博碩士論文 963406003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.145.93.210
姓名 陳榮星(Jung-hsing Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 農畜固態廢棄物厭氧共消化之探討
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析
★ 桃園航空城三所國小周界大氣PAHs濃度探討★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理鉻污泥★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有機固體廢棄物產自於農業活動,包括家畜排泄物(例如牛和豬的糞便)和木質纖維材料(例如稻稈),已不再被被認為是廢棄物,因為它們是穩定的生質物來源,藉由厭氧處理而轉變為有用的燃料(例如甲烷、氫氣和乙醇),可作為不同的再生能源應用。然而傳統的厭氧處理程序係採「濕式」消化,而不是應用「乾式」(或稱為「固態」)消化。因此有必要開發一種新技術,它不僅能有效處理農業廢棄棄,而且是更為穩定有效操作的方式。本研究建立一套固態厭氧消化滲漉系統,並應用共消化方法來促進生質氣體產出。具體而言,使用最佳化設計方法進行牛糞發酵產氫,而其關鍵因子會影響豬糞和紙漿或稻稈在滲漉系統所進行共消化的評價和鑑定。

就產氫而言,應用田口方法的水準設定及L18矩陣直交表,來定義影響高溫厭氧發酵的主要影響因子(溫度及pH值),接著按所定義的最適溫度及pH條件,以響應表面法的中心組成設計,預測氫氣含量、氫氣產生量及比氫氣產出。結果顯示控制系統在溫度和pH值分別在60℃和5.20±0.21時,可得最適的產氫濃度54.64±11.45(%)、氫氣產生率405.54±93.61(mL-H2/L/d)和比氫氣產出10.25±1.96 (mL-H2/g-VS)。

就產甲烷而言,決定最適固體停留時間為6天後,以半連續試驗進行豬糞和紙漿共消化,期能提升甲烷產出之質與量,結果顯示紙漿和豬糞在濕重比50 : 50時,得到高甲烷濃度57.53 %,進而比較紙漿和豬糞共消化與單獨豬糞消化,分別提升了甲烷濃度5.8%、甲烷產生量35.61 %和比甲烷產出49.22 %。除了紙漿,稻稈被用於產甲烷滲漉系統的進料基質,結果顯示當兩種預酸化和未酸化稻桿均質化為相同粒子大小時,得到相同的甲烷產出水準,建議稻稈的預酸化處理不是「生質物到甲烷」轉換系統的條件,尤其在滲透性(水力傳導度)測試裏顯示進料物的孔洞性也許才是整個調控甲烷產出的關鍵因子。另外,在系統的最高甲烷產生率和甲烷濃度的多源基因體分析顯示Methanosarcinales 和Methanobacterials是古生菌的主要菌群,符合在系統中檢測到乙酸的核算水準,比較意外的是,高溫菌Thermoplasmatales 在古生菌的所佔比例偏低。

摘要(英) Organic solid wastes resulted from agricultural activities including livestock droppings (such as cow and pig manures) and lignocellulosic materials (such as rice straws) are no longer considered as “wastes”, because they are stable biomass sources that can be anaerobically treated and converted to useful fuels (such as methane, hydrogen, and ethanol) as renewable energy for a variety of applications. However, conventional anaerobic treatment processes have been conducted with “wet-state” digestion, instead of “dry-state” (or “solid-state”) digestion. As a result, there is a need to develop a new technology that not only can efficiently treat the agricultural wastes but can also be operated in a more sustainable fashion. In this study, a percolating solid-state anaerobic digestion system was established, and co-digestion approaches were employed to improve the biogas production. Specifically, fermentation of cow manure using the optimal design methodology was conducted to produce hydrogen, and the key factors that would influence co-digestion of pig manure (PM) mixed with paper & pulp sludge (PPS) or rice stalks (RS) to generate methane in the percolating system were evaluated and identified.

For the hydrogen production, the Taguchi method with level settings and an L18 orthogonal array to identify the primary factors affecting thermophilic anaerobic fermentation (temperature and pH value) was employed, followed by the central composite design of response surface methodology to predict the hydrogen content and production and to identify the optimal temperature and pH conditions. Results show that controlling the system at the ideal temperature and pH of 60C and 5.20±0.21 respectively resulted in the optimal hydrogen concentration of 54.64±11.45%, hydrogen generation rate of 405.54±93.61 mL-H2/L/d, and specific hydrogen yield of 10.25±1.96 mL-H2/g-VS.

For the methane production, after determining that the optimal solid retention time was 6 days, semi-continuous experiments were conducted to co-digest PM and PPS in hopes of increasing the quality and quantity of methane generation. Results indicated that a wet weight ratio of 50:50 for PPS and PM produced the highest methane concentration of 57.53%; further, co-digestion of PPS and PM increased methane concentration, methane yield, and specific methane production rate by 5.8%, 35.61%, and 49.22%, respectively, in comparison with those from the digestion of PM alone. Apart from PPS, RS were used as the feedstock substrate for methane production in the percolating system. Results show that when both pre-acidified and un-acidified rice straw were homogenized to the same particle size, similar methane-production levels were obtained, suggesting that pre-acidification of RS is not a prerequisite for the “biomass to methane” conversion in this system; moreover, results from permeability (or hydraulic conductivity) tests showed that porosity of the feedstock may be the key factor in modulating the overall methane production. In addition, metagenomic analysis revealed that the highest methane production rate and methane concentration were obtained from the systems where Mechanosarcinal and Methanobacterial dominated the archaean communities, in accord with elevated levels of acetate detected in these systems. Surprisingly, Thermoplasmatales, the thermophiles, only occupied a lower proportion of the archaean community.

關鍵字(中) ★ 牛糞
★ 田口方法
★ 響應表面法
★ 豬糞
★ 紙漿
★ 稻稈
★ 滲漉系統
★ 多源基因體
關鍵字(英) ★ cow manure
★ Taguchi method
★ response surface methodology
★ pig manure
★ pulp and paper sludge
★ rice straw
★ percolating system
★ Metagenomics
論文目次 中文摘要……………………………………………………...…………II

英文摘要…………………………………………..……………………. V

誌謝…………………………………………………………..………….Ⅵ

目錄………………………………………………………….…………VII

圖目錄…………………………………………………………….……..XI

表目錄…………………………..………………………………….….XIII

縮寫符號………………………………………………….. …………………………..…......... VIII

第一章 緒論………………………………………………….………….1

1-1 研究動機……………..………………………………………………………1

1-2 研究內容及架構..……………………………………………………………4

第二章 文獻回顧………………………………………………….…….6

2-1厭氧消化之原理……………………………………………………………6

2-2 固態厭氧消化之問題點………………………………… ...………………...13

2-3 固態厭氧消化滲漉程序………………………………… ...………………...14

2-4 固態厭氧消化之模式..………………………………… ...………………...15

2-4-1 菌體增殖與酵素合成動力學…..…………..…………………………...16

2-4-2 基質溶解動力學………………………………………………………...17

2-4-3 酵素反應動力學…………………………………..……………………18

2-4-4 基質與產物之質量平衡…………………..……………………………18

2-5 影響固態厭氧消化之因子…….……………………… ...………………...19

2-5-1 溫度……….………………………………………………………...19

2-5-2 pH……….………..…………………………………………………...22

2-5-3營養源…..…….………………………………………………………...23

2-5-4 揮發性脂肪酸…………….…………………………………………...25

2-5-5 進料前處理……………………………………………………………...25

2-6環境微生物資訊分析……………...….…….…………………………………..31

第三章 實驗材料、方法與分析…………..……….…………40

3-1 實驗材料……………………………………………………………………...40

3-1-1牛糞採樣及製備…………………………………………………..……...40

3-1-2 紙漿污泥和豬糞之採樣及製備………………………………………...41

3-1-3 豬糞和稻桿之採樣及製備……………………………………………...43

3-2 實驗方法………………….……………………………………………………..46

3-2-1豬糞發酵產氫..………………………………………………………...46

3-2-2 豬糞和紙漿共消化產甲烷……………………………………………...52

3-2-3 豬糞和稻稈共消化產甲烷……………………………………………...54 3-2-4 消化槽內菌群多源基因體分析………………………………………...57

3-3 實驗分析……………………………………………………………………...61

第四章 牛糞厭氧發酵產氫實驗探討……………………………….…71

4-1 田口方法的顯著預試實驗影響因子………………….…..…………………...71

4-2 溫度和pH對氫氣濃度的影響………………….………………………..74

4-3 溫度和pH對氫氣產出與轉換率的影響…………….…………………..77

4-4 生物反應過程中揮發性固體的降解……………..……………………...81

4-5 揮發性脂肪酸的產出與利用……………………..……………………...82

第五章 豬糞和紙漿厭氧共消化產甲烷實驗探討…….………………84

5-1 單一豬糞消化產甲烷之預試成效…………………………….…….…....84

5-2 豬糞和漿紙污泥共消化之甲烷產出潛勢……………………………..….85

5-3 豬糞和漿紙污泥共消化之生物降解潛勢分析……………………..…….87

5-4 豬糞和漿紙污泥共消化程序穩定性之評估……………………………….…..88

第六章 豬糞和稻稈厭氧共消化產甲烷實驗探討…………….……89

6-1 基質均一性與甲烷產出影響…………….…………………………….89

6-2 進料特性分析…………………………………………………………………..91

6-3 水力傳導度與甲烷產出潛勢分析…………………………..……………..…..93

6-4 中間產物對甲烷產出之影響…...…………..…………………………………..96

6-5 複迴歸模式統計分析……….…………………………………………………102

第七章 固態厭氧消化槽甲烷菌群多源基因體分析探討..……..…106

7-1固態厭氧消化反應變化……….………………..………………….……..….106

7-2菌群操作分類單元分析………………..…………………….………..……109

7-3甲烷菌群動態分析…………………………….……………………….……112

第八章 結論與建議…………………………………………………116

8-1 結論…………………………………………………….………………………116

8-2 建議…………………………………………………………………………….118

參考文獻……………..………………………………………………..119

論文發表………………………………………………………………147

作者簡介………………………………………………………………149



參考文獻 Abbassi-Guendouz A, Brockmann D, Trably E, Dumas C, Delgenes J P, Steyer J P. Renaud Escudié.Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour Technol 111 (2012) 55-61.

Ahn H K, Smith M C, Kondrad S L, White J W. Evaluation of biogas production potential by dry anaerobic digestion of switchgrass-animal manure mixtures. App Biochem Biotechnol 60 (2010) 965-975.

Akutsu Y, Li Y Y, Tandukar M, Kubota K, Harada H. Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch. Int J Hydrogen Energy 33 (2008) 6541-6548.

Alatriste F, Samar P, Cox H H J, Ahring B K, Iranpour R. Anaerobic codigestion of municipal, farm, and industrial organic wastes: A survey of recent literature. Water Environ Resear 78 (2006) 607-636.

Angelidaki I, Chen X, Cuia J, Kaparaju P, Ellegaar L. Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: Start-up procedure for continuously stirred tank reactor. Water Res 40 (2006) 2621-2628.

Angenent L T, Karim K, Al-Dahhan M H, Wrenn B A, Domíguez-Espinosa R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22 (2004) 477-485.

APHA. Eaton AD, Clesceri LS, Greenberg AE, editors. Standard methods for the examination of water and wastewater. 21th ed. American Public Health Association. Washington DC USA (2005).

Appels L, Baeyens J, Degrève J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energ Combus Sci 34 (2008) 755-781.

Batstone D J, Keller J, Angelidaki I, Kalyuzhnyi S V, Pavlostathis S G, Rozzi A, Sanders W T M, Siegrist H, Vavilin V A. Anaerobic Digestion Model No.1 (ADM No.1). IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes, London, 2002.

Bayr S, Rantanen M, Kaparaju P, Rintala J. Mesophilic and thermophilic anaerobic co-digestion of rendering plant and slaughterhouse wastes. Bioresour Technol 104 (2012) 28-36.

Blumensaat F and Keller J. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1) Water Res 39 (2005) 171-183.

Börjesson P and Mattiasson B, Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26 (2007) 7-13.

Buffière P, Loisel D, Bernet N, Delgenes J P, Towards new indicators for the prediction of solid waste anaerobic disgestion properties. Water Sci Technol 53 (2006) 233-241.

Buyukkamaci N and Koken E. Economic evaluation of alternative wastewater treatment plant options for pulp and paper industry. Sci Total Environ 408 (2010) 6070-6078.

Callaghan F J, Wase D A J, Thayanithy K, Forster C F. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioeng 22 (2002) 71-77.

Cao Y and Pawłowski A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renew Sustain Energy Review 16 (2012) 1657-1665.

Capela I, Rodrigues A, Silva F, Nadais H, Arroja L. Impact of industrial sludge and cattle manure on anaerobic digestion of the OFMSW under mesophilic conditions. Biomass Bioenerg 32 (2008) 245-251.

Carlsson M, Lagerkvist A, Morgan-Sagastume F. The effects of substrate pre-treatment on anaerobic digestion systems: A review. Waste Management (2012) [Article in press]

Castorena-Cortés G, Roldán-Carrillo T, Zapata-Peñasco I, Reyes-Avila J, Quej-Aké L, Marín-Cruz J, Olguín-Lora P. Microcosm assays and Taguchi experimental design for treatment of oil sludge containing high concentration of hydrocarbons. Bioresour Technol 100 (2009) 5671-5677.

Cavinato C, Fatone F, Bolzonella D, Pavan P. Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: Comparison of pilot and full scale experiences. Bioresour Technol 101 (2010) 545-550.

Che W H, Chen YC, Lin JG. Study of chemical pretreatment and enzymatic saccharification for producing fermentable sugars from rice straw. Biopro. Biosys. Eng. 37 (2014) 1337-1344.

Chen C C and Lin C Y. Using sucrose as a substrate in an anaerobic hydrogen-producing reactor. Adv Environ Res 7 (2008) 695-699.

Chen H W, Hsu C H, Hong G B. The case study of energy flow analysis and strategy in pulp and paper industry. Energy Pol 43 (2012) 448-455.

Chen W C. Pig toilet and the biofuel potential from pig waste. 2012 Biofuel workshop, National Taiwan University, Taipei, Taiwan 24 May.

Chen W H, Sung S, Chen S Y. Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects. Int J Hydrogen Energy 34 (2009) 227-234.

Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process: A review. Bioresour Technol 99 (2008) 4044-4064.

Chi Y, Li Y, Fei X, Wang S, Yuan H. Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment. J Environ Sci 23 (2011) 1257-1265.

Christ O, Wilderer P A, Angerhofer R, Faulstich M. Mathematical modeling of the hydrolysis of anaerobic processes. Water Sci Technol 41(2000) 61-65.

Chu C P, Leea D J, Chang B V, You C S, Tay J H. ‘‘Weak’’ ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids. Water Res 36 (2002) 2681-2688.

Chynoweth D P, Owens J M, Legrand R L. Renewable methane from anaerobic digestion of biomass. Renew Energ 22 (2001) 1-8.

Conklin A, Stensel H D, Ferguson J.Growth Kinetics and Competition between Methanosarcina and Methanosaeta in Mesophilic Anaerobic Digestion. Water Enviro. Res. 78 (2006) 486-496.

Cui Z, Shi J, Li M. Solid-state anaerobic digestion of spent wheat straw from horse stall. Bioresour Technol 102 (2011) 9432-9437.

Cysneiros D, Banks C J, Heaven S, Karatzas K-A G. The role of phase separation and feed cycle length in leach beds coupled to methanogenic reactors for digestion of a solid substrate (Part 1): Optimisation of reactors’ performance. Bioresour Technol 103 (2012) 56-63.

Davila-Vazquez G, Alatriste-Mondragón F, de León-Rodríguez A, Razo-Flores E. Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: Influence of initial substrate concentration and pH. Int J Hydrog Energy 33 (2008) 4989-4997.

Dawes E A and Ribbons D W. The Endogenous Metabolism of Microorganisms. Annual Review Microbio 16 (1962) 241-264.

De Baere L. Anaerobic digestion of solids waste: state of the art. Water Sci Technol 41 (2000) 283-290.

de la Rubia M A, Perez M, Romero L I, Sales D. Effect of solids retention time (SRT) on pilot scale anaerobic thermophilic sludge digestion. Process Biochem 41 (2006) 79-86.

Demirel B, Scherer P.The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Review Environ Sci Bio/Technol 7 (2008) 173-190.

Derbal K, Bencheikh-lehocine M, Cecchi F, Meniai A H, Pavan P. Application of the IWA ADM1 model to simulate anaerobic co-digestion of organic waste with waste activated sludge in mesophilic condition Biores Technol 100 (2009) 1539-1543.

Dhar B R, Nakhla G, Ray M B. Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge. Waste Manag 32 (2012) 542-549.

Dhar B R, Youssef E, Nakhla G, Ray M B. Pretreatment of municipal waste activated sludge for volatile sulfur compounds control in anaerobic digestion. Bioresour Technol 102 (2011) 3776-3782.

Di Maria F, Sordi A, Micale C. Energy production from mechanical biological treatment and Composting plants exploiting solid anaerobic digestion batch: An Italian case study. Energy Conver Manag 56 (2012) 112-120.

Donoso-Bravo A, Mailier J, Martin C, Rodríguez J, Aceves-Lara C A, Vande Wouwer A. Model selection, identification and validation in anaerobic digestion: A review. Water Res 45 (2011) 5347-5364.

Duan N, Dong B, Wu B, Dai X. High-solid anaerobic digestion of sewage sludge under mesophilic conditions: Feasibility study. Bioresour Technol 104 (2012) 150-156.

Dumas C, Perez S, Paul E, Lefebvre X. Combined thermophilic aerobic process and conventional anaerobic digestion: Effect on sludge biodegradation and methane production. Bioresour Technol 101 (2010) 2629-2636.

Elbeshbishy E, Nakhla G, Hafez H. Biochemical methane potential (BMP) of food waste and primary sludge: Influence of inoculum pre-incubation and inoculum source. Bioresour Technol 110 (2012) 18-25.

Elizalde-González M P and García-Díaz L E. Application of a Taguchi L16 orthogonal array for optimizing the removal of Acid Orange 8 using carbon with a low specific surface area. Chem Engineer J 163 (2010) 55-61.

Elliott A and Mahmood T. Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues. Water Res 41 (2007) 4273-4286.

Esposito G, Frunzo L, Panico A, Pirozzi F. Modelling the effect of the OLR and OFMSW particle size on the performances of an anaerobic co-digestion reactor. Process Biochem 46 (2011) 557-565

Fan Y T, Li C L, Lay J J, Hou H W, Zhang G S. Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresour Technol 91 (2004) 189-193.

Fang H H P, Zhang T, Liu H. Microbial diversity of a mesophilic hydrogen-producing sludge. Appl Microbio Biotech 58 (2002) 112-118.

Fdez-Güelfo L A, Álvarez-Gallego C, Sales D, Romero Garcia L I. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling. Waste Manag 32 (2012) 382-388.

Fdez-Güelfo L A, Álvarez-Gallego C, Sales Márquez D, Romero García L I. Biological pretreatment applied to industrial organic fraction of municipal solid wastes (OFMSW): Effect on anaerobic digestion. Chem Engineer J 172 (2011) 321-325.

Fernández Rodríguez J, Pérez M, Romero L I. Mesophilic anaerobic digestion of the organic fraction of municipal solid waste: Optimisation of the semicontinuous process. Chem Engineer J 193 (2012) 10-15.

Fezzani B and Cheikh R B. Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresour Technol 101 (2010) 1628-1634.

Fisher R A. Statistical Methods for the Research Worker. Olive and Boyd London (1925).

Forster-Carneiro T, Pérez M, Romero L I, Anaerobic digestion of municipal solid wastes: dry thermophilic performance. Biores Technol 99 (2008) 8180-8184.

Fountoulakis M S, Drakopoulou S, Terzakis S, Georgaki E, Manios T. Potential for methane production from typical Mediterranean agro-industrial by-products. Biomass Bioenerg 32 (2008) 155-161.

García-Ochoa F, Santos V E, Naval L, Guardiola E, López B. Kinetic model for anaerobic digestion of livestock manure. Enz Microb Technol 25 (1999) 55-60.

Ghanem I I I, Guowei G, Jinfu Z. Leachate production and disposal of kitchen food solid waste by dry fermentation for biogas generation. Renew Energ 23 (2001) 673-684.

Gómez X, Cuetos MJ, Prieto JI, Morán A. Bio-hydrogen production from waste fermentation: Mixing and static conditions. Renew Energy 34 (2009) 970-975.

Guendouz J, Buffière P, Cacho J, Carrère M, Delgenes J P. Dry anaerobic digestion in batch mode: design and operation of a laboratory-scale, completely mixed reactor. Waste Management 30 (2010) 1768-1771.

Guo X H, Wang C, Sun F Q, Zhu W J, Wu W X. A comparison of microbial characteristics between the thermophilic andmesophilic anaerobic digesters exposed to elevated food waste loadings. Bioresour Technol 152 (2014) 420-428.

Hangos K M and Cameron I T. Process modeling and model analysis. Academic San Diego (2001).

Hartmann H and Ahring B K. Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview. Water Sci Technol 53 (2006) 7-22.

Hattori. Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ 23 (2008) 118-127.

Ignoni A H, Ayotamuno M J, Ogaji S O T, Probert S D. Municipal solid waste in Port Harcourt, Nigeria. Appl Energ 84 (2007) 664-670.

IPCC. Fourth Assessment Report: Climate Change (AR4) (2007).

Ito T, Yoshiguchi K, Ariesyady H D, Okabe S.Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge. ISME J (2011) 1844-1856.

Kaparaju P and Rintala J. Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure. Res Conser Recy 43 (2005) 175-188.

Kaparaju P, Buendia I, Ellegaard L, Angelidakia I. Effects of mixing on methane production during thermophilic anaerobic digestion of manure: Lab-scale and pilot-scale studies. Bioresour Technol 99 (2008) 4919-4928.

Kapdan I K and Kargi F. Bio-hydrogen production from waste materials. Enz Microb Technol 38 (2006) 569-582.

Karlsson A, Vallin L, Ejlertsson J. Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. Int J Hydrog Energy 33 (2008) 953-962.

Kim H W, Han S K, Shin H S. Anaerobic co-digestion of sewage sludge and food waste using temperature-phased anaerobic digestion process. Water Sci Technol 50 (2004) 107-114.

Kleinbaum D G, Kupper L L, Nizam A, Muller K E. Applied regression analysis and other multivariable methods. Thomson Higher Education Belmont CA 94002-3908 USA (2008).

Kusch S, Oechsner H, Jungbluth T. Biogas production with horse dung in solid-phase digestion systems. Bioresour Technol 99 (2008) 1280-1292.

La Motta E J, Silva E, Bustillos A, Padron H, Luque J. Combined anaerobic/aerobic secondary municipal wastewater treatment: pilot-plant demonstration of the UASB/aerobic solids contact system. J Environ Engineer 133 (2007) 397-403.

Lansing S, Martin J F, Botero R B, da Silva T N, da Silva E D. Methane production in low-cost, unheated, plug-flow digesters treating swine manure and used cooking grease. Bioresour Technol 101 (2010) 4362-4370.

Lee K S, Hsu Y F, Lo Y C, Lin P J, Lin C Y, Chang J S. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. Int J Hydrogen Energy 33 (2008) 1565-1572.

Lee M Y, Suh C W, Ahn YT, Shin H S. Variation of ADM1 by using temperature-phased anaerobic digestion (TPAD) operation Biores Technol 100 (2009) 2816-2822.

Lettinga G. Anaerobic digestion and wastewater treatment systems. Antonie van Leeuwenhoek 67 (1995) 3-28.

Li J H, Ren N Q, Li B K, Qin Z, He J G. Anaerobic biohydrogen production from monosaccharides by a mixed microbial community culture. Bioresour Technol 99 (2008) 6528-6537.

Li Y, Park S Y, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Review 15 (2011) 821-826.

Liang Y, Zheng Z, Hua R, Luo X. A preliminary study of simultaneous lime treatment and dry digestion of smooth cordgrass for biogas production, Chem Engineer J 174 (2011) 175-181.

Liew L N, Shi J, Li Y. Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresour Technol 102 (2011) 8828-8834

Lin C Y, Hung C H, Chen C H, Chung W T, Cheng L H. Effects of initial cultivation pH on fermentative hydrogen production from xylose using natural mixed cultures. Process Biochem 41 (2006) 1383-1390.

Lin Y Q, Wang D H, Li Q, Huang L J. Kinetic study of mesophilic anaerobic digestion of pulp & paper sludge. Biomass Bioenerg 35 (2011) 4862-4867.

Lin Y, Wang D, Li Q, Xiao M. Mesophilic batch anaerobic co-digestion of pulp and paper sludge and monosodium glutamate waste liquor for methane production in a bench-scale digester. Bioresour Technol 102 (2011) 3673-3678.

Lin Y, Wang D, Wu S, Wang C. Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. J Haz Mater 170 (2009) 366-373.

Liu D W, Zeng R J, Angelidaki I. Enrichment and adaptation of extreme-Thermophilic (70℃) hydrogen producing bacteria to organic household solid waste by repeated batch cultivation. Int J Hydrogen Energy 33 (2008) 6492-6497.

Liu Y and Whitman W B. Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea. Ann. N. Y. Acad. Sci. 1125 (2008) 171-189.

Luostarinen S, Luste S, Sillanpää M. Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant. Bioresour Technol 100 (2009) 79-85.

Macias-Corral M, Samani Z, Hanson A, Smith G, Funk P, Yu H, Longworth J. Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresour Technol 99 (2008) 8288-8293.

Madigan M T, Martinko J M, Parker J. Brock biology of microorganisms. 10th ed., Prentice Hall (2002).

Mallants D, Mohanty B P, Vervoort A, Feyen J. Spatial analysis of saturated hydraulic conductivity in a soil with macropores. Soil Technol 10 (1997) 115-131.

Martin C, Ayesa E. An integrated Monte Carlo methodology for the calibration of water quality models. Ecolog Model 221 (2010) 2656-2667.

Masomian M, Raja A, Rah R N Z, Salleh A B, Basri M. A unique thermostable and organic solvent tolerant lipase from newly isolated Aneurinibacillus thermoaerophilus strain HZ: physical factor studies. World J Microbio Biotechnol 26 (2010) 1693-1701.

Mata-Alvarez J, Macé S, Llabres-Luengo P. Anaerobic of organic solids wastes. An overview of research achievements and perspectives. Biores Technol 74 (2000) 3-16.

Menardo S, Airoldi G, Balsari P. The effect of particle size and thermal pre-treatment on the methane yield of four agricultural by-products. Bioresour Technol 104 (2012) 708-714.

Mirzoyan M, Tal Y, Gross A. Anaerobic digestion of sludge from intensive recirculating aquaculture systems: Review. Aquacul 306 (2010) 1-6.

Moen G, Stensel H D, LepistÖ R, Ferguson J. Effect of solids retention time on the performance of thermophilic and mesophilic digestion. Water Environ Res 75 (2003) 539-548.

Mohamed R A, Salleh A B, Rahman R N Z R A, Basri M, Leow T C. Isolation of the encoding gene for a thermostable α-glucosidase from Geobacillus stearothermophilus strain RM and its expression in Escherichia coli. African J Microbio Resear 6 (2012) 2909-2917.

Mohan S V, Raghavulu S V, Mohanakrishna G, Srikanth S, Sarma P N. Optimization and evaluation of fermentative hydrogen production and wastewater treatment processes using data enveloping analysis (DEA) and Taguchi design of experimental (DOE) methodology. Int J Hydrogen Energy 34 (2009) 216-226.

Mohan S V, Sirisha K, Rao R S, Sarma P N. Bioslurry phase remediation of chlorpyrifos contaminated soil: Process evaluation and optimization by Taguchi design of experimental (DOE) methodology. Ecotoxicol Environ Saf 68 (2007) 252-262.

Mu Y, Wang G, Yu H Q. Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enz Micro Technol 38 (2006) 905-913.

Mumme J, Linke B, Tölle R. Novel upflow anaerobic solid-state (UASS) reactor. Bioresour Technol 101 (2010) 592-599.

Narihiro T, Terada T, Ohashi A, Wu J H, Liu W T, Araki N, Kamagata Y, Nakamura K, Sekiguchi Y. Quantitative detection of culturable methanogenic archaea abundance in anaerobic treatment systems using the sequence-specific rRNA cleavage method. ISME 3 (2009) 522-535.

Nges I A and Liu J. Effects of anaerobic pre-treatment on the degradation of dewatered-sewage sludge. Renew Energy 34 (2009) 1795-1800.

Nopharatana A, Pullammanappallil P C, Clarke W P. A dynamic mathematical model for sequential leach-bed anaerobic digestion of organic fraction of municipal solid waste. Biochem Engineer J 13 (2003) 21-33.

Nopharatana A, Pullammanappallil P C, Clarke W P. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste Manag 27(2007) 595-603.

Ozkaya B, Demir A, Sinan Bilgili M. Mathematical simulation and long-term monitoring of leachate components from two different landfill cells. J Hazard Material 135 (2006) 32-39.

P 118-127

Panichnumsin P, Nopharatana A, Ahring B, Chaiprasert P. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass Bioenerg 34 (2010) 1117-1124.

Parawira W, Read J S, Mattiasson B, Björnsson L. Energy production from agricultural residues: High methane yields in pilot-scale two-stage anaerobic digestion. Biomass Bioenerg 32 (2008) 44-50.

Perez-Garcia M, Rornero-Garcia L I, Rodriguez-Cano R, Sales-Marquez D. High rate anaerobic thermophilic technologies for distillery wastewater treatment. Water Sci Technol 51(2005)191-198.

Piñar G, Saiz-Jimenez C, Schabereiter-Gurtner C, Blanco-Varela M T B, Lubitz W, Rölleke S. Archaeal communities in two disparate deteriorated ancient wall paintings: detection, identification and temporal monitoring by denaturing gradient gel electrophoresis. FEMS Microbio Eco 37 (2001) 45-54.

Pokhrel D, Viraraghavan T. Treatment of pulp and paper mill wastewater-a review. Sci Total Environ 333 (2004) 37-58.

Ramirez I, Mottet A, Carrère H, Déléris S, Vedrenne F, Steyer J P. Modified ADM1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Water Res 45 (2009) 3479-3492.

Ramsay I R and Pullammanappallil P C. Full-scale validation of a dynamic mathematical model for a two-stage, high-rate anaerobic brewery wastewater treatment system. J Environ Engineer 131 (2005) 1030-1036.

Rani R U, Kumar S A, Kaliappan S, Yeom I T, Banu J R. Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process. Bioresour Technol 103 (2012) 415-424.

Rao M S and Singh S P. Bioenergy conversion studies of organic fraction of MSW: Kinetic studies and gas yield organic loading relationships for process optimization. Bioresour Technol 95 (2004) 173-185.

Raposo F, De la Rubia M A, Fernandez-Cegrí V, Borja R. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew Sustain Energy Reviews 16 (2011) 861-877.

Ray S, Reaume S J, Lalman J A. Developing a statistical model to predict hydrogen production by a mixed anaerobic mesophilic culture. Int J Hydrogen Energy 35 (2010) 5332-5342.

Resch C, Wörl A, Waltenberger R, Braun R, Kirchmayr R. Enhancement options for the utilisation of nitrogen rich animal by-products in anaerobic digestion. Bioresour Technol 102 (2011) 2503-2510.

Riau V, De la Rubia MÁ, Pérez M. Temperature-phased anaerobic digestion (TPAD) to obtain class A biosolids: A semi-continuous study. Bioresour Technol 101 (2010) 2706-2712.

Rincón B, Borja R, Martin M A, Martin A. Kinetic study of the methanogenic step of a two-stage anaerobic digestion process treating olive mill solid residue. Chem Engineer J 160 (2010) 215-219.

Rittmann B E and McCarty P L. Environmental Biotechnology: Principles and Applications. McGraw-Hill International Editions (2001).

Ross P J. Taguchi Techniques for Quality Engineering. McGraw- Hill, New York (1992).

Rubia M A, Perez M, Romero L I, Sales D. Effect of solids retention time (SRT) on pilot scale anaerobic thermophilic sludge digestion. Prog Biochem 41 (2006) 79-86.

Rulkens W. Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options. Energ Fuel 22(2008) 9-15.

Salminen E A, Rintala J A. Semi-continuous anaerobic digestion of solid poultry slaughterhouse aste: effect of hydraulic retention time and loading. Water Res 36 (2002) 3175-3182.

Salomoni C , Caputo A, Bonoli M, Francioso O, Rodriguez-Estrada M, Palenzona D. Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes. Bioresour Technol 102 (2011) 6443-6448.

Santos M, de los A M, Lopez J A S, Perez A F C, Martin A M. Modelling the anaerobic digestion of wastewater derived from the pressing of orange peel produced in orange juice manufacturing. Bioresour Technolo 101 (2010) 3909-3916.

Sasaki D, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y. Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste. J Biosci Bioeng 111 (2011) 41-46.

Schomaker I T, Boerboom A H H M, Vissel A, Pfeifer A E. Technical summary of gas treatment. Anaerobic digestion of agro-industrial wastes. Infor Network Proj FAIR-CT 96-2083 (2000).

Shackelford C D, Sevick G W, Eykholt G R. Hydraulic conductivity of geosynthetic clay liners to tailings impoundment solutions. Geotext Geomembrane 28 (2010) 149-162.

Sharholy M, Ahmad K, Mahmood G, Trivedi R C. Municipal solid waste management in Indian cities a review. Waste Manag 28 (2008) 459-467.

Shi X, Jung K W, Kim D H, Ahn Y T, Shin H S. Direct fermentation of Laminaria japonica for biohydrogen production by anaerobic mixed cultures. Int J Hydrogen Energy 36 (2011) 5857-5864.

Shi, P., Tian, J., Yuan, T., Liu, X., Huang, H., Bai, Y., Yang, P., Chen, X., Wu, N. Yao, B., 2010. Paenibacillus sp. strain E18 bifunctional xylanase-glucanase with a single catalytic domain. Applied Environmental Microbiology, 76, 11, 3620-3624.

Shin H S, Youn J H, Kim S H. Hydrogen production from food waste in anaerobic mesophilicand thermophilic acidogenesis. Int J Hydrogen Energy 29 (2004) 1355-1363.

Siegert I and Banks C. The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Pro Biochem 40 (2005) 3412-3418.

Siles J A, Brekelmans J, Martin M A, Chica A F, Martin A. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion. Bioresou Technol 101 (2010) 9040-9048.

Siles J A, Martín M A, Chica A, Borja R. Kinetic modelling of the anaerobic digestion of wastewater derived from the pressing of orange rind produced in orange juice manufacturing. ChemL Engineer J 140 (2008) 145-156.

Sinha P and Pandey A. An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrogen Energy 36 (2011) 7460-7478.

Sittijunda S, Reungsang A, O-thong S. Biohydrogen production from dual digestion pretreatment of poultry slaughterhouse sludge by anaerobic self-fermentation. Int J Hydrogen Energy 35 (2010) 13427-13434.

Skillman L C, Bajsa O, Ho L, Santhanam B, Kumar M, Ho G. Influence of high gas production during thermophilic anaerobic digestion in pilot-scale and lab-scale reactors on survival of the thermotolerant pathogens Clostridium perfringens and Campylobacter jejuni in piggery wastewater. Water Res 43 (2009) 3281-3291.

Song Y C, Kwon S J, Woo J H. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Res 38 (2004) 1653-1662.

Sormunen K, Ettala M, Rintala J. Detailed internal characterization of two Finnish landfills by waste sampling. Waste Manag 28 (2008) 151-163.

Stoica A, Sandberg M, Holby O. Energy use and recovery strategies within wastewater treatment and sludge handling at pulp and paper mills. Bioresour Technol 100 (2009) 3497-3505.

St-Pierre B, Wright A DG. Metagenomic analysis of methanogen populations in three full-scale mesophilic anaerobic manure digesters operated on dairy farms in Vermont, USA. Bioresour Technol 138 (2013) 277-284

Su J J, Liu B Y, Chang Y C. Emission of greenhouse gas from livestock waste and wastewater treatment in Taiwan. Agri Ecosy Environ 95 (2003) 253-263.

Sung S, Liu T. Ammonia inhibition on thermophilic anaerobic digestion. Chemosph 53 (2003) 43-52.

Sutaryo S, Ward A J, Møller H B. Thermophilic anaerobic co-digestion of separated solids from acidified dairy cow manure. Bioresour Technol 114 (2012) 195-200.

Suwannoppadol S, Ho G, Cord-Ruwisch R. Rapid start-up of thermophilic anaerobic digestion with the turf fraction of MSW as inoculum. Bioresour Technol 102 (2011) 7762-7767.

Svensson L M, Bjornsson L, Mattiasson B. Enhancing performance in anaerobic high-solids stratified bed digesters by straw bed implementation. Bioresour Technol 98 (2007) 46-52.

Tang Y, Shigematsu T, Morimura I S, Kida K. The effects of micro-aeration on the phylogeneticdiversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Resear 38 (2004) 2537-2550.

Thummes K, Kämpfer P, Jäckel U. Temporal change of composition and potential activity of the thermophilic archaeal community during the composting of organic material. System Appl Microbio 30 (2007) 418-429.

Toreci I, Kennedy K J, Droste R L. Evaluation of continuous mesophilic anaerobic sludge digestion after high temperature microwave pretreatment. Water Res 43 (2009) 1273-1284.

Tsai W T and Lin C I. Overview analysis of bioenergy from livestock manure management in Taiwan. Renew Sustain Energy Rev 13 (2009) 2682-2688.

Tsai W T. Analysis of the sustainability of reusing industrial wastes as energy source in the industrial sector of Taiwan. J Clean Prod 18 (2010) 1440-1445.

UNEP. Assessing Biofuels: Towards Sustainable Production and Use of Resources (2009).

USDOE. Biomass Basics: The Facts abOTU Bioenergy (2011).

Val del Río A, Morales N, Isanta E, Mosquera-Corral A, Campos J L, Steyer J P, Carrère H. Thermal pre-treatment of aerobic granular sludge: Impact on anaerobic biodegradability. Water Res 45 (2011) 6011-6020.

Van de Velden M, Baeyens J, Boukis I. Modelling CFB biomass pyrolysis reactors. Biomass Bioeng 32 (2008) 128-139.

Vavilin A, Lokshina L Y, Jokela J P Y, Rintala J A. Modeling solid waste decomposition. Bioresour Technol 94 (2004) 69-81.

Vavilin V A, Lokshina L Y, Flotats X, Angelidaki I. Anaerobic digestion of solid material: Multidimensional modeling of continuous-flow reactor with non-uniform influent concentration distributions. Biotechnol Bioengineer 97 (2007) 354-366.

Venkata Mohan S, Raghavulu S V, Mohanakrishna G, Srikanth S, Sarma P N. Optimization and evaluation of fermentative hydrogen production and wastewater treatment processes using data enveloping analysis (DEA) and Taguchi design of experimental (DOE) methodology. Int J Hydrog Energy 34 (2009) 216-226.

Venkata Mohan S, Sirisha K, Sreenivasa Rao R, Sarma P N. Bioslurry phase remediation of chlorpyrifos contaminated soil: Process evaluation and optimization by Taguchi design of experimental (DOE) methodology. Ecotoxicolo Environ Safety 68 (2007) 252-262.

Vergara-Ferná ndez A, Vargas G, Alarcón N, Velasco A. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioereg 32 (2008) 338-344.

Wang J L and Wan W. Experimental design methods for fermentative hydrogen production: A review. Int J Hydrog Energy 34 (2009) 235-244.

Wang K S, Chen J H, Huang Y H, Huang S L. Integrated Taguchi method and response surface methodology to confirm hydrogen production by anaerobic fermentation of cow manure. Int J Hydrog Energy 38 (2013) 45-53.

Wang W, Xie L, Chen J, Luo G, Zhou Q. Biohydrogen and methane production by co-digestion of cassava stillage and excess sludge under thermophilic condition. Bioresour Technol 102 (2011) 3833-3839.

Ward A J, Hobbs P J, Holliman P J, Jones D L. Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99 (2008) 7928-7940.

Wei C H, Wang W X, Deng Z Y, Wu C F. Characteristics of high-sulfate wastewater treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized bed. J Environ Sci 19 (2007) 264-270.

Weiland P, Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85 (2010) 849-860.

Werner J J, Knights D, Garcia M L, Scalfone N B, Smith S, Yarasheski K, Cummings T A, Beers A R, Knight R, Angenent L T. Bacterial community structures are unique and resilient in full-scale bioenergy systems. PNAS 108 (2011) 4158-4163.

Whitehead T R, Cotta M A. Phylogenetic diversity of methanogenic archaea in swine waste storage pits. FEMS Microbio 179 (1999) 223-226.

Wood N, Tran H, Master E. Pretreatment of pulp mill secondary sludge for high-rate anaerobic conversion to biogas. Bioresour Technol 100 (2009) 5729-5735.

Wu G, Healy M G, Zhan X. Effect of the solid content on anaerobic digestion of meat and bone meal. Bioresour Technol 100 (2009) 4326-4331.

Xie S, Frost J P, Lawlor P G, Wud G, Zhan X. Effects of thermo-chemical pre-treatment of grass silage on methane production by anaerobic digestion. Bioresour Technol 102 (2011) 8748-8755

Yabu H, Sakai C, Fujiwara T, Nishio N, Nakashimada Y. Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia stripping. J Biosci Bioeng 111 (2011) 312-319.

Yang S, Li J, Zheng Z, Meng Z. Characterization of Spartina alterniflora as feedstock for anaerobic digestion. Biomass Bioenerg 33 (2009) 597-602.

Yang Y, Tsukahara K, Sawayama S. Biodegradation and methane production from glycerol-containing synthetic wastes with fixed-bed bioreactor under mesophilic and thermophilic anaerobic conditions. Process Biochem 43 (2008) 362-367.

Yen H W and Brune D E. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98 (2007) 130-134.

Yilmaz T, Yuceer A, Basibuyuk M. A comparison of the performance of mesophilic and thermophilic anaerobic filters treating papermill wastewater. Bioresour Technol 99 (2008) 156-163.

Yokoyama H, Moriya N, Ohmori H, Waki M, Ogino A, Tanaka Y. Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates. Appl Microbiol Biotechnol 77 (2007b) 213-222.

Yokoyama H, Waki M, Moriya N, Yasuda T, Tanaka Y, Haga K. Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74 (2007c) 474-483.

Yokoyama H, Waki M, Ogino A, Ohmori H, Tanaka Y. Hydrogen Fermentation Properties of Undiluted Cow Dung. J Biosci Bioeng 104 (2007a) 82-85.

Zhao B H, Yue Z B, Zhao Q B, Mu Y, Yu H Q, Harada H, Li Y Y. Optimization of hydrogen production in a granule-based UASB reactor. Int J Hydrog Energy 33 (2008) 2454-2461.

Zhong W Z, Zhang Z H, Qiao W, Fu P G, Liu M. Comparison of chemical and biological pretreatment of corn straw for biogas production by anaerobic digestion. Renew Energy 36 (2011) 1875-1879.

Zhou Y, Zhang Z, Nakamoto T, Li Y, Yang Y, Utsumi M, Sugiura N. Influence of substrate-to-inoculum ratio on the batch anaerobic digestion of bean curd refuse-okara under mesophilic conditions. Biomass bioenerg 35 (2011) 3251-3256.

Zhu C, Zhang J, Tang Y P, Xu Z K, Song R T. Diversity of methanogenic archaea in a biogas reactor fed with swine feces as themono-substrate by mcrA analysis Chenguang. Microbio Resear 166 (2011) 27-35

Zhu J, Wan C, Li Y. Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour Technol 101 (2010) 7523-7528.

Zinatizadeh A A L, Mohamed A R, Najafpour G D, Hasnain Isa M, Nasrollahzadeh H. Kinetic evaluation of palm oil mill effluent digestion in a high rate up-flow anaerobic sludge fixed film bioreactor. Process Biochem 41 (2006) 1038-1046.

王西華,以上部空間氣體組成份分析作為固態發酵法和農業廢棄物穩定化過程的製程品管之依據,行政院國家科學委員會專題研究計畫(NSC71-0409-B002- 19) (1983)

王格華,能源與永續發展,新文京開發出版股份有限公司 (2014)。

吳哲宏、曾怡禎、莊蕙萍、陳薇羽、徐茂軒,產能厭氧菌群高通量定量分析平台研究成果報告,行政院國家科學委員會專題研究計畫(NSC97-2221-E- 006-038-MY3) (2011)。

李光敦,水文學(三版),五南出版社 (2005)。

李思元、莊以光,DNA 定序技術之演進與發展,財團法人國家實驗研究院科技政策研究與資訊中心(2010)

林長平、劉瑞芬、莊榮輝、丁詩同、李宣書,生物技術概論,華杏出版股份有限公司(2011)。

林書弘、胡凱康、劉力瑜,次世代定序資料模擬軟體的比較,臺灣大學農藝學系(2013)

姚向君,生質能源:綠色黃金開發技術,新文京開發出版股份有限公司 (2008)。

柳宗明,全球環境變遷,華都文化事業有限公司 (2013)。

洪玉珠、陳昌佑、嚴毋過、賴嘉祥、郭加恩…等,環境與健康,華格那企業有限

公司 (2013)。

張倚嘉,利用豬糞作為原料探討高溫厭氧消化系統生產沼氣之微生物菌相,國立中央大學生命科學系,碩士論文 (2012)。

陳國誠,生化工程學,合記圖書出版社 (1985)。

陳國誠,生物固定化技術與產業應用,茂昌圖書有限公司 (2000)。

陳國誠,廢水生物處理學,茂昌圖書有限公司 (1991)。

黃俊霖,以分子生物技術探討厭氧生物產氫程序之菌群結構,國立中央大學環境工程研究所,碩士論文 (2001)。

鍾竺均、陳偉,生物技術概論(三版),新文京開發出版股份有限公司 (2008)。



指導教授 王鯤生、林居慶 審核日期 2015-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明