博碩士論文 963406002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:34.204.200.74
姓名 林柏蒼(Po-Chang Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 奈米晶相Fe(OH)3催化臭氧反應程序處理油煙VOCs之發展
(Development of Nanocrystalline Fe(OH)3 Catalytic Ozonation for Volatile Organic Compounds of Cooking oil fumes)
相關論文
★ 彩色濾光片生產線清潔生產之改善研究★ 以離子交換法處理半導體廠氫氧化四甲基銨廢液之研究
★ 建立量測水位、MLSS濃度與SS濃度及污泥沉澱速度光學量測裝置之研究★ 無塵室揮發性有機污染物防制對策的探討
★ 應用數位影像技術於廢水真色色度監測之研究★ 污水處理廠操作最佳化之研究
★ 河川流域水土資源承載力與永續力評量模式之發展★ 單槽連續進流回分式活性污泥系統微生物菌相之研究
★ 單槽連續進流回分式活性污泥系統溶氧控制之研究★ 工業區廢水管理資訊系統之發展與建立-以觀音工業區為例
★ 河川流域水管理系統動力學模式之發展與建立★ 連續流回分式活性污泥系統好氧相曝氣控制策略之研究-線上即時量測溶氧轉換率與需氧量方法之建立
★ 智慧型環境詞彙庫之發展與建置★ 環境法規資料庫之發展與建置
★ 連續流循序批分式活性污泥系統 好氧相即時曝氣控制策略之發展 — 低溶氧生物脫氮除磷程序控制技術之研究★ 永續發展虛擬圖書館之發展與建置
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 食材在高溫烹煮作業程序中因為食材與食用油品之氧化作用產生油煙(cooking oil fumes, COFs)。COFs中之揮發性有機物(volatile organic compounds, VOCs)包含烯類、醛類、酮類、醇類及羧酸等化合物。COFs中VOCs對人體影響主要為引發油煙綜合徵如咽喉炎、氣管炎、肺癌及肺炎等。傳統VOCs處理技術因為體積過大、設置及維護成本過高等缺點而無法應用於COFs污染防制。本研究之研究目的為發展奈米晶相Fe(OH)3催化臭氧反應程序有效去除COFs中VOCs之方法。本研究假設COFs中VOCs特性成份、OH radical礦化VOCs之反應途徑以及通過臭氧與OH radical氫氧化鐵表面之轉化效率以建立COFs中VOCs礦化反應動力模式。並且利用此模式預測Fe(OH)3 之OH radical轉化率及VOCs礦化反應之臭氧劑量。經過實驗驗證後,VOCs of COFs成分主要包含烯類、醛類、酮類、醇類、羧酸及,OH radical礦化VOCs之反應途徑隨著OH radical數量而變化,足量OH radical礦化VOCs之反應途徑為無方向性及選擇性之直接分解氧化。隨著所製備觸媒表面羥基數量增加, OH radical 轉化率與製備之氧化鐵晶體中所含之羥基團數量成正比。本研究也發展殼-核型態之二氧化鈦-聚苯胺複合奈米材料(core-shell TiO2-Polyaniline hybrid composite, TP composite)以提高純二氧化鈦奈米粒子之光催化活性。聚苯胺殼層有效吸收可見光和近紅外光,以提升純二氧化鈦奈米粒子光活性區域Fe(OH)3催化臭氧反應技術明顯優於TP composite 光催化反應技術。
摘要(英) COFs are emitted from oxidations throughout high-temperature cooking of food materials. VOCs of COFs contain aldehyde, acetone and ester, which cause fumes syndrome. Reported technologies for VOCs removal cannot be used because of their large size and high capital and maintenance costs. The purpose of this study is to develop a nanostalline Fe(OH)3 catalytic ozonation for the removal of VOCs of COFs. We setup the assumptions of the characteristic compound of VOCs of COFs, the pathway of VOCs mineralization with OH radicals and the conversion efficiency of OH radical on the iron oxide hydrated surface. We applied the assumptions to build a reaction kinetic model of VOCs of COFs. This kinetic model theoretically determined the conversion efficiency of OH radical from Fe(OH)3 catalytic ozonation and ozone consumed throughout VOCs mineralization . After experimental verifications, the VOCs of COFs mainly includes alcohols, aldehydes, acetones and esters, carboxylic acids and aromatic compounds. The conversion efficiency of OH radical on the iron oxide hydrated surface is proportional to the OH group concentration of the prepared iron oxide. The reaction pathway of VOCs mineralization was determined with the amount of OH radical. Sufficient amount OH radicals decompose VOCs through a pathway of unselective and direct oxidation. In addition, we developed TP composite to improve the photocatalytic activity of pure TiO2 nanoparticle. The polyaniline shell significantly increases the photoactive region of pure TiO2 nanoparticles through the absorption of visible and near-IR radiation. In conclusion, Fe(OH)3 catalytic ozonation is obviously better than TP photocatalytic oxidation.
關鍵字(中) ★ 油煙
★ 臭氧
★ 氫氧化鐵
★ 羥基團
★ 二氧化鈦
★ 聚苯胺
關鍵字(英) ★ cooking oil fume
★ ozone
★ Fe(OH)3
★ hydroxyl qroup
★ TiO2
★ polyaniline
論文目次 目錄
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 5
2.1 COFs中VOCs成分產生來源及對人體危害性 5
2.2 COFs防制設備發展現況 7
2.3 非均勻相催化臭氧反應機制 9
2.4 氧化鐵水合反應機制 13
2.5 二氧化鈦光催化反應機制 18
2.6 聚苯胺聚合反應機制 21
2.7 奈米高分子複合材料反應機制 26
第三章 研究方法 31
3.1 研究流程 31
3.2 COFs中VOCs礦化反應動力模式建立 33
3.2.1 OH RADICAL礦化COFs中VOCs總反應式建立 33
3.2.2 COFs中VOCs礦化反應參數值預測 36
3.3 奈米晶相Fe(OH)3觸媒製備 36
3.4 Fe(OH)3催化臭氧反應實驗驗證 39
3.4.1 Fe(OH)3之RADICAL轉化率量測 39
3.4.2 Fe(OH)3對COFs中VOCs礦化反應參數值量測 41
3.5 TP複合材料製備 44
3.6 TP複合材料光催化反應實驗驗證 47
3.6.1 TP複合材料光催化活性量測 47
3.6.2 TP複合材料對礦化COFs中VOCs反應參數值量測 48
第四章 結果與討論 50
4.1 COFs中VOCs礦化反應動力模式建立結果 50
4.1.1 OH RADICAL礦化COFs中VOCs總反應式建立結果 51
4.1.2 COFs中VOCs礦化反應參數值預測結果 52
4.2 Fe(OH)3晶相結構變化 55
4.3 Fe(OH)3催化臭氧反應實驗驗證結果 58
4.3.1 Fe(OH)3之OH RADICAL轉化率量測結果 58
4.3.2 Fe(OH)3對COFs中VOCs礦化反應參數值量測結果 60
4.4 TP複合材料晶相結構變化 67
4.5 TP複合材料光催化反應實驗驗證結果 72
4.5.1 TP複合材料光催化活性量測結果 72
4.5.2 TP複合材料對COFs中VOCs礦化反應參數值量測結果 73
第五章 結論與建議 80
5.1 結論 80
5.2 建議 81
參考文獻 83

圖目錄

圖2.1 pHPZC與金屬氧化物解離常數關係 10
圖2.2 臭氧於過渡金屬觸媒表面反應機制(1) 11
圖2.3 臭氧於過渡金屬觸媒表面反應機制(2) 11
圖2.4 各型態氧化鐵之間轉化途徑 16
圖2.5 氧化鐵水合作用反應 17
圖2.6 不同半導體之能帶位置及能隙值 20
圖2.7 導電性高分子及其他物質導電度 22
圖3.1 研究流程 32
圖3.2 OH RADICAL數量與VOCs礦化反應途徑關係 35
圖3.3 OH RADICAL測量裝置 40
圖3.4 Fe(OH)3催化臭氧反應處理COFs中VOCs實驗裝置 43
圖3.5 光觸媒催化反應處理COFs中VOCs實驗裝置 48
圖4.1 製備Fe(OH)3觸媒X-射線粉末繞射分析圖案 56
圖4.2 Fe(OH)3晶體之電子顯微鏡影像 56
圖4.3 氫氧化鐵表面羥基數量與OH RADICAL轉化率關係 59
圖4.4 進流氣體相對濕度與OH RADICAL轉化率關係 60
圖4.5 COFs對Fe(OH)3之突破與反沖洗曲線 61
圖4.6 不同臭氧反應濃度下反應器出口氣體之二氧化碳濃度 63
圖4.7 催化臭氧反應連續處理COFs中VOCs效率檢視 66
圖4.8 反應器停留時間對COFs中VOCs處理效率關係 67
圖4.9 不同AT比例之TP複合材料之XRD圖案 68
圖4.10 聚苯胺殼層精確度控制 69
圖4.11 雙表面活性劑製備TP複合材料機制 70
圖4.12 不同AT比例對TP複合材料表面結構影響 72
圖4.13 純二氧化鈦與TP複合材料吸收光譜 73
圖4.14 純二氧化鈦與TP複合材料對COFs之突破與反沖洗曲線 74
圖4.15 光催化降解後反應器出口氣體CO2濃度變化 75
圖4.16 光催化反應連續處理COFs中VOCs效率檢視 78
圖4.17 溫度對TP複合材料對COFs中VOCs處理效率影響 79

表目錄

表2.1 COFs中VOCs成分產生來源及對人體危害性 7
表2.2 COFs汙染之油滴微粒防制設備與處理機制 8
表2.3 COFs防制之VOCs去除設備及去除效率 9
表2.4 OH RADICAL與有機物反應之主要氧化機制 13
表2.5 二氧化鈦常見改質方法 21
表2.6 常見導電性高分子及其重複單位 23
表2.7 聚苯胺導電機制 25
表2.8 聚苯胺常見製備方法 26
表2.9 奈米材料之物理效應 28
表2.10 常見奈米粒子分散法 30
表3.1 OH RADICAL轉化率量測參數 41
表3.2 水楊酸烴化反應機制與OH RADICAL轉化率計算 41
表3.3 Fe(OH)3催化臭氧反應測試參數 44
表3.4 COFs去除效率計算 44
表3.5 TP複合材料光催化反應測試參數 49
表4.1 COFs中VOCs成份設定 51
表4.2 礦化反應途徑及反應方程式設定 52
表4.3 OH RADICAL轉化率設定 51
表4.4 進流氣體中最低水份含量及相對溼度 54
表4.5 抽COFs機風管抽風量及風管停留時間 54
表4.6 製備氫氧化鐵晶相結構變化 57
表4.7 臭氧濃度對處理後之COFs中VOCs成份變化影響 64
表4.8 不同AT比例對TP複合材料晶相結構影響 71
參考文獻 Aranaz I., M. C. Gutiérrez, M. L. Ferrer, F. d. Monte, Preparation of chitosan nanocomposites with a macroporous structure by unidirectional freezing and subsequent freeze-drying, Marine Drugs, 12 (2014) 5619–5642.

Bach U., D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 395 (1998) 583–585.

Bakheet A.A., M.F. Mohd Zain, A.A. Kadhum, Z. Abdalla, Photocatalytic oxidation performance to removal of volatile organic compounds in indoor environment, Environmental Research, Engineering and Management, 4(58) (2011) 27–33.

Behrens, S. H., D. G. Grier, B. R. Morry, The charge on glass and silica surfaces," Journal of Chemical Physics, 115, (2001) 6716–6721.

Bull I., W.M. Xue, P. Burk, R.S. Boorse, W.M. Jaglowski, G.S. Koermer, A. Moini, J.A. Patchett, J.C. Dettling, M.T. Caudle, Copper CHA zeolite catalysts, U.S. Patent 7601662, 2009.

Buettner G.R., “Spin Trapping of Hydroxyl Radicals, in: R. A. Greenwald”, CRC Handbook of Methods for Oxygen Radical Research, CRC Press, Boca Raton, (1985) 151-155.

Borodko Y., S. E. Habas, M. Koebel, P.Yang, H. Frei, G. Somorjai, Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by uv−raman and FTIR, Journal of Physical Chemistry B, 110 (2006) 23052–23059.

Chang L. W., W.S. Lo, P. Lin, Trans, Trans-2,4-Decadienal, a product found in cooking oil fumes, induces cell proliferation and cytokine production due to reactive oxygen species in human bronchial epithelial cells, Oxicological Sciences, 87(2) (2005) 337–343.

Cheng H.H., C.C. Hsieh, Integration of chemical scrubber with sodium hypochlorite and surfactant for removal of hydrocarbons in cooking oil fume, Journal of Hazardous Materials, 182 (2010) 39–44.

Campagnoli E., A. Tavares, L. Fabbrini, Y.I. Rossetti, A. Dubitsky, A. Zaopo, L. Forni, Effect of preparation method on activity and stability of LaMnO3 and LaCoO3 catalysts for the flameless combustion of methane, Applied. Catalysis B Environmental, 55 (2) (2005) 133–139.


Cornell R.M., U. Schwertmann, “The iron oxides: structure, properties, reactions, occurrence and uses”, Wiley–VCH, New York, 1996.

Childs L.P., D. F. Ollis, Is Photocatalysis Catalytic, Journal of Catalysis, 66(2) (1980) 383–390.

Diez L., M.H. Livertoux, A.A. Stark, M. Wellman-Rousseau, P. Leroy, High–performance liquid chromatographic assay of hydroxyl free radical using salicylic acid hydroxylation during in vitro experiments involving thiols, Journal of Chromatography B, 763 (2001) 185–193.

Davidson, J. H., P. J. McKinney, B.J. Cornell, Chemical vapor deposition in the corona discharge of electrostatic air cleaners. Aerosol Science and Technology, 29 (1998) 102–110.

Ding H., Z. Pan, R. Pigani, R. Seeber, C. Zanardi, p- and n-doping processes in polythiophene with reduced bandgap, An electrochemical impedance spectroscopy study, Electrochimica Acta, 46 (17) (2001) 2721–2732.

Dubas S. T., P. Kumlangdudsana, P. Potiyaraj, Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 289 (1–3) (2006) 105–109.

Doede C. M., C. A. Walker, "Photochemical Engineering." Chemical Engineering, 62(2) (1955) 159–178.

Eggenhuisen T.M., P. Munnik, H. Talsma, P.E. de Jongh, K.P. de Jong, Freeze-drying for controlled nanoparticle distribution in Co/SiO2 Fischer–Tropsch catalysts, Journal of Catalysis, 297 (2013) 306–313.

Emmi S. S., B. R. Larsen, G. Poggi, The Selective OH radical Oxidation of Sorbitylfurfural: A Combined Experimental and Theoretical Study, The Journal of Physical Chemistry A, 106(18) (2002) 4598–4607.

Fan X., L. Lin, P. B. Messersmith, Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: A new route toward polymer–matrix nanocomposites, Composites Science and Technology, 66 (2006) 1195–1201.

Gao J., C. Cao, X. Zhang, Z. Luo, Volume-based size distribution of accumulation and coarse particles (PM0.1–10) from cooking fume during oil heating, Building and Environment, 59 (2013) 575–580.

Gnaser H., B. Huber, C. Ziegler, Nanocrystalline TiO2 for photocatalysis, encyclopedia of nanoscience and nanotechnology, 6 (2004) 505-535.

Gu X.P., T.Y. Chen, P.S. Wu, Applying an organic phosphine complex additive to preparing α-FeOOH by alkaline methods, Journal of Inorganic Material, 16 (5) (2001) 961–964.

Gaber A., M.A. Abdel-Rahim, A.Y. Abdel-Latief, Mahmoud. N. Abdel-Salam, Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method, Int. Journal of Electrochemical Science, 9 (1) (2014) 81–95.

Hatchett D. W., M. Josowicz, J. Janata, Acid doping of polyaniline: spectroscopic and electrochemical studies, Journal of physical chemistry B, 103 (50) (1999) 10992–10998.

Huang Y., S. S. Hang, H. K. F. Ho, S. C. Lee, J. Z. Yu, P. K.K. Louie, Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. Journal of Hazardous Materials, 186(1)15 (2011) 344–351.

Hung H.S., W.J. Wu, Y.W. Cheng, H. Lee, Association of cooking oil fumes exposure with lung cancer: Involvement of inhibitor of apoptosis proteins in cell survival and proliferation in vitro, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 628(2) (2007) 107–112.

Hou Q., D. W. Grijpma, J. Feijen, Preparation of interconnected highly porous polymeric structures by a replication and freeze drying process, Journal of Biomedical Materials Research Part B, 67B (2003) 732–740.

Hordern K.B., M. Ziółek, J. Nawrocki, “Catalytic ozonation and methods of enhancing molecular ozone reactions in water Treatment”, Applied Catalysis B: Environmental, 46 (2003) 639–669.

Hwang K.J., Y. Jeong, C. Choi, J. K. Young, W. K. Gun, Y. K. Cho, S. Jin, D.W. Park, Statistical TiO2/dye-mass dependence and dye-regeneration efficiency on dye-sensitized solar cells, Nano Engery, 16 (2015), 383–388.

Jen J.F., M.F. Leu, T.C. Yang, Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography, Journal of Chromatography A, 796 (2) (1998) 283–288.

Jeon B.H., B.A. Dempsey, W.D. Burgos, Kinetics and Mechanisms for Reaction of Fe (II) with Iron (III) Oxides. Enivironment Science & Technology, 37 (2003) 3309-3315.

Jiang D., H. Zhao, Z. Jia, J. Cao, R. John, Photoelectrochemical behavior of methanol oxidation at nanoporous TiO2 film electrodes, Journal of Photochemisty and Photobiology A : Chemistry, 144 (2001) 197–204.

Jin S.J., X.S. Chen, S. Li, X.W. Zhang, X.Y. Shen, Catalytic activity of TiO2 pillared bentonite for degradation of gaseous toluene: relationship between the effect of humidity and the catalyst structure, Chinese Journal of Environmental Science, 29 (12) (2008) 3331–3336.

Jia A., X. Liang, Z. Su, T. Zhu, S. Liu, Synthesis and the effect of calcination temperature on the physical–chemical properties and photocatalytic activities of Ni, La codoped SrTiO3, Journal of Hazardous Materials, 178 (1–3) (2010) 233–242.

Kathirvel S., H. S. Chen, H. H. Wang, C. Y. Li, L. W. Ren, Preparation of smooth surface TiO2 photoanode for high energy conversion efficiency in dye-sensitized solar cells, Journal of Nanomaterials, 8 (2013) 565–578.

Kobayashi, K., Tamura, M., Shimada, T., Sakai, H., “Chemical Autodelivery System,” Denski Zairyo (Electronic Material), 2 (1993) 157–167.

Krehula S., S. Popovic, S. Musić, Synthesis of acicular a-FeOOH particles at a very high pH, Material Letter, 54 (2–3) (2002) 108–113.

Kathirvel S., H. S. Chen, H. H. Su, C. Y. Wang, L. Li, Preparation of smooth surface TiO2 photoanode for high energy conversion efficiency in dye-sensitized solar cells, Journal of Nanomaterials, 5 (2013) 78–87.

Li X., D.Wang, Q. Luo, J. An, Y. Wang, G. Cheng, Surface modification of titanium dioxide nanoparticles by polyaniline via an in situ method, Journal of Chemical Technology and Biotechnology, 83 (2008) 1558–1564.

Li L, Abe Y, K.Kanagawa, U. Noriko, K. Imai, T. Mashino, M. Mochizuki, N. Miyata, Distinguishing the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-OH radical quenching effect form the hydroxyl radical scavenging effect in the ESR spin-trapping method, Analytica chimica Acta, 512(2004) 121-124.

Lu Y., Z. Zhao, C. Xu, A. Duan, P. Zhang, Effects of calcination temperature on the acidity and catalytic performances of HZSM-5 zeolite catalysts for the catalytic cracking of n-butane, Journal of Natural Gas Chemistry, 14 (4) (2005) 213–220.

Lin Y. F., C. H. Chen, W. J. Xie, S. H. Yang, C. S. Hsu, M.T. Lin, W. B. Jian, Nano approach investigation of the conduction mechanism in polyaniline nanofibers, ACS Nano: American Chemical Society Publications, 1541 (2011) 1541-1548.

Lee T., F. Gany, Cooking oil fumes and lung cancer: a review of the literature in the context of the U.S. population, J Immigr Minor Health, 15(3) (2013) 646–652.

Legube B., N.K.V. Leitner, Catalytic ozonation: a promising advanced oxidation technology for water treatment, Catalysis Today, 53 (1) (1999) 61–72.

Li X., D. Wang, Q. Luo, J. An, Y. Wang, G. Cheng, Surface modification of titanium dioxide nanoparticles by polyaniline via an in situ method, Journal of Chemical Technology and Biotechnology, 83 (2008) 1558–1564.

Lai C.H., J.K.Jouni, Jaakkola, C.Y. Chuang, S.H. Liou, S.C. Lung, C.H. Loh, D. S.Yu, P. T. Strickland, Exposure to cooking oil fumes and oxidative damages: a longitudinal study in Chinese military cooks, Journal of Exposure Science and Environmental Epidemiology, 23 (2013) 94–100.

Lee J., T. Y. Chow, K. L Guo, SEM sample preparation for cells on 3D scaffolds by freeze-drying and HMDS, Scanning, 33 (2011) 1–14.

Mustafa S., M.Irshad, M.Waseem, K. Hussain Shah, U. Rashid,W. Rehman, Adsorption of heavy metal ions in ternary systems onto Fe(OH)3, Korean Journal of Chemical Engineering, 30(12) 2013, 2235–2240.

Misoon O., K. Seok, Effect of dodecyl benzene sulfonic acid on the preparation of polyaniline/activated carbon composites by in situ emulsion polymerization, Electrochimica Acta, 59(1) (2011) 196–201.

Metayer C., Z. Wang, R.A. Kleinerman, L.Wang, A.V. Brenner, H. Cui, J. Cao, J.H. Lubin, Cooking oil fumes and risk of lung cancer in women in rural Gansu, China. Lung Cancer, 35(2) (2002) 111–117.

Magbanuajr B. S., G. Savant, D. Dennis, Combined ozone and ultraviolet inactivation of Escherichia coli, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 41(6) (2006) 1043–1055.

Mothi K. M., G. Soumya, S. Sugunan, Effect of calcination temperature on surface morphology and photocatalytic activity in TiO2 thin films prepared by spin coating technique, Bulletin of Chemical Reaction Engineering & Catalysis, 9 (3) (2014) 175–181.

Maio J.Y., L.Y. Zeng, X.F. Guo, Restaurant emissions removal by a biofilter with immobilized bacteria, Journal of Zhejiang University-SCIENCE B, 6 (2005) 433–437.

Masid S., R. Tayade, N. N. Rao, Efficient visible light active Polyaniline/TiO2 nanocomposite photocatalyst for degradation of reactive blue 4, International Journal of Photocatalysis, 119 (2015) 190–203.

Nilsing M., P. L. U. Persson, S. Lunell, L. Ojamaee, Dye-sensitization of the TiO2 rutile (110) surface by perylene dyes: Quantum-chemical periodic B3LYP computation, Journal of Physical Chemistry, 111(32) (2007) 12116–12123.

Okamoto K., Y. Yamamoto, H. Tanaka, M. Tanaka, A. Itaya, Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder, Bulletin of the Chemical Society of Japan, 58(7) (1985) 2015–2022.

Polycarpos F., E. Vrachnou, M. Gratzel, M. K. Nazeeruddin, A. H. L. Goff, Dye sensitization of TiO2 surfaces studied by Raman spectroscopy, Journal of the Electrochemical Society, 140(6) (1993) 92–94.

Parameshwari R., P. Priyadarshini, G. Chandrasekaran, Optimization, structural, spectroscopic and magnetic studies on stable akaganeite nanoparticles via co-precipitation method, Journal of Materials Science, 1 (1) (2011) 18–25.

Palluau F., P. Mirabel, M. Millet, Influence of relative humidity and ozone on the sampling of volatile organic compounds on carbotrap/carbosieve adsorbents, Environmental Monitoring and Assessment, 127(1-3) (2006) 177-187.

Polycarpos F., E. Vrachnou, M. Gratzel, M. K. Nazeeruddin, A. H. L. Goff, Dye sensitization of TiO2 surfaces studied by Raman spectroscopy Journal of the Electrochemical Society, 140(6) (1993) 234–240.

Pawar S. G., S. L.Patil, M. A. Chougule, B. T. Raut, D. M. Jundale, V. B. Patil, Poltaniline/TiO2 nanocomposites: Synthesis and characterization, Archives of Applied Science Research, 2(2) (2010) 194–201.

Parveen A., A. Roy, Effect of morphology on thermal stability of core-shell Polyaniline/TiO2 nanocomposites, Advanced Materials Letters, 4 (9) (2013) 696–701.

Sahle-Demessie E., V.G. Devulapelli, Vapor phase TiO2 catalyst, Applied Catalysis B: Environmental, 84(3–4) (2008) 408–419.

Subrahmanyam C., Catalytic non-thermal plasma reactor for total oxidation of volatile organic compounds, Indian Journal of Chemistry A, 48 (8) (2009) 1062–1068.

Schwertmann U., R.M. Cornell, Iron Oxides in the Laboratory, VCH Press, New York, 1991, 95.

Siriviriyanun J. A., E. A. O′Rear, N. Yanumet, Modification of polyester fabric properties by surfactant-aided surface polymerization, Journal of Applied Polymer Science, 103(6) (2007) 4059–4064.

Šarić A., S. Musić, K. Nomura, S. Popović, Microstructural properties of Fe–oxide powders obtained by precipitation from FeCl3 solutions, Material Science and Engineering B, 56 (1) (1998) 43–52.

Samitsu S., R. Zhang, X. Peng, M. R. Krishnan, Y. Fujii, I. Ichinose, Flash freezing route to mesoporous polymer nanofibre networks, Nature Communications, 4 (2013) 2653–2667.
Simpson F.G., P.W.Belfield, N.J.Cooke, Chronic airflow limitation after inhalation of overheated cooking oil fumes, Postgraduate Medical Journal, 61 (1985) 1001–1002.

Stewart K. M. E., N. T. M McManus, E. Abdel-Rahman, A. Penlidis. Doped polyaniline for the Detection of Formaldehyde, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 49 (2012) 1–6.

Sahle-Demessie E., V.G. Devulapelli, Oxidation of methanol and total reduced sulfur compounds with ozone over V2O5/TiO2 catalyst: effect of humidity, Applied Catalsis A: General, 361 (1–2) (2009) 72–80.

Shah A.K., K.J. Prathap, M. Kumar, S.H.R. Abdi, R.I. Kureshy, N.H. Khan, H.C. Bajaj, Fe(OH)3 nano solid material: an efficient catalyst for regioselective ring opening of aryloxy epoxide with amines under solvent free condition, Applied Catalysis A: General, 469 (2014) 442–450.

Wang J.L., J.B. Zhong, M.C. Gong, Z.M. Liu, Z. Ming , Y. Q. Chen, Remove cooking fume using catalytic combustion over Pt/La-Al2O3, Journal of Environmental Sciences,19(6) 2007 644–646.

Wang F., S. Min, Y. Han, L. Feng, Visible-light induced photocatalytic degradation of methylene blue with Polyaniline-sensitized TiO2 composite photocatalysts, Superlattices and Microstructures, Superlattices and Microstructures, 48 (2010) 170–180.
Wei J., Q. Zhang, Y. Liu, R. Xiong, C. Pan, J. Shi, Synthesis, photocatalytic activity of polyaniline/TiO2 composites with bionic nanopapilla structure, Journal of Nanoparticle Researches, 13 (2011) 3157–3165.

Wang S., L. Hu, Y. Hu, S. Jiao, Conductive polyaniline capped Fe2O3 composite anode for high rate lithium ion batteries, Materials Chemistry and Physics, 146 (2014) 289–294.

Xin X., L. Zhu, Q. Meng, X. Zhang, P. Wu, A. Dai, Studies on alkali metal promoted iron catalyst for ammonia synthesis (V): effect of chloride ion, Chemical Research in Chinese Universities, 3 (2) (1982) 162–168.

Yu S., J. Frisch, A. Opitz, E. Cohen, M. Bendikov, N. Koch, I. Salzmann, Effect of molecular electrical doping on polyfuran based photovoltaic cells, Applied Physics Letters, 106 (20) (2015) 293–301. 

Zhu C., J. Zhai, D. Wen, S. Dong, Graphene oxide/polypyrrole nanocomposites: One-step electrochemical doping, coating and synergistic effect for energy storage, Journal of Materials Chemistry, 22(13) (2012) 6300–6306.
 
Zhang E., G. Wang, X. Long, Z. Wang, Synthesis and influence of alkaline concentration on α-FeOOH nanorods shapes, B. Material Science, 37 (4) (2014) 761–765.

Zagorny M., I. Bykov, A. Melnyk, T. Lobunets, A. Zhygotsky, A. Pozniy, A.Shirokov, A. Ragulya, Surface structure, spectroscopic and photocatalytic activity study of Polyaniline/TiO2 nanocomposites, Journal of Chemistry and Chemical Engineering, 8 (2014) 118–127.

林柏蒼,”臭氧於電解質水溶液中之行為與其反應動力及技術層面之應用”,國立台灣科技大學化學工程研究所碩士論文,1998。

物理化學數據簡明手冊,第三版,上海科學技術出版社,2004.

賴進興,”氧化鐵覆膜濾砂吸附過濾水中銅離子之研究”,國立台灣大學環境工程研究所博士論文,1995。

夏聰惠,”水合性氧化鐵/水界面與鉻、砷離子表面反應之研究”,國立台灣大學環境工程學研究所博士論文,1993。

蘇亮誌,”鐵氧化物吸附與鐵氧磁體法處理重金屬溶液之研究”,國立成功大學化學工程研究所碩士論文,2004。

賴進興、陳世裕、鍾燕昌、何郁旻,”氧化鐵覆膜濾砂應用於去除水中腐植酸之研究”工業汙染防治,第74 期,2000。

張立德,奈米材料,台北:五南圖書出版公司,2002。

呂宗昕,奈米科技與光觸媒,台北:商周出版,2003。
指導教授 廖述良(Shu-Liang Liaw) 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明