博碩士論文 965201010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.226.226.221
姓名 李冠融(Kuan-zung Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於Ka頻帶之移相器及壓控振盪器暨Ka/V頻帶低雜訊放大器之研製
(mplementation of Ka-band Phase Shifter, VCO, and Ka/V-band LNA Circuits)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文係以TSMC 0.18?m CMOS 製程,TSMC 0.13?m CMOS 製程以及UMC 0.09?m CMOS 製程來完成相位陣列接收機的幾個電路。主要設計的電路為移相器、可變增益放大器、低雜訊放大器以及壓控振盪器。
第一部分為移相器以及可變增益放大器之研製。反射式移相器是由一個3-dB耦合器加上兩個反射式負載所達成,量測到的結果可調相移量為155°,插入損耗為10.9 ± 2.2 dB,輸入及輸出返回損耗都小於-17dB,本電路無功率消耗,另外晶片面積為 0.403 mm2。可變增益放大器由三級的放大器所組成,量測到的結果增益在28.2GHz為17.27dB,可調增益範圍為23dB,優化指標經換算為66.55 GHz/mW,另外晶片面積為0.49 mm2。
第二部分為低雜訊放大器之研製。使用電流再利用低雜訊放大器是將兩級共源級放大器疊接以達到節省一路電流的利用,量測到的結果增益在30.6GHz為9.02dB,3-dB頻寬為5.2GHz,雜訊指數為4.03 dB,另外晶片面積為 0.63 mm2。使用高品質短波共平面波導的來匹配的低雜訊放大器,量測到的結果增益在28.8GHz為15.79dB,3-dB頻寬為4.6GHz,雜訊指數為4.11 dB,整體功耗只需16.65mW,另外晶片面積為 0.63 mm2。用0.13-?m製程之低功耗放大器電路架構為3級共源級放大器,省略級間阻隔偏壓的電容來提升增益降低雜訊,量測到的結果增益在51.2GHz為10.6dB,3-dB頻寬為6.8GHz,雜訊指數為5.658 dB,整體功耗只需8.065mW,另外晶片面積為 0.39 mm2。最後是用0.09-?m製程之小面積低功耗放大器,匹配皆用螺旋狀電感來達到相當小的面積。量測到的結果增益在43.2GHz為14.02 dB,3-dB頻寬為5.7GHz,雜訊指數為5.18 dB,整體功耗只需11.858mW,另外晶片面積不算Pad僅僅為 0.132mm2。
第三部分為壓控振盪器之研製。利用變壓器耦合達到低電壓操作。由量測結果可知,中心震盪頻率為25.49GHz,在離主頻1MHz之相位雜訊為-99.3 dBc/Hz,輸出功率為 -4.2 ~ -6.2 dBm,核心電路功率消耗為5.12 mW,而優化指標為-180.3 dBc/Hz,另外晶片面積為 0.278 mm2。
摘要(英) This paper investigates phased array receiver circuits implemented in TSMC 0.18-?m CMOS, 0.13-?m CMOS, and UMC 0.09-?m CMOS technologies. The implemented circuits include the phase shifter, variable gain amplifier, low noise amplifier, and voltage controlled oscillator.
The first section presents the design of phase shifter and variable gain amplifier. The reflection type phase shifter uses a 3-dB quadrature coupler with two reflective loads and does not need any power consumption. The measured phase-shift range is greater than 155°, the insertion loss is 10.9 ± 2.2 dB. And return loss is better than 17dB. The chip area is 0.403 mm2. The variable gain amplifier employs cascade three-stage to achieve high gain. The peak small signal gain of 17.27 dB is obtained at 28.2 GHz. The dynamic range of gain control is 23dB. A figure-of-merit (FoM) regarding a high peak gain-frequency product per dc power is 66.55 GHz/mW. The chip area is 0.49 mm2.
The second section describes the design of four low noise amplifiers. A Ka-band current reuse LNA, two cascade common source amplifiers share the same supply current to reduce dc current consumption. The peak small signal gain is 9.02 dB at 30.6 GHz, with 3-dB bandwidth of 5.2 GHz from 27.1 to 32.3 GHz. The obtained NF is less than 4.03 dB at 28GHz. The chip area is 0.63 mm2. A Ka-band using slow wave CPW lines (S-CPW) LNA for matching elements is proposed to obtain the high Q of matching networks, and thus achieves a high gain LNA. The peak small signal gain is 15.79 dB at 28.8 GHz, with 3-dB bandwidth of 4.6 GHz from 26.8 to 31.4 GHz. The obtained NF is less than 4.11 dB at 29.5GHz. The chip area is 0.73 mm2. A low power consumption V-band LNA with thin film microstrip lines matching networks was implemented in 0.13-?m CMOS technology. The peak small signal gain is 10.6 dB at 51.2 GHz with 3-dB bandwidth of 6.8 GHz from 48.4 to 55.2 GHz. The obtained NF is less than 5.658 dB at 57.5GHz. The power consumption is only 8.065 mW. The chip area is 0.39 mm2. A low power consumption with very compact lumped matching networks V-Band was implemented in 0.09-?m CMOS technology. The small signal gain has a peak of 14.02 dB at 43.2 GHz, with 3-dB bandwidth of 5.7 GHz from 40.4 to 46.1 GHz. The obtained NF is less than 5.18dB at 42.5GHz. The power consumption is 11.858 mW and the chip area without pad is 0.132 mm2
The third section presents a transformer feedback VCO design which is adopted to achieve low supply voltage. The measured oscillation frequency is 25.49 GHz with a phase noise of -99.3 dBc/Hz at 1 MHz offset. The output power of VCO with cable loss is -4.2~-6.2 dBm. The power consumption of VCO is 5.12 mW with a FoM of -180.3 dBc/Hz. The chip area is 0.278 mm2
關鍵字(中) ★ 低雜訊放大器
★ 移相器
★ 壓控振盪器
關鍵字(英) ★ VCO
★ Phase Shifter
★ LNA
論文目次 Chinese Abstract Ⅰ
Abstract Ⅲ
Acknowledgement Ⅴ
Table of Contents Ⅶ
List of Figures Ⅹ
List of Tables ⅩⅣ
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Research Results 2
1.3 Thesis Organization 2
Chapter 2 Phased Array Receive 3
2.1 Introduction of the Phased Array Receiver 3
2.2 Reflection type Phase Shifter 4
2.2.1 Introduction of Phase Shifter 4
2.2.2 Circuit Topology 5
2.2.3 Simulation and Measurement Results 8
2.2.4 Conclusion 12
2-3 Variable Gain Amplifier 13
2.3.1 Introduction of Variable Gain Amplifier 13
2.3.2 Circuit Topology 13
2.3.3 Simulation and Measurement Results 14
2.3.4 Conclusion 20
Chapter 3 Low Noise Amplifier 21
3.1 Basic of the Low Noise Amplifier 21
3.2 MOSFET Noise Model and Important Parameters of the LNA 22
3.2.1 MOSFET Noise Model 22
3.2.2 0049mportant Parameters of the LNA 24
3.3 Ka Band LNA with Current Reuse Technique 27
3.3.1 Current Reuse Technique and Circuit Topology 27
3.3.2 Simulation and Measurement Results 29
3.3.3 Conclusion 36
3.4 Ka Band LNA based upon Slow Wave Coplanar Waveguide 37
3.4.1 Slow Wave Coplanar Waveguide Concept and Circuit Topology 38
3.4.2 Simulation and Measurement Results 40
3.4.3 Conclusion 47
3.5 A Low Power V Band LNA in 0.13-?m CMOS Technology 47
3.5.1 Circuit Topology 47
3.5.2 Simulation and Measurement Results 48
3.5.3 Conclusion 54
3.6 A Low Power Very Compact CMOS LNA for V Band Application 54
3.6.1 Small Area Concept and Circuit Topology 54
3.6.2 Simulation and Measurement Results 55
3.6.3 Conclusion 62
Chapter 4 Voltage Controlled Oscillator 63
4.1 Instruction of the Voltage Controlled Oscillator 63
4.2 Important Parameters of the VCO 64
4.3 Transformer Feedback VCO 65
4.4 Simulation and Measurement Results 68
4.5 Conclusion 72
Chapter 5 Conclusion 73
5.1 Conclusion of this thesis 73
5.2 Future Work 74
Reference 75
參考文獻 [1]. P. Smulders, “Exploiting the 60 GHz Band for Local Wireless Multimedia Access: Prospects and Future directions”, IEEE Commun. Mag., Vol. 2, No. 1, pp. 140-147, Jan. 2002.
[2]. Federal Communications Commission, “Amendment of Parts 2, 15 and 97 of the Commission's Rules to Permit Use of Radio Frequencies Above 40 GHz for New Radio Applications”, FCC 95-499, ET Docket No. 94-124, RM-8308, Dec. 15, 1995.
[3]. H. Zarei and D. Allstot, “A low-loss phase shifter in 180 nm CMOS formultiple-antenna receivers,” in IEEE ISSCC Dig. Tech. Paper, Feb. 2004, pp. 392–393.
[4]. D. Kang, H. Lee, C. Kim, and S. Hong, “Ku-band MMIC phase shifter using a parallel resonator with 0.18- ?m CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 294–301, Jan. 2006.
[5]. P. S. Wu, H. Y. Chang, M. D. Tsai, T. W. Huang, and H. Wang, “New miniature 15–20-GHz continuous-phase/amplitude control MMICs using 0.18- m CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 10–19, Jan. 2006.
[6]. M. A. Morton, J. P. Comeau, J. D. Cressler, M. Mitchell, and J. Papapolymerou, “Sources of phase error and design considerations for silicon-based monolithic high-pass/low-pass microwave phase shifters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4032–4040, Dec. 2006.
[7]. A. Natarajan, B. Floyd and A. Hajimili, “A bidirectional RF-combining 60GHz phased-array front-end,” in IEEE ISSCC Dig. Tech. Paper, Feb. 2007, pp. 202-203.
[8]. H. Zarei, S. Kodama, C. T. Charles, and D. J. Allstot, “Reflective-type phase shifters for multiple-antenna transceivers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 8, pp. 1647–1656, Aug. 2007.
[9]. Jen-Chieh Wu, Ting-Yueh Chin, Sheng-Fuh Chang, and Chia-Chan Chang,“2.45-GHz CMOS Reflection-Type Phase-Shifter MMICs With Minimal Loss Variation Over Quadrants of Phase-Shift Range” Microwave Theory and Techniques, IEEE Transactions on Volume 56, , Oct. 2008 pp. 2180 - 2189
[10]. F. Ellinger, R. Vogt, and W. Bachtold, “Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 913–917, May 2001.
[11]. C.-H. Wu, C.-S. Liu and S.-I. Liu “A 2-GHz CMOS variable-gain amplifier with 50-dB linear-in-magnitude controlled gain range for 10GBase-LX4 ethernet” IEEE ISSCC Dig. Tech. Paper, pp.484 -541, Feb. 2004.
[12]. Ken Long Feng “Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications” IEEE ISSCC Dig. Tech. Paper, pp. 224 -225, Feb.1999.
[13]. J. Xiao, I. Mehr and J. Silva-Martinez ”A high dynamic range CMOS variable gain amplifier for mobile DTV tuner,” IEEE J. Solid-State Circuit, vol. 42, pp. 292-301, Feb. 2007.
[14]. J.D. Jin, S.S. Hsu, “A 0.18-μm CMOS balanced amplifier for 24-GHz applications,” IEEE J. Solid-State Circuits, vol. 43, pp.1047-1054, May 2007
[15]. K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18µm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106–108, Mar. 2004.
[16]. S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin, and H.Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18µm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 448–450, Jul.2005.
[17]. X. Guo and K. K. O, “A power efficient differential 20-GHz low noise amplifier with 5.3-GHz 3-dB bandwidth,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 9, pp. 603–605, Sep. 2005.
[18]. S.C. Shin, S.F. Lai, K.Y. Lin, M.D. Tsai, H. Wang, C.S. Chang, Y.C. Tsai, “18-26 GHz low-noise amplifiers using 130- and 90-nm bulk CMOS technologies,” in Proc. IEEE RFIC Symp., 2005, pp. 47–50.
[19]. P.J. Riemer, J.F. Prairie, B.R. Buhrow, C.L. Chen, C.L. Keast, P.W. Wyatt, B.A. Randall, B.K. Gilbert, E.S. Daniel, “Ka-band (35 GHz) low-noise 180 nm SOI CMOS amplifier,” in IEEE SOI Conference, Oct. 2006 ,pp.125–126
[20]. L. Aspemyr, H. Jacobsson, M. Bao, H. Sjoland, M. Ferndahl, and G. Carchon, “A 15 GHz and a 20 GHz low noise amplifier in 90 nm RF-CMOS,” in Silicon Monolith. Integr. Circuits RF Syst. (SiRF), Tech. Dig., Jan. 2006, pp. 387–390.
[21]. H.Y. Liao, K.C. Liang, H.K. Chiou, “A compact and low power consumption K-band differential low noise amplifier design using transformer feedback technique,” in Asia-Pacific Microwave Conference (APMC), Dec. 2007, pp.571–574
[22]. A. Sayag, S. Levin, D. Regev, D. Zfira, S. Shapira, D. Goren, D. Ritter, “A 25 GHz 3.3 dB NF low noise amplifier based upon slow wave transmission lines and the 0.18µm CMOS technology,” in Proc. IEEE RFIC Symp., 2008, pp. 373–376.
[23]. Y.L. Wei, S.S. Hsu, and J.D. Jin, “A low-power low-noise amplifier for K-band applications,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 116–118, Feb. 2009.
[24]. W.C. Wang, Z.D. Huang, G. Carchon, A. Mercha, S. Decoutere, W. De Raedt, C.Y. Wu, “ A 1 V 23 GHz low-noise amplifier in 45 nm planar bulk-CMOS technology with high-Q above-IC inductors,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 326–328, May 2009.
[25]. T.H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” Cambridge University Press, 2004.
[26]. H. T. Friis, “Noise figure of radio receivers,” Proceedings on IRE, Vol. 32, No. 7, pp. 419-422, July 1944.
[27]. H.L. Tu, T.Y. Yang, K.H. Liang, and H.K. Chiou ” A 30-GHz 10-dB low noise amplifier using standard 0.18-m CMOS technology” Microwave and optical technology letters / Vol. 49, No. 3, March 2007 page 647~649.
[28]. C.C. Chen, Y.S. Lin, J.F. Chang, and J.H. Lee ” A K-band low-noise amplifier using shunt RC-feedback and series inductive-peaking techniques” Microwave and optical technology letters, Vol. 50, No. 5, May 2008 page 1148~1151
[29]. T.S.D. Cheung, J.R. Long, K. Vaed, R. Volant, A. Chinthakindi, C.M. Schnabel, J. Florkey, K. Stein, “On-chip interconnect for mm-wave applications using an all-copper technology and wavelength reduction,” in IEEE ISSCC Dig. Tech. Papers., Feb. 2003, pp. 396–397.
[30]. T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, S. P. Voinigescu, “Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio” in IEEE J. of Solid-State Circuits, pp. 1044 - 1057 May 2007 .
[31]. C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, “Mil-limeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no.1, pp. 144–155, Jan. 2005.
[32]. C. M. Lo, C. S. Lin, and H. Wang, “A miniature V-band 3-stage cascode LNA in 0.13 ?m CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2006, pp. 1254–1263.
[33]. C. Y. Wu; P. H. Chen “A Low Power V-band Low Noise Amplifier Using 0.13-μm CMOS Technology”. ICECS 2007. Dec. 2007 pp.1328 - 1331
[34]. J. W. Huang; C. S. Wang; C. K. Wang; S. H. Yeh “Vertical-Ground-Plane Transmission Lines for Miniaturized Silicon-Based MMICs,” in Proc. IEEE RFIC Symp., 2007, pp. 563 - 566.
[35]. T. P. Wang and H. Wang, “A broadband 42–63 GHz amplifier using0.13 mm CMOS technology,” in IEEE MTT-S Int. Dig., Honolulu, HI,Jun. 2007, pp. 1779–1782.
[36]. B. Heydari, M. Bohsali, E. Adabi and A.M. Niknejad, “Low-power mm-wave components up to 104GHz in 90nm CMOS” in IEEE ISSCC Dig. Tech. Papers, 2007, pp. 200-201.
[37]. S. Pellerano ; Y. Palaskas ; K. Soumyanath , “A 64 GHz LNA With 15.5 dB Gain and 6.5 dB NF in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, pp. 1542 - 1552, July. 2008
[38]. T. Mitomo ; R. Fujimoto ; N. Ono ; R. Tachibana ; H. Hoshino ; Y. Yoshihara ; Y. Tsutsumi ; I.Seto, “A 60-GHz CMOS Receiver Front-End With Frequency Synthesizer,” IEEE J. Solid-State Circuits, vol. 43, pp. 1030-1037, April. 2008.
[39]. M. Varonen ; M. Karkkainen ; M. Kantanen ; K. Halonen, “Millimeter-Wave Integrated Circuits in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, pp. 1991 - 2002, Sept. 2008.
[40]. A. Hajimiri and T. H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[41]. Q. Huang, “Phase noise to carrier ratio in LC oscillators,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 47, no. 7, pp. 965-980, Jul 2000.
[42]. K. Kwok and H. C. Luong, “ Ultra-Low- Voltage High-Performance CMOS VCOs Using Transformer Feedback” IEEE J. of Solid-State Circuits, vol. 40, no. 3, pp.652-660, March 2005.
[43]. S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “K- and Q-bands CMOS frequency sources with X-band quadrature VCO,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2789–2800, Sep. 2005
[44]. H.-H. Hsieh and L.-H. Lu, “A low-phase-noise K-band CMOS VCO,”IEEE Microw. Wireless Compon. Lett., vol. 16, no. 10, pp. 552–554,Oct. 2006.
[45]. D. Ozis, N. Neihart, and D. Allstot, “Differential VCO and passive fre-quency doubler in 0.18?m CMOS for 24 GHz applications,” in IEEE RFIC Symp. Dig., Jun. 2006, pp. 11–13.
[46]. C.-C. Li, T.-P. Wang,, C.-C. Kuo, M.-C. Chuang, and H. Wang , “A 21 GHz Complementary TransformerCoupled CMOS VCO,” IEEE Microw. Wireless Compon. Lett vol. 18, no. 4, april 2008
[47]. H.-H. Hsieh, Y.-H. Chen, and L.-H. Lu, “A Millimeter-Wave CMOS LC-Tank VCO With an Admittance-Transforming Technique,” IEEE Trans. Microwave Theory Tech., vol. 55, no.9, pp. 1854–1861, September. 2007
[48]. http://www.itrs.net/
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2009-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明