博碩士論文 965201002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:18.206.194.161
姓名 張緯淞(Wei-Sung Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 適用IEEE 802.16e標準之多碼率單埠記憶體LDPC解碼器設計
(Design of Multi-Code Rate LDPC Decoder with Single Port Memory for IEEE 802.16e Standard)
相關論文
★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器★ 地面數位電視廣播基頻接收器之載波同步設計
★ 適用於通訊系統之參數化數位訊號處理器核心★ 以正交分頻多工系統之同步的高效能內插法技術
★ 正交分頻多工通訊中之盲目頻域等化器★ 兆元位元率之平行化可適性決策回饋等化器設計與實作
★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design
★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計★ 低複雜度與高速多速率多階有限脈衝響應數位濾波器設計技術
★ 以FPGA實現DVB-T/H系統之二維一維與AGC-CR通道等化技術★ 適用於IEEE 802.16系統並運用極座標架構之低複雜度MIMO STBC頻域等化器設計
★ HF頻帶無線供電植入式系統之高效率前端電路分析與設計★ 地面數位電視基頻接收器之同步電路設計
★ 應用於數位視頻廣播系統中具有自動增益控制之接受端濾波器設計★ 應用於WiMAX通訊系統之Σ-Δ分數型頻率合成器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文提出可適用於IEEE 802.16e標準的多碼率LDPC解碼器,目前LDPC解碼器在序列化的架構上,記憶體的使用率是很高的,在減少面積與硬體複雜度的前提下,記憶體所佔有的比重也會越來越大。同時為了使速度達到最佳化,用管線技術增加硬體使用率,記憶體必須具備同時讀寫的能力,因此採用雙埠記憶體的LDPC解碼器是普遍的。本篇論文特別針對此記憶體做優化與改良,採用單埠記憶體來取代雙埠記憶體,單埠記憶體比起雙埠記憶體在功率與面積上都佔有優勢,如何在相同記憶容量與不增加速度的前提下,將雙埠記憶體取代是本論文的重點。單埠的缺點在於不能同時間讀寫,因此在資料存取的排序上必須特別規劃,本論文針對IEEE 802.16e標準其六種檢查矩陣特別設計對應的資料排程以及資料在記憶體的位置,同時將記憶區塊拉出檢查節點與位元節點形成共用的第三區塊。經由FPGA驗證得知,單埠記憶體可完全取代雙埠記憶體以節省面積與功率,但在速度上會隨著檢查矩陣碼率的提高,而略劣於雙埠記憶體。由ISE軟體合成電路後可知本論文LDPC所提出之架構可以有最高112.94Mbps的生產量。
摘要(英) This thesis proposes a multi-code rate LDPC decoder in the application of IEEE 802.16e. The utilization rate of memory is very high when the LDPC decoder uses a serial architecture. To reduce the complexity of hardware, the percentage of memory unit is getting higher. In order to optimize the throughput rate, pipline technique can increase the hardware utilization. However, such architecture needs the memory to read and write at the same time. Hence the LDPC decoder usually uses two-port memory. This thesis focuses on the optimization and modification of memory design. We use single-port memory to replace two-port memory because single-port memory has the advantage of power consumption and area. The weakness of single-port memory is it cannot read and write at the same time. We should carefully arrange the data access schedule. In this thesis, we have designed the memory access schedules according to six parity check matrices for IEEE 802.16e. In the FPGA emulation results, single-port memory can completely replace the two port memory to save the chip area and power consumption. The throughput rate would be lower than two-port memory architecture as the code rate increases. Finally, the throughput rate of the proposed LDPC decoder can achieve 112.94 Mbps.
關鍵字(中) ★ 多碼率LDPC 解碼器設計
★ 單埠記憶體模式解碼器
關鍵字(英) ★ Multi-Code Rate LDPC Decoder
★ Single Port Memory for IEEE 802.16e Standard
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
1.1 背景與研究動機 1
1.2 論文架構 2
第二章 低密度同位元檢查碼 3
2.1 線性區塊碼 3
2.2 低密度同位元檢查碼簡介 4
2.3 低密度同位元檢查碼在IEEE 802.16e 的標準資訊 6
第三章 低密度同位元檢查碼的編碼方法與解碼方法 7
3.1 LDPC編碼原理 7
3.2 LDPC常用解碼演算法簡介 8
3.2.1 SPA 9
3.2.2 LLR 11
3.2.3 MSA 13
3.2.4 Modified MSA 14
3.2.5 Offset MSA 15
3.3 LLR演算法在IEEE 802.16e各碼率下的效能表現 16
第四章 IEEE 802.16e各碼率記憶體排序 17
4.1 解碼矩陣重新排列與記憶體資料排序方法 17
4.2 各碼率資料執行順序與記憶體位置 17
4.2.1 IEEE 802.16e解碼矩陣碼率:1 / 2 18
4.2.2 IEEE 802.16e解碼矩陣碼率:2 / 3 A 21
4.2.3 IEEE 802.16e解碼矩陣碼率:2 / 3 B 23
4.3.4 IEEE 802.16e解碼矩陣碼率:3 / 4 A 24
4.3.5 IEEE 802.16e解碼矩陣碼率:3 / 4 B 26
4.3.6 IEEE 802.16e解碼矩陣碼率:5 / 6 27
4.3 單埠記憶體與雙埠記憶體在六種矩陣的速度差異 29
第五章 硬體實現 30
5.1 平行架構 30
5.2 序列架構 31
5.3 IEEE 802.16e設計架構 31
5.3.1 整體架構 33
5.3.2 檢查節點架構 34
5.3.3 位元節點架構 35
5.3.4 記憶區塊架構 36
5.3.5 線路轉換架構 37
5.4 量化 38
5.4.1 LUT 38
5.4.2 檢查節點端 40
5.4.3 位元節點端 44
5.5 FPGA驗證 48
第六章 結論 52
6.1 結論 52
6.2 未來展望 52
參考文獻 53
參考文獻 [1] C. Berrou, A. Glavieux, and P. Thitimagshima, “Near Shammon limit error-correcting coding and decoding: Turbo codes,” in Proc. Int. Conf. Communications(ICC’93), Geneva, Switzerland, pp.1064-1070,May 1993.
[2] R.G. Gallager, “Low-density parity-check codes”, IRE Trans. Inform. Theory, VolIT-8, pp.21-28, Jan 1962.
[3] D. J. C. Mackay and R.M. Neal, “Near Shannon limit performance of low density parity check codes”, IEE Electron. Lett., vol.32,no. 18pp. 1645-1646,Aug 1996
[4] Sae-Young Chung, G. David Forney Jr., Thomas J. Richardson and Rudiger Urbande, “On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Communications Letters, vol. 5, no. 2, pp. 58-60, Feb.2001
[5] IEEE 802.16e-2005, “IEEE Standard for Local and Metropolitan Area Network - Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems – Amendment 2: Physical and Medium Access Control layers for Combined Fixed and Mobile Operation in Licensed Bands,” 2005.
[6] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. Inform Theory, vol. 47, pp.498-519, Feb. 2001.
[7] M. Fossorier, M. Mihaljevic, H. Imai, “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,” IEEE Trans. On Commun., vol. 47, no.5, pp. 673-680, May 1999.
[8] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20, pp. 284-287, Mar. 1974.
[9] P. Roberston, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. IEEE Int. Conf. Communications, vol. 2, pp. 1009-1013, June 1995.
[10] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inform. Theory, vol. 42,pp. 429-445, Mar. 1996.
[11] X. Y. Hu, E. Eleftheriou, D. M. Arnold, and A. Dholakia., “Efficient implementations of the sum-product algorithm for decoding LDPC codes,” in Proc. IEEE GLOBECOM, San Antonio, TX, vol. 2, pp. 1036-1036E, 2001.
[12] E. Eleftheriou, T. Mittelholzer, and A. Dholakia, “Reduced-complexity decoding for low-density parity-check codes,” IEEE Electron. Lett., vol. 37, pp. 102-104, Jan. 2001.
[13] A. Anastasopoulos, “A comparison between the sum-product and the min-sum iterative detection algorithms based on density evolution,” in Proc. IEEE Globecom, San Antonio, TX, pp. 1021-1025, Nov. 2001.
[14] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier and X.-Y. Hu, “Reduced-complexity decoding of LDPC codes,” IEEE Trans. Comm., vol. 53, pp. 1288-1299, Aug. 2005.
[15] A. Blanksby and C. J. Howland, “A 220mW 1-Gbit/s 1024-Bit Rate-1/2 Low Density Parity Check Code Decoder,” in Proc. IEEE CICC, LasVegas, NV, USA, pp. 293-6, May 2001.
[16] A. Blankby and C. J. Howland, “A 690mW 1-Gbit/s 1024-b Rate-1/2 Low-Density Parity-Check code Decoder,” IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 404-412, March 2002.
[17] M. M. Mansour and N. R. Shanbhag, “A 640-Mb/s 2048-Bit Programmable LDPC Decoder Chip,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 684-698, March 2006.
[18] Engling Yeo, Borivoje Nikolic, and Venkat Anantharam, “Architectures and Implementations of Low-Density Parity Check Decoding Algorithms,” Circuits and Systems, vol. 3, pp. III-437-III-440, Aug. 2002.
[19] M. M. Mansour and N. R. Shanbhag, “Low-Power VLSI Decoder Architecture for LDPC Codes,” Low Power Electronics and Design, 2002. ISLPED’02, pp. 284-289, 2002.
[20] M. M. Mansour and N. R. Shanbhag, “Turbo decoder architectures for low-density parity-check codes,” in Proc. IEEE GLOBECOM, Taipei, Taiwan, R.O.O., pp. 1383-1388, Nov. 2002.
[21] Brack T., Alles M., Kuenle F., and When N., “A Synthesizable IP Core for WIMAX 802.16E LDPC Code Decoding,” Personal, Indoor and Mobile Radio Communications, 2006 IEEE 17th International Symposium on, pp. 1-5, Sept. 2006.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2009-12-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明