)
20. J. H. Cheng, Y. C. Sermon Wu, W. C. Liao and B. W. Lin, Appl. Phys. Lett., Vol. 96, pp. 051109 (2010)
21. H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng and G. Wang, J. Phys. D: Appl. Phys., Vol. 41, pp. 115106 (2008)
22. F. Dwikusuma, D. Saulys, and T. F. Kuech, J. Electrochem. Soc., Vol. 149 pp. G603 (2002)
23. D. S. Wuu, H. W. Wu, S. T. Chen, T. Y. Tsai, X. Zheng and R. H. Horng, J. Cryst. Growth, Vol. 311, pp. 3063 (2009)
24. J. C. Song, S. H. Lee, I. H. Lee, K. W. Seol, S. Kannappan and C. R Lee, J. Cryst. Growth, Vol. 308, pp. 321 (2007)
25. K. S. Lee, H. S. Kwack, J. S. Hwang, T. M. Roh, Y. H. Cho, J. H. Lee, Y. C. Kim, and C. S. Kim, J. Cryst. Growth, Vol. 107, pp. 103506 (2010)
26. H. C. Lin, H. H. Liu, G. Y. Lee, J. I. Chyi, C. M. Lu, C. W. Chao, T. C. Wang, C. J. Chang and S. W. S. Chid, J. Electrochem. Soc., Vol. 157 (3), pp. H304 (2010)
27. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng,c Y. S. Yu,d and M. H. Pand , J. Electrochem. Soc., Vol. 153 (8) p.p. G765 (2006)
28. H. Y. Shin, S. K. Kwon, Y. I. Chang, M. J. Cho and K. H. Park, J. Cryst. Growth, Vol. 311, pp. 4167 (2009)
29. J. Simon, R. Langer, A. Barski and N. T. Pelekanos, Phys. Rev. B., Vol.61, pp. 7211 (2000)
30. Y. L. Li, Y. R. Huang and Y. H. Lai, Appl. Phys. Lett., Vol. 91, pp. 181113 (2007)
31. J. H. Lee, Member, IEEE, J. T. Oh, Y. C. Kim, and J. H. Lee, Senior Member, IEEE, IEEE Photon. Technol. Lett., Vol. 20, No. 18, pp. 1563, SEPTEMBER (2008)
32. M. Kuballa, M. Benyoucef, H. H. Wills, B. Beaumont and P. Gibart, J. Appl. Phys. Vol. 90, No. 7, OCTOBER (2001)
33. Y. K. Ee, Student Member, IEEE, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, Member, IEEE, IEEE J. Selected Topics Quantum Electronics, Vol. 15, No. 4 (2009)
34. Y. Lacroix, S. H. Chung and S. Sakai, J. Appl. Phys., Vol. 89, No. 11, pp. 6033 (2001)
35. B. A. Haskel, S. Nakamura, S. P. DenBaars and J. S. Speck, phys. stat. sol. (b) Vol. 244, No. 8, pp. 2847 (2007)
36. C. E. Lee, Y. C. Lee, H. C. Kuo, Senior Member, IEEE, T. C. Lu, and S. C. Wang, Life Member, IEEE Photon. Technol. Lett., Vol. 20, No. 10, pp. 803, MAY 15 (2008)
37. P. H. Chen, C. L. Lin, Y. K. Liu, T. Y. Chung, and C. Y. Liu, IEEE Photon. Technol. Lett., Vol. 20, No. 10, pp. 845, May (2008)
38. S. C. Hsu and C. Y. Liu, Electrochem. Solid-State Lett., Vol. 9 (5) pp. G171 (2006)
39. C. L. Chang, Y. C. Chuang, and C. Y. Liu, Electrochem. Solid-State Lett., Vol. 10 (11) pp. H344 (2007)
40. P. H. Chen, C. L. Lin and C. Y. Liu, Appl. Phys. Lett., Vol. 90, pp. 132120 (2007)
41. C. L. Lin, S. J. Wang, and C. Y. Liu, Electrochem. and Solid-State Lett., Vol.8 (10) pp. G265 (2005)
42. T. Fujii, A. David, Y. Gao, M. Iza, S. P. DenBaars, E. L. Hu, C. Weisbuch, and S. Nakamura, phys. stat. sol. (c) z, No. z, zzz–zzz (2004)
43. LEDs magazine, http://ledsmagazine.com/news/3/12/19/1, 21 Dec. 2006.
44. Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada and T. Mukai, Jpn. J. Appl. Phys., Vol.45, pp. L1084 (2006)
45. T. X. Lee, K. F. Gao, W. T. Chien and C. C. Sun, Optics Express, Vol. 15, No. 11, pp. 6676 (2007)
46. Y. J. Chen, C. H. Kuo, C. J. Tun, S. C. Hsu, Y. J. Cheng, and C. Y. Liu, Jpn. J. Appl. Phys. Vol. 49, pp. 020201 (2010)
47. T. Lang, M. A. Odnoblyudov, V. E. Bougrov, A. E. Romanov, S. Suihkonen, M. Sopanen and H. Lipsanen, phys. stat. sol., (a) Vol. 203, No. 10, pp. R76 (2006)
48. J. Chen, J. F. Wang, H. Wang, J. J. Zhu, S. M. Zhang, D. G. Zhao, D. S. Jiang, H. Yang, U. Jahn and K. H. Ploog, Semicond. Sci. Technol., Vol. 21, pp. 1229 (2006)
49. M. Ishida, M. Ogawa, K. Orita, O. Imafuji, M. Yuri, T. Sugino, K. Itoh, J. Cryst. Growth, Vol. 221, pp. 345 (2000)
50. W. Zhoua, D. Renb, P. D. Dapkusa, J. Cryst. Growth, Vol. 290, pp. 11 (2006)
51. M. Lu, X. Chang, H. Z. Fang, Z. J. Yang, H. Yang, Z. L. Li, Q. Ren, G. Y. Zhang and B. Zhang Bei, phys. stat. sol. (c) Vol. 1, No. 10, pp. 2438 (2004)
指導教授 劉正毓(Cheng-yi Liu) 審核日期 2011-1-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明