博碩士論文 964206001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.215.79.116
姓名 呂貞儀(Chen-yi Lu)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 多階生產系統檢驗策略之決定
(Determining inspection strategies for multistage production system)
相關論文
★ 以類神經網路探討晶圓測試良率預測與重測指標值之建立★ 六標準突破性策略—企業管理議題
★ 限制驅導式在製罐產業生產管理之應用研究★ 應用倒傳遞類神經網路於TFT-LCD G4.5代Cell廠不良問題與解決方法之研究
★ 限制驅導式生產排程在PCBA製程的運用★ 平衡計分卡規劃與設計之研究-以海軍後勤支援指揮部修護工廠為例
★ 木製框式車身銷售數量之組合預測研究★ 導入符合綠色產品RoHS之供應商管理-以光通訊產業L公司為例
★ 不同產品及供應商屬性對採購要求之相關性探討-以平面式觸控面板產業為例★ 中長期產銷規劃之個案探討 -以抽絲產業為例
★ 消耗性部品存貨管理改善研究-以某邏輯測試公司之Socket Pin為例★ 封裝廠之機台當機修復順序即時判別機制探討
★ 客戶危害限用物質規範研究-以TFT-LCD產業個案公司為例★ PCB壓合代工業導入ISO/TS16949品質管理系統之研究-以K公司為例
★ 報價流程與價格議價之研究–以機殼產業為例★ 產品量產前工程變更的分類機制與其可控制性探討-以某一手機產品家族為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在晶圓封測產業中,產品經過一連串的加工並逐漸改變其產品特性從進料到成品;並要確保其交貨到客戶後的產品品質。產品製造完成後,會針對每批產品做完整的抽樣並做不良狀況測試,以了解良率及確定是否可達成客戶或是公司的期望規格,並且可以提供評估產品品質好壞的重要指標,以了解製程品質的穩定性,同時為了提昇測試良率,往往會重工有不良問題之產品。
在過去研究中,這些研究描寫的在各個環境下多階段檢驗的問題使如何使有彈性、多樣性在檢驗的各個程序中。在分析的過程中,首先測試工程師必須先分析良率是否符合目標值,如果抽樣良率低於目標值,可考慮針對整批執行全檢動作。由於不良的原因可能來自於製程異常、測試設備不穩定,或是因測試作業不當而造成;除了必須分析造成良率異常的原因外,還要提升檢驗的效益。
本研究所要討論的是如何去決定檢驗策略使成本最小且能使品質達穩定,所要考慮的成本有檢驗、維修報廢等成本。
本研究收集案例公司於 97 年某產品的良率之相關資料以供研究分析,論文首先探討案例中所用的抽樣計畫為何,並尋找最佳之檢測策略並使達到最小成本以符合最佳的測試流程,為此論文之主要貢獻。
摘要(英) In IC packaging industry, a product usually under a series of operations that progressively alter the nature of the incoming material until it reaches the consumer in the form of a finish good. We using some inspect policy to ensure the quality of a finish good.
In general, these papers illuminate certain aspects of the multistage inspection problem the most important of which are perhaps the flexibility, variety and complexity of options available in screening procedures.
In order to find the inspection policy, this paper describes how to decide inspection policy in order to minimize the cost. Since our problem is to minimize the cost, the cost minimization at each QC gate is our objective function. The total cost includes the purchasing cost, inspection cost, rework cost, and scraping cost.
This thesis attempts to propose a workable solution for inspection strategies process to establish how to allocate Sample size and maximum number of defective items that can be accepted in a given sample so that the cost of inspection for overall stage is minimized. Through a real example from macro SD probing process, it was presented to demonstrate the methodology.
關鍵字(中) ★ 檢驗策略
★ 多階
關鍵字(英) ★ inspection strategies
★ multistage
論文目次 Table of Content
摘 要 i
Abstract ii
Table of Content iii
Chapter 1 Introduction 1
1.1Research motivation and background 1
1.2 Research objectives 2
1.3 Research methodology 3
1.4 Research framework 3
Chapter 2 Literature review 5
2.1 Inspection policies 5
2.1.1 Constraints 8
2.1.2 Optimization solution approaches 8
2.2 Inspection strategy in manufacturing situation 9
2.2.1 Single stage inspection 9
2.3 Multistage inspection 10
2.3.1 Serial system 12
Chapter 3 Model derivation 14
3.1 Description of the process 14
3.2 Problem formulation 17
3.2.1 Notations 18
3.2.2 Assumption 19
3.3 Model derivation 20
3.3.1 The outgoing quality of QC gate i 21
3.3.2 The inspection cost in QC gate i 24
3.3.3 The repair Quantity in QC gate i 25
3.3.4 The quantity of conforming items 28
3.3.5 Cost of the defect items are scrapped in QC gate i 29
3.4 Constraints 31
3.5 Statement of problem 31
3.6 Conclusion 33
Chapter 4 Numerical Analysis 34
4.1 Analyzing the raw data 34
4.2 Examples of the optimization of a multistage inspection problem 36
4.3 Comparison 44
Chapter 5 Conclusion 45
5.1 Research Contribution 45
5.2 Further Research 46
Reference 46
參考文獻 [1] J. E. Baker, “An Evolutionary Algorithm and discrete event simulation for optimizing inspection strategies for multi-stage processes,” European Journal of Operational Research, Vol. 179, pp.621-633, 2005.
[2] M. Ben-Daya, “ Multi-stage lot sizing models with imperfect processes and inspection errors,” Production Planning & Control, Vol.10, pp.118-126, 1999.
[3]D.H. Besterfield, Quality Control(Prentice Hall), 2004.
[4] J. Y. Bong and E. D. Mcdowellj, “Optimal inspection policies in a serial production system including scrap rework and repair: An MILP approach,” International Journal of Production Research, Volume 25, Issue 10, pp.1451 – 1464, 1987.
[5]P.C. Chu and J.E. Beasley, “A Genetic Algorithm for the multidimensional Knapsack Problem,” Journal of Heuristics archive, Volume 4, Issue 1, pp. 63-86, 1998.
[6]Y. H. Chun, “Serial Inspection Plan in the Presence of Inspection Errors: Maximum Likelihood and Maximum Entropy”, Quality Engineering, Vol. 17 Issue 4, pp.627-632, 2005.
[7]G. Galante and G. Passannanti, “ Integrated approach to part scheduling and inspection policies for a job shop manufacturing system,” International Journal of Production Research, Vol. 45, Issue 22 , pp. 5177 - 5198, 2007.
[8]A. Heredia-Langner, et al., “Solving a multistage partial inspection problem using genetic algorithms”,International Journal of Production Research, Volume 40, Issue 8 May 2002 , pp.1923 – 1940, 2002.
[9]I. D. Hill, “The Economic Incentive Provided by Sampling Inspection,” Applied Statistics, Vol. 9, No. 2, pp. 69-81, 1973
[10] J.R. Koza, “Hierarchical automatic function definition in genetic programming”, Foundations of Genetic Algorithms, 1993.
[11] J. Lee and S. Unnikrishnan, “Planning quality inspection operations in multistage manufacturing systems with inspection errors”, International Journal of Production Research, Vol. 36, Issue 1, pp.141-156, 1998.
[12]T.Y. Lin., “Optimal inspection policy for csp-t with return cost using GERT”, Chinese Institute of Industrial Engineers, Vol. 25, 446-456, 2008.
[13]D. G. Mayer, et al., “Use of Advanced Techniques to Optimize a Multidimensional Dairy Model”, Agricultural Systems, Vol.50, pp.239-253, 1996.
[14]S. S. Mandroli, et al., “A survey of inspection strategy and sensor distribution studies in discrete-part manufacturing processes,” IIE Transactions , Vol. 38, pp.309–328,2006.
[15]S. E. Sedat, “Systems approach to the multistage manufacturing connected-unit situation”, Naval Research Logistics Quarterly, Volume 19, No. 3, pp.493 - 500, 1972.
[16]S. E. Sedat, et al., “Cost Minimizing Single Sampling Plans with AIQL and AOQL Constraints”, Management Science, Vol. 20, No. 7, pp. 1112-1121, 1974.
[17] C. Shaoxiang and M. Lambrecht, “The optimal frequency and sequencing of tests in the inspection of multi-characteristic components”, IIE Transactions, Vol. 29,pp. 1039-1049, 1997.
[18]Y.R. Shiau, “Inspection resource assignment in a multistage manufacturing system with an inspection error model”, International Journal of Production Research, Vol.40, Issue 8, pp.1787 – 1806, 2002.
[19]R. Tzvi and K. Moshe , “Location and sequencing of imperfect inspection operations in serial multi-stage production systems,” International Journal of Production Research, Vol. 34, pp.1031-1041,1991.
[20]K. Tang and J. Tang, “Design of screening procedures: a review”, Journal of Quality Technology, vol.26, pp.209-222, 1994.
[21] S. B. Vardeman, “The Legitimate Role of Inspection in Modern SQC”, The American Statistician, Vol. 40, No. 4, pp. 325-328, 1986.
[22] N. Viswanadham, et al., “Inspection Allocation in Manufacturing Systems Using Stochastic Search Techniques”, IEEE, Vol. 26, pp.222 – 230, 1996.
[23] H.F. Yua, W.C. Yub, “An optimal mixed policy of inspection and burn-in and the optimal production quantity”, International Journal of Production Economics, Vol.105, pp.483-491, 2007.
指導教授 沈國基(Gwo-Ji Sheen) 審核日期 2009-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明