博碩士論文 965201029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:3.14.144.108
姓名 陳建中(Chien Chung Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用功率結合變壓器功率放大器與反E類開關式功率放大器研製
(Implementations on Power Amplifiers Using Power-Combining Transformer and Inverse Class ESwitch Mode Techniques)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用TSMC 0.18-?m CMOS製程設計功率放大器,在設計上分成兩部份,第一部份為以全積體化CMOS功率放大器為目標,使用功率結合技術,設計三個高功率輸出功率放大器,而第二部份功率放大器則是以高效率為設計方向,架構以反E類為主。
各電路特性量測如下:採用功率結合變壓器技術之功率放大器,增益量測為13.6 dB,輸入回返損耗約為10.6 dB,輸出回返損耗約為6.42 dB,1-dB增益壓縮點輸出功率為25.8 dBm,效率為17.2 %;Figure 8功率結合變壓器之功率放大器,增益量測結果為14.2 dB,輸入回返損耗約為20.4 dB,輸出回返損耗約為3.2 dB,1-dB增益壓縮點輸出功率為24.2 dBm,效率為14.7 %;雙級功率結合技術功率放大器,增益量測結果為19.1 dB,輸入回返損耗約為15.7 dB,輸出回返損耗約為7.7 dB,1-dB增益壓縮點輸出功率為12.3 dBm,飽和輸出功率為22.7 dBm,效率為9.1 %;反E類功率放大器,增益量測結果為19.4 dB,輸入回返損耗約為12.5 dB,輸出回返損耗約為2.66 dB,1-dB增益壓縮點輸出功率為20.8 dBm,效率為30.4 %。
摘要(英) This thesis presents CMOS power amplifier (PA) implemented in 0.18 ?m CMOS technology. The implemented circuits include two PA categories. The first category is target for the fully integrated CMOS PA design, three power amplifiers using power-combining transformer are presented, The second category is target for high-efficiency power amplifier which is based on the 反E類 switch technique.
The measured results are summarized as below, the PA with power-combining transformer technique achieves a power gain of 13.6 dB with input and output return losses of 10.6 dB and 6.42 dB, a 1-dB gain compression point (P1dB) of 25.8 dBm, a power added efficiency (PAE) at P1dB of 17.2 %. The PA with figure 8 power-combining transformer achieves a power gain of 14.2 dB with input return and output return losses of 20.4 dB and 3.2 dB, a P1dB of 24.2 dBm, a PAE at P1dB of 14.7 %. The PA with two stage power-combining technique achieves a power gain of 19.1 dB with input and output return losses better than 15.7 dB and 7.7 dB, a P1dB of 12.3 dBm, a saturation power of 22.7 dBm, a maximum PAE of 9.1%. The PA with inverse class E achieves a power gain of 19.4 dB with input and output return loss of 12.5 dB, and 2.66 dB, a P1dB of 20.8 dBm, a PAE at P1dB of 30.4 %.
關鍵字(中) ★ 功率放大器 關鍵字(英) ★ Power Amplifier
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 功率放大器 3
2-1 功率放大器簡介 3
2-2 功率放大器分類 6
第三章 功率結合技術功率放大器 10
3-1 文獻回顧 10
3-2功率結合變壓器技術之功率放大器研製 11
3-2.1變壓器原理簡介與設計 11
3-2.2變壓器模擬與量測結果 14
3-2.3功率結合變壓器技術之功率放大器 19
3-2.4量測結果與討論 22
3-3 Figure 8功率結合變壓器之功率放大器研製 28
3-3.1功率結合簡介與功率結合變壓器 28
3-3.2 Figure 8功率結合變壓器之功率放大器 33
3-3.3 量測結果與討論 34
3-4雙級功率結合技術功率放大器研製 40
3-4.1功率結合簡介與功率結合變壓器 40
3-4.2量測結果與討論 43
第四章 Inverse Class E 功率放大器設計 48
4-1 文獻回顧 48
4-2 反E類開關式功率放大器 50
4-2.1 Class E與 Inverse Class E 50
4-2.2電路架構 52
4-2.3量測結果與討論 53
第五章 結論與未來研究方向 60
5-1 結論 60
5-2未來期許與研究方向 61
參考文獻 62
參考文獻 [1] I. Aoki, S.D. Kee, D.B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 371–383, Mar. 2002.
[2] Haldi, P.; Debopriyo Chowdhury, Liu, G.; Niknejad, A.M., “A 5.8 GHz Linear Power Amplifier in a Standard 90nm CMOS Process using a 1V Power Supply”, IEEE Radio Frequency Integrated Circuits Symposium, 2007, pp. 431-434.
[3] Park, C.; Lee, D. H.; Han, J.; Hong, S.” Tournament-Shaped Magnetically Coupled Power-Combiner Architecture for RF CMOS Power Amplifier”, IEEE Trans. Microw. Theory Tech, Vol. 55, Issue 10, pp.2034-2042, Oct. 2007.
[4] J. R Long, Member, ”Monolithic transformers for silicon rfic design,” IEEE Journal of Soild-State Circuits, Vol. 35, No. 9, September 2000.
[5] Cheng-Chi Yen; Huey-Ru Chuang; “A 0.25-/spl mu/m 20-dBm 2.4-GHz CMOS power amplifier with an integrated diode linearizer”,IEEE Microwave and Wireless Components Letters, Vol. 13, Issue 2, pp. 45-47, Feb 2003.
[6] TSMC Taiwan Semiconductor Manufacturing Co., LTD Document No. TA-10A5-4001 (T-018-LO-DR-001)
[7] Gang Liu; Haldi, P.; Tsu-Jae King Liu; Niknejad, A.M.,” Fully Integrated CMOS Power Amplifier With Efficiency Enhancement at Power Back-Off”, IEEE Journal of Solid-State Circuits, Vol.43, Issue 3, pp 600-609, March 2008.
[8] Hanington, G.; Pin-Fan Chen; Asbeck, P.M.; Larson, L.E.; “High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications”, IEEE Trans. Microwave Theory Tech., Vol. 47, Issue 8, pp.1471-1476, Aug. 1999
[9] Iwamoto, M.; Williams, A.; Pin-Fan Chen; Metzger, A.G.; Larson, L.E.; Asbeck, P.M., “An extended Doherty amplifier with high efficiency over a wide power range”, IEEE Trans. Microwave Theory Tech., Vol. 49, Issue 12, pp.2472 – 2479, Dec. 2001.
[10] Hau, G.; Nishimura, T.B.; Iwata, N.; “A highly efficient linearized wide-band CDMA handset power amplifier based on predistortion under various bias conditions”, IEEE Trans. Microwave Theory Tech., Vol. 49, Issue 6, pp. 1194-1201, June 2001.
[11] Sowlati, T.; Salama, C.A.T.; Sitch, J.; Rabjohn, G.; Smith, D.; “Low voltage, high efficiency GaAs Class E power amplifiers for wireless transmitters”, IEEE Journal of Solid-State Circuits, Vol. 30, Issue 10, pp.1074 – 1080, Oct. 1995.
[12] Mader, T.B.; Popovic, Z.B.; “The transmission-line high-efficiency class-E amplifier”, IEEE Microwave and Wireless Components Letters, Vol. 5, Issue 9, pp.290 – 292, Sept. 1995
[13] Ichiro Aoki, Scott D.Kee, David B, and Ali Hajimiri, “Distributed active transformer-a new power combining and impedance-transformation technique,” IEEE Microwave Theory and Techniques, Vol. 50, pp.316-331, Jan. 2002.
[14] Y. Kim; B.H. Ku, C. Park, D. H. Lee, S. Hong, “A High Dynamic Range CMOS RF Power Amplifier with a Switchable Transformer for Polar Transmitters,” IEEE Radio Frequency Integrated Circuits (RFIC) Symp. , pp.737 – 740, June 2007.
[15] K. H. An, Y. Kim, O. Lee, K. S. Yang, H. Kim, W. Woo, J. J. Chang, C.H. Lee, H. Kim, Laskar, J., “A Monolithic Voltage-Boosting Parallel-Primary Transformer Structures for Fully Integrated CMOS Power Amplifier Design,” IEEE Radio Frequency Integrated Circuits (RFIC) Symp., pp.419-422, June 2007 .
[16] Jongchan Kang; Hajimiri, A.; Bumman Kim; ”A single-chip linear CMOS power amplifier for 2.4 GHz WLAN”, IEEE ISSCC Dig. Tech. Papers, pp. 761-769, Feb. 2006.
[17] Chen, Y.-J.E.; Liu, C.-Y.; Luo, T.-N.; Heo, D.; “A High-Efficient CMOS RF Power Amplifier With Automatic Adaptive Bias Control”, IEEE Microwave and Wireless Components Letters, Vol. 16, Issue 11, pp. 615-617, Nov. 2006.
[18] Elmala, M.; Paramesh, J.; Soumyanath, K.; “A 90-nm CMOS Doherty power amplifier with minimum AM-PM distortion”, IEEE J. Solid-State Circuits, Vol.41, Issue 6, pp.1323-1332, June 2006.
[19] C.-H. Lin, Y.-K. Su, Y.-Z. Juang, C.-F. Chiu, S.-J. Chang, J. F. Chen, C.-H. Tu, “The Optimized Geometry of the SiGe HBT Power Cell for 802.11a WLAN Applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 49–51, Jan. 2007.
[20] Y. S. Noh and C.S. Park, “PCS/W-CDMA Dual-Band MMIC Power Amplifier with a Newly Proposed Linearizing Bias Circuit,” IEEE J. Solid-State Circuits, vol. 37, no. 9, pp. 1096–1099, Sept. 2002.
[21] Hanington, G.; Pin-Fan Chen; Asbeck, P.M.; Larson, L.E.; “High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications”, IEEE Trans. Microwave Theory Tech., Vol. 47, Issue 8, pp.1471-1476, Aug. 1999
[22] Chen, Y.-J.E.; Liu, C.-Y.; Luo, T.-N.; Heo, D.; “A High-Efficient CMOS RF Power Amplifier With Automatic Adaptive Bias Control”, IEEE Microwave and Wireless Components Letters, Vol. 16, Issue 11, pp. 615-617, Nov. 2006.
[23] Jongchan Kang; Jehyung Yoon; Kyoungjoon Min; Daekyu Yu; Joongjin Nam; Youngoo Yang; Bumman Kim; “A highly linear and efficient differential CMOS power amplifier with harmonic control”, IEEE Journal of Solid-State Circuits, Vol. 41, Issue 6, pp.1314 – 1322, June 2006
[24] Yongwang Ding; Harjani, R.; “A CMOS high efficiency +22 dBm linear power amplifier”, IEEE Custom Integrated Circuits Conference, pp.557 -560, Oct. 2004
[25] Singh, Rimal Deep; Yu, Kyung-Wan; “A Linear Mode CMOS Power Amplifier with Self-Linearizing Bias”, 2006 IEEE Asian Solid-State Circuits Conference, pp.251-254, Nov. 2006
[26] Kang, J.; Yu, D.; Min, K.; Kim, B.; ” A Ultra-High PAE Doherty Amplifier Basedon 0.13-$mu$m CMOS Process”, IEEE Microwave and Wireless Components Letters, Vol. 16, Issue 9, pp.505 – 507, Sept. 2006
[27] Heydari, B.; Bohsali, M.; Adabi, E.; Niknejad, A.M.;”A 60 GHz Power Amplifier in 90nm CMOS Technology”, 2007 IEEE Custom Integrated Circuits Conference, pp.769-772, 16-19 Sept. 2007
[28] M. Tanomura, et. Al., “TX and RX Front-Ends for the 60GHz Band in 90nm Standard Bulk CMOS,” To be published ISSCC, February, 2008.
[29] Wicks, B.; Skafidas, E.; Evans, R.; “A 60-GHz fully-integrated Doherty power amplifier based on 0.13-μm CMOS process”, IEEE Radio Frequency Integrated Circuits Symposium, pp.69-72 June 17 2008.
[30] Terry Yao; Gordon, M.Q.; Tang, K.K.W.; Yau, K.H.K.; Ming-Ta Yang; Schvan, P.; Voinigescu, S.P.; “Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio”, IEEE Journal of Solid-State Circuits, Vol. 42, Issue 5, pp.1044-1057, May 2007.
[31] D. Chowdhury, et al., “A 60GHz 1v +12.3dBm Transformer-Coupled Wideband PA in 90 nm CMOS,” To be published ISSCC, February, 2008.
[32] LaRocca, T.; Chang, M.-C.F.; “60GHz CMOS differential and transformer-coupled power amplifier for compact design”, IEEE Radio Frequency Integrated Circuits Symposium, 2008, pp. 65-68, June 17 2008.
[33] Elmala, M.; Paramesh, J.; Soumyanath, K.; “A 90-nm CMOS Doherty power amplifier with minimum AM-PM distortion” , IEEE J. Solid-State Circuits, Vol.41, Issue 6, pp.1323-1332, June 2006.
[34] Wei-Chun Hua; Hung-Hui Lai; Po-Tsung Lin; Chee Wee Liu; Tzu-Yi Yang; Gin-Kou Ma; “High-linearity and temperature-insensitive 2.4 GHz SiGe power amplifier with dynamic-bias control”, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symp., pp. 609-612, June 2005 .
[35] Ji Hoon Kim; Ki Young Kim; Seung Hwan Won; Jae Jin Lee; Yun Hwi Park; Yul Kyo Jung; Seok Tae Kim; Chul Soon Park;, “Impedance optimization of linearizer to suppress intermodulation distortion in 2.45GHz SiGe WLAN power amplifier”, 2006 IEEE Radio Frequency integrated Circuits (RFIC) Symp., pp.4 June 2006.
[36] 林貴成,“應用於寬頻劃碼多工進接系統及無線區域網路線性補償功率放大器之研製”, 中央大學,碩士論文, 2005。
[37] 陳致宏,“微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控震盪器電路之研製”, 中央大學,碩士論文, 2007。
[38] 呂紹良,“微波存取全球互通頻段變壓器耦合式功率放大器與電壓控制振盪器暨除頻器之研製”, 中央大學,碩士論文, 2008。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明