博碩士論文 965201041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.215.182.36
姓名 李庚諺(Geng-Yen Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鋁鎵/氮化鎵蕭基二極體與氮化鋁銦/氮化鎵場效電晶體之磊晶成長、元件製作與特性探討
(Growth, Fabrication and Characterization of AlGaN/GaN Schottky Diodes and AlInN/GaN Field-Effect Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究
★ 砷化銦量子點異質結構與雷射★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析
★ p型披覆層對量子井藍色發光二極體發光機制之影響★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究
★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響
★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析★ P型氮化銦鎵歐姆接觸層對氮化鋁銦鎵藍紫光雷射二極體特性之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的內容主要為高功率氮化鎵蕭基二極體以及高電流密度氮化鋁銦電晶體之磊晶與元件開發。在高壓氮化鎵蕭基二極體方面,高阻值複合式氮化鋁鎵/氮化鎵(AlGaN/GaN)緩衝層結構被成功的應用於結構中,文中並透過數個具有不同線缺陷密度之磊晶試片,完整的探討元件特性與線缺陷密度的相關性。在電極距離為30 μm下,蕭基二極體可達到一個低的開啟電阻為7.9 mΩ-cm2,高崩潰電壓為3,489 V,以及於2000 V逆偏壓下的漏電流小於0.2 μA等優越特性,並使元件的評量因子值達到1.54 GW/cm2。透過X-ray、浸蝕點密度、以及穿透式電子顯微鏡的量測分析,此優異特性可歸功於材料中形成的低密度螺旋狀線缺陷,以及高密度的刃狀線缺陷型態。
為了更深入的分析元件的漏電與暫態特性,不同的測試元件被設計出來分析表面與緩衝層漏電流;此外,從電容電壓量測中可觀察刃狀缺陷捕捉電子的效應,發現大量的電子在初始狀態下就已占據材料中的深層缺陷能階而形成固定電荷。再進一步利用模擬軟體驗證元件的現象,發現具有高缺陷密度的結構確實具有較佳的崩潰電壓特性,因此可成功的驗證材料中刃狀缺陷密度對於元件崩潰電壓有正向的影響。
在動態電阻量測方面,將元件於逆偏壓下加壓一小段時間後再快速切換至導通狀態,可觀測其電阻對時間的關係,結果顯示即使具高刃狀缺陷密度的元件也不具有動態電阻衰化的現象。最後在元件的逆向回復切換特性方面,元件在室溫下具有一個低的逆向回復時間為17 ns,且在高溫150度C下的逆向切換波型與室溫下幾乎相同,這些特性再次顯示出論文中所展示的氮化鎵蕭基二極體具有極優異的特性,其評量因子超越了傳統的矽元件,特別在高溫的表現更是如此,也證實了氮化鎵蕭基二極體應用於低損耗開關電路應用中的高度潛力。
另一方面,本論文提出了具高電流密度之氮化鋁銦電晶體 (AlInN HEMTs)磊晶與元件製程開發。一開始透過理論計算先了解氮化鋁銦材料的極化強度,二維電子氣濃度等特性,並了解合金散射(alloy scattering)在此材料中的影響。在磊晶方面,為了降低電晶體結構中載子的合金散射,結構中必須加入一層氮化鋁二元化合物作為中間層,此高能隙材料可阻擋二維電子氣之分布延伸進入氮化鋁銦位障層中。在改善磊晶材料品質後,試片的表面平坦度可降低至0.738 nm,並在不犧牲二維電子氣濃度為2.13×1013 cm-2的情況下,氮化鋁銦電晶體的電子遷移率可被提升至1360 cm2/V-s,因而成功的達成低通道片電阻值為215 ohm/sq的特性。在歷史文獻比較中,此矽基板上成長的氮化鋁銦材料特性為目前領先成果之一。
在氮化鋁銦電晶體製作方面,本文討論了一系列具有不同氮化鎵表面披覆層厚度之試片,其披覆層厚度分布為0 nm至26 nm。元件的崩潰電壓、電子遷移率、開啟後電阻、以及動態電阻等特性都隨著披覆層厚度增加而有所提升。其中具有13 nm披覆層厚度的金屬-絕緣層-半導體場效電晶體(MIS-HEMTs)可將崩潰電壓由無披覆層的530 V提升至675 V,而詳細的動態電阻研究也指出較厚的氮化鎵披覆層可有效的降低氮化鋁銦電晶體的動態電阻值,此特性的改善歸因於氮化鎵表面披覆層除了可降低表面電場值,也可提升表面能帶以避免電子於高截止偏壓下進入氮化鋁銦位障層中被缺陷捕捉之故。論文中的優異特性展示了氮化鋁銦/氮化鎵電晶體在現代功率元件中的高度潛力,並且說明了此材料於功率元件應用的可行性。
摘要(英) In this dissertation, the growth mechanisms and device characteristics of AlGaN/GaN-based Schottky barrier diodes (SBDs) with a high breakdown voltage and the AlInN-based high electron mobility transistors (HEMTs) with a high current density have been studied. For the high-voltage GaN SBDs, devices are fabricated on a composite AlGaN/AlN buffer layer with different threading dislocation (TD) densities. The correlation between TDs and the device characteristics could be well linked. The SBDs with an anode-to-cathode distance (LAC) of 30 μm exhibit a low on-state resistance (Ron) of 7.9 mΩ-cm2, a high breakdown voltage (VB) of 3,489 V, and a low leakage current of less than 0.2 μA at -2,000 V, which lead to a high figure-of-merit of 1.54 GW/cm2. Based on the x-ray diffraction, etch pit density, and transmission electron microscopy (TEM) measurements, high breakdown characteristics of the SBDs are attributed to low screw-type and high edge-type dislocations in the AlGaN/GaN buffer layer.
Several measurement are implemented for the in-depth analysis. The surface and buffer leakage current could be recognized successfully by the designed test devices. From capacitance-voltage (C-V) measurement, a large amount of initial occupied fixed charges at zero bias are recognized in the material, demonstrating the trapping effect by the edge-type dislocations. Moreover, the simulation results with the associated trap densities in the structures correlate well with the experimental results, which evidences the VB of the device is associated with their edge-type TDs in the material.
From dynamic Ron measurement, no obvious charging effect as well as the dynamic Ron degradation is observed during the reverse voltage bias. At room temperature (RT), the SBD with a high edge-type dislocation density show a low reverse recovery time of 17 ns. Under a high temperature of 150 oC, the switching curve of the device almost remain the same as RT’s performance. These performances are comparable to the reported GaN-based SBDs and outperform their silicon counterpart especially at high temperature, which demonstrate their potential for high-power low-loss switching circuits.
For the development of AlInN HEMTs, the theoretical calculation of polarization and the growth conditions have been systematically studied. The alloy scattering rate with arbitrary unit could be estimated in both AlGaN and AlInN alloys in comparison. In order to reduce alloy scattering in GaN-based HEMTs, a binary material as an AlN spacer layer with wide bandgap inserting between AlGaN/GaN or AlInN/GaN interface is essential to prevent the electron profile from extending into the barrier layer. The epitaxy growth conditions of the AlInN HEMTs are well investigated. After improving the crystal quality of AlInN HEMTs, the improved surface root-mean-square (RMS) roughness of 0.738 nm and the increased mobility to 1360 cm2/V-s without sacrificing its two-dimensional electron gas (2DEG) density (2.13×1013 cm-2) are successfully demonstrated, leading to a very low sheet resistance (Rsh) of 215 ohm/sq. The benchmark shows the mobility value is one of the best results among AlInN HEMTs grown on silicon substrate.
On the other hand, the electrical characteristics of a series of AlInN HEMTs with GaN cap layer thicknesses ranging from 0 to 26 nm have been investigated. The breakdown voltage, mobility of two-dimensional electron gas, on-state resistance, and dynamic Ron of the HEMTs are improved by increasing the cap layer thickness. The off-state breakdown voltage of AlInN MIS-HEMTs is increased from 530 to 675 V by adding a 13-nm-thick GaN cap layer. Detailed studies on the dynamic Ron of the AlInN HEMTs indicate that the GaN cap layer can greatly reduce the dynamic Ron ratio, and that the devices with a 26-nm-thick GaN cap layer can achieve a dynamic Ron ratio comparable to that of AlGaN MIS-HEMTs. These improved electrical characteristics are attributed to the GaN cap layer, which not only reduces the surface E-field but also raises the conduction band of the barrier layer and effectively prevents electrons from being trapped in the AlInN barrier and above. These results show the talents of AlInN/GaN HEMTs for modern power electronic devices.
關鍵字(中) ★ 氮化鎵
★ 氮化鋁
★ 氮化鋁銦
★ 氮化鋁鎵
★ 蕭基二極體
★ 場效電晶體
關鍵字(英)
論文目次 論文摘要 i
Abstract iii
Acknowledgement vi
Contents vii
List of Figures x
List of Tables xv
Chapter 1: Introduction of GaN Power Electronics 1
Chapter 2: High Performance AlGaN/GaN Schottky Barrier Diodes (SBDs) 6
2.1 Introduction 6
2.2 Epitaxial Growth and Material Characterization 7
2.2.1 Crystal Growth 7
2.2.2 X-ray Diffraction Results (XRD) 9
2.2.3 Etch Pit Density (EPD) Results 13
2.2.4 Transmission Electron Microscopy (TEM) Results 14
2.3 Electrical Characteristics of the SBDs 17
2.3.1 Hall Measurement 17
2.3.2 Forward Current-Voltage (I-V) Characteristics 18
2.3.3 Reverse Current-Voltage (I-V) Characteristics 20
2.4 Leakage Mechanisms in SBDs 24
2.4.1 Buffer Leakage Current 24
2.4.2 Surface Leakage Current 26
2.4.3 Capacitance-Voltage (C-V) Characteristics 29
2.4.4 E-field Simulation in SBDs 31
2.4.5 Trapping Model 36
2.5 Transient Behavior and Dynamic Characteristics 38
2.5.1 Dynamic Ron Characteristics 38
2.5.2 Reverse Recovery Time 40
2.6 Summary 43
Chapter 3: Material Growth and Characterization of AlInN HEMTs 45
3.1 Introduction 45
3.2 Background of AlInN-based HEMTs 47
3.2.1 Polarization of AlInN Material 47
3.2.2 Carrier Transportation in AlInN and AlGaN HEMTs 50
3.3 Epitaxy Growth of AlInN Bulk 55
3.4 Epitaxy Growth of AlInN HEMTs on Silicon Substrate 57
3.5 Benchmark of AlInN HEMTs 60
3.6 Summary 62
Chapter 4: AlInN/AlN/GaN HEMTs with a GaN Cap Layer 64
4.1 Introduction 64
4.2 E-field Simulation of AlInN HEMTs with a GaN Cap Layer 65
4.3 Material Characteristics of GaN cap on AlInN HEMTs 69
4.4 Current-Voltage (I-V) Characteristics of AlInN HEMTs with different GaN Cap Layers 72
4.5 AlInN MIS-HEMTs with Low Leakage and High Breakdown Voltages 73
4.6 Dynamic Ron Analysis 77
4.7 Trapping model in AlInN and AlGaN HEMTs 78
4.8 Summary 81
Chapter 5: Conclusions 82
References 86
Appendix A 96
Publication list 102
參考文獻 [1] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, N. M. Williams, and A. Hanser, “High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate,” Solid-state electronics, vol. 50, no. 11, pp. 1744-1747, 2006.
[2] J. Delaine, P.-O. Jeannin, D. Frey, and K. Guepratte, “High frequency DC-DC converter using GaN device,” in Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE, 2012, pp. 1754-1761.
[3] L. Hoffmann, C. Gautier, S. Lefebvre, and F. Costa, “Optimization of the driver of GaN power transistors through measurement of their thermal behavior,” Power Electronics, IEEE Transactions on, vol. 29, no. 5, pp. 2359-2366, 2014.
[4] M. Briere, "The Status of GaN Power Device Development at International Rectifier." proceeding of Power Conversion Intelligent Motion (PCIM), Nurnberg, Germany, 2012.
[5] T. McDonald, and V. President, “GaN based power technology stimulates revolution in conversion electronics,” Electronics in Motion and Conversion, pp. 2-4, 2009.
[6] A. L. J. Strydom, “Driving eGaNTM Transistors for Maximum Performance,” Efficient Power Corporation.
[7] M. A. Khan, Q. Chen, C. Sun, M. Shur, and B. Gelmont, “Two‐dimensional electron gas in GaN–AlGaN heterostructures deposited using trimethylamine‐alane as the aluminum source in low pressure metalorganic chemical vapor deposition,” Applied physics letters, vol. 67, no. 10, pp. 1429-1431, 1995.
[8] A. Dadgar, M. Poschenrieder, J. Bläsing, O. Contreras, F. Bertram, T. Riemann, A. Reiher, M. Kunze, I. Daumiller, and A. Krtschil, “MOVPE growth of GaN on Si (111) substrates,” Journal of Crystal Growth, vol. 248, pp. 556-562, 2003.
[9] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, “The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer,” Journal of crystal growth, vol. 128, no. 1, pp. 391-396, 1993.
[10] A. Krost, A. Dadgar, G. Strassburger, and R. Clos, “GaN‐based epitaxy on silicon: stress measurements,” physica status solidi (a), vol. 200, no. 1, pp. 26-35, 2003.
[11] K. Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykens, J. Derluyn, M. Germain, G. Van Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” Journal of Electronic Materials, vol. 35, no. 4, pp. 592-598, 2006.
[12] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,” Applied Physics Letters, vol. 77, no. 2, pp. 250, 2000.
[13] S. Yoshida, N. Ikeda, J. Li, T. Wada, and H. Takehara, “A new GaN based field effect Schottky barrier diode with a very low on-voltage operation,” in Proc. ISPSD, 2004, pp. 323-326.
[14] W. Chen, K.-Y. Wong, W. Huang, and K. J. Chen, “High-performance AlGaN∕GaN lateral field-effect rectifiers compatible with high electron mobility transistors,” Applied Physics Letters, vol. 92, no. 25, pp. 253501, 2008.
[15] J. W. Johnson, A. P. Zhang, L. Wen-Ben, R. Fan, S. J. Pearton, S. S. Park, Y. J. Park, and C. Jenn-Inn, “Breakdown voltage and reverse recovery characteristics of free-standing GaN Schottky rectifiers,” IEEE Transactions on Electron Devices, vol. 49, no. 1, pp. 32-36, 2002.
[16] A. P. Zhang, J. W. Johnson, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, K. P. Lee, and S. J. Pearton, “Lateral AlxGa1-xN power rectifiers with 9.7 kV reverse breakdown voltage,” Applied Physics Letters, vol. 78, no. 6, pp. 823-825, 2001.
[17] S.-C. Lee, M.-W. Ha, J.-C. Her, S.-S. Kim, J.-Y. Lim, K.-S. Seo, and M.-K. Han, “High breakdown voltage GaN Schottky barrier diode employing floating metal rings on AlGaN/GaN hetero-junction,” in Proc. ISPSD, 2005, pp. 247-250.
[18] K. Remashan, W.-P. Huang, and J.-I. Chyi, “Simulation and fabrication of high voltage AlGaN/GaN based Schottky diodes with field plate edge termination,” Microelectronic Engineering, vol. 84, no. 12, pp. 2907-2915, 2007.
[19] J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, and J. S. Speck, “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates,” Applied Physics Letters, vol. 81, no. 1, pp. 79, 2002.
[20] H.-H. Liu, G.-T. Chen, Y.-L. Lan, G.-Y. Lee, and J.-I. Chyi, “Growth of high quality AlN on sapphire by using a low-temperature AlN interlayer,” in Proc. SPIE, 2009, pp. 72160I-72160I-7.
[21] J. B. Webb, H. Tang, S. Rolfe, and J. A. Bardwell, “Semi-insulating C-doped GaN and high-mobility AlGaN/GaN heterostructures grown by ammonia molecular beam epitaxy,” Applied Physics Letters, vol. 75, no. 7, pp. 953, 1999.
[22] S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, “Growth of Fe doped semi-insulating GaN by metalorganic chemical vapor deposition,” Applied Physics Letters, vol. 81, no. 3, pp. 439, 2002.
[23] M. Miyoshi, Y. Kuraoka, K. Asai, T. Shibata, M. Tanaka, and T. Egawa, “Improved reverse blocking characteristics in AlGaN/GaN Schottky barrier diodes based on AlN template,” Electronics Letters, vol. 43, no. 17, pp. 953, 2007.
[24] C. B. Soh, S. J. Chua, H. F. Lim, D. Z. Chi, W. Liu, and S. Tripathy, “Identification of deep levels in GaN associated with dislocations,” Journal of Physics: Condensed Matter, vol. 16, no. 34, pp. 6305-6315, 2004.
[25] J. Bai, T. Wang, P. J. Parbrook, K. B. Lee, and A. G. Cullis, “A study of dislocations in AlN and GaN films grown on sapphire substrates,” Journal of Crystal Growth, vol. 282, no. 3-4, pp. 290-296, 2005.
[26] Y. A. Xi, K. X. Chen, F. Mont, J. K. Kim, C. Wetzel, E. F. Schubert, W. Liu, X. Li, and J. A. Smart, “Very high quality AlN grown on (0001) sapphire by metal-organic vapor phase epitaxy,” Applied Physics Letters, vol. 89, no. 10, pp. 103106, 2006.
[27] B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and D. Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Applied Physics Letters, vol. 90, no. 24, pp. 241101, 2007.
[28] N. Faleev, H. Lu, and W. J. Schaff, “Low density of threading dislocations in AlN grown on sapphire,” Journal of Applied Physics, vol. 101, no. 9, pp. 093516, 2007.
[29] J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer, and R. J. Molnar, “Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes,” Applied Physics Letters, vol. 78, no. 12, pp. 1685, 2001.
[30] S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, “Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition,” Applied Physics Letters, vol. 70, no. 4, pp. 420, 1997.
[31] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Applied Physics Letters, vol. 68, no. 5, pp. 643, 1996.
[32] J. Elsner, R. Jones, M. I. Heggie, P. K. Sitch, M. Haugk, T. Frauenheim, S. Öberg, and P. R. Briddon, “Deep acceptors trapped at threading-edge dislocations in GaN,” Physical Review B, vol. 58, no. 19, pp. 12571-12574, 1998.
[33] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 560-566, 2001.
[34] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, N. Mark Williams, and A. Hanser, “High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate,” Solid-State Electronics, vol. 50, no. 11-12, pp. 1744-1747, 2006.
[35] A. P. Zhang, J. W. Johnson, B. Luo, F. Ren, S. J. Pearton, S. S. Park, Y. J. Park, and J. I. Chyi, “Vertical and lateral GaN rectifiers on free-standing GaN substrates,” Applied Physics Letters, vol. 79, no. 10, pp. 1555-1557, 2001.
[36] H. Ishida, D. Shibata, H. Matsuo, M. Yanagihara, Y. Uemoto, T. Ueda, T. Tanaka, and D. Ueda, “GaN-based natural super junction diodes with multi-channel structures,” in IEDM Tech. Dig., 2008, pp. 1-4.
[37] E. Bahat-Treidel, F. Brunner, O. Hilt, E. Cho, J. Würfl, and G. Tränkle, “AlGaN/GaN/GaN: C back-barrier HFETs with breakdown voltage of over 1 kV and low RonxA,” Electron Devices, IEEE Transactions on, vol. 57, no. 11, pp. 3050-3058, 2010.
[38] J. Kotani, M. Tajima, S. Kasai, and T. Hashizume, “Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN∕GaN heterostructures,” Applied Physics Letters, vol. 91, no. 9, pp. 093501, 2007.
[39] Y. Zhou, M. Li, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, N. M. Williams, and A. Hanser, “Electrical characteristics of bulk GaN-based Schottky rectifiers with ultrafast reverse recovery,” Applied Physics Letters, vol. 88, no. 11, pp. 113509, 2006.
[40] R. Mitova, R. Ghosh, U. Mhaskar, D. Klikic, M.-X. Wang, and A. Dentella, “Investigations of 600-V GaN HEMT and GaN diode for power converter applications,” Power Electronics, IEEE Transactions on, vol. 29, no. 5, pp. 2441-2452, 2014.
[41] I. Cohen, T. G. Zhu, L. Liu, M. Murphy, M. Pophristic, M. Pabisz, M. Gottfried, B. S. Shelton, B. Peres, and A. Ceruzzi, “Novel 600 V GaN Schottky diode delivering SiC performance at Si prices,” in Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., pp. 311-314.
[42] T. Palacios, S. Rajan, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, “Influence of the Dynamic Access Resistance in the gm and fT Linearity of AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 52, no. 10, pp. 2117-2123, 2005.
[43] D. S. Lee, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios, “300-GHz InAlN/GaN HEMTs With InGaN Back Barrier,” IEEE Electron Device Letters, vol. 32, no. 11, pp. 1525-1527, 2011.
[44] O. Jardel, G. Callet, J. Dufraisse, M. Piazza, N. Sarazin, E. Chartier, M. Oualli, R. Aubry, T. Reveyrand, J.-C. Jacquet, M.-A. Di Forte Poisson, E. Morvan, S. Piotrowicz, and S. L. Delage, “Electrical performances of AlInN/GaN HEMTs. A comparison with AlGaN/GaN HEMTs with similar technological process,” International Journal of Microwave and Wireless Technologies, vol. 3, no. 03, pp. 301-309, 2011.
[45] O. Ambacher, B. Foutz, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, A. Sierakowski, W. Schaff, and L. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of applied physics, vol. 87, no. 1, pp. 334-344, 2000.
[46] H. Morkoç, R. Cingolani, and B. Gil, “Polarization effects in nitride semiconductor device structures and performance of modulation doped field effect transistors,” Solid-State Electronics, vol. 43, no. 10, pp. 1909-1927, 1999.
[47] O. Ambacher, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, W. Schaff, L. Eastman, R. Dimitrov, and L. Wittmer, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, no. 6, pp. 3222, 1999.
[48] E. Yu, G. Sullivan, P. Asbeck, C. Wang, D. Qiao, and S. Lau, “Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors,” Applied physics letters, vol. 71, no. 19, pp. 2794-2796, 1997.
[49] J. Singh, Electronic and optoelectronic properties of semiconductor structures: Cambridge University Press, 2003.
[50] I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Journal of applied physics, vol. 89, no. 11, pp. 5815-5875, 2001.
[51] M. Gonschorek, J. F. Carlin, E. Feltin, M. A. Py, and N. Grandjean, “High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures,” Applied Physics Letters, vol. 89, no. 6, pp. 062106, 2006.
[52] M. Hiroki, N. Maeda, and T. Kobayashi, “Fabrication of an InAlN/AlGaN/AlN/GaN Heterostructure with a Flat Surface and High Electron Mobility,” Applied Physics Express, vol. 1, pp. 111102, 2008.
[53] T. Kehagias, G. P. Dimitrakopulos, J. Kioseoglou, H. Kirmse, C. Giesen, M. Heuken, A. Georgakilas, W. Neumann, T. Karakostas, and P. Komninou, “Indium migration paths in V-defects of InAlN grown by metal-organic vapor phase epitaxy,” Applied Physics Letters, vol. 95, no. 7, pp. 071905, 2009.
[54] M. Gonschorek, J.-F. Carlin, E. Feltin, M. Py, and N. Grandjean, “High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures,” Applied physics letters, vol. 89, no. 6, pp. 062106, 2006.
[55] J. Xue, J. Zhang, Y. Hou, H. Zhou, J. Zhang, and Y. Hao, “Pulsed metal organic chemical vapor deposition of nearly latticed-matched InAlN/GaN/InAlN/GaN double-channel high electron mobility transistors,” Applied Physics Letters, vol. 100, no. 1, pp. 013507, 2012.
[56] J. Xie, X. Ni, M. Wu, J. H. Leach, U. m. Özgür, and H. Morkoç, “High electron mobility in nearly lattice-matched AlInN∕AlN∕GaN heterostructure field effect transistors,” Applied Physics Letters, vol. 91, no. 13, pp. 132116, 2007.
[57] S. Zhang, M. C. Li, Z. H. Feng, B. Liu, J. Y. Yin, and L. C. Zhao, “High electron mobility and low sheet resistance in lattice-matched AlInN/AlN/GaN/AlN/GaN double-channel heterostructure,” Applied Physics Letters, vol. 95, no. 21, pp. 212101, 2009.
[58] R. Tülek, A. Ilgaz, S. Gökden, A. Teke, M. K. Öztürk, M. Kasap, S. l. Özçelik, E. Arslan, and E. Özbay, “Comparison of the transport properties of high quality AlGaN/AlN/GaN and AlInN/AlN/GaN two-dimensional electron gas heterostructures,” Journal of Applied Physics, vol. 105, no. 1, pp. 013707, 2009.
[59] M. Gonschorek, J.-F. Carlin, E. Feltin, M. Py, and N. Grandjean, “High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures,” Applied physics letters, vol. 89, no. 6, pp. 2106, 2006.
[60] R. Wang, P. Saunier, Y. Tang, T. Fang, X. Gao, S. Guo, G. Snider, P. Fay, D. Jena, and H. Xing, “Enhancement-Mode InAlN/AlN/GaN HEMTs With 10-12A/mm Leakage Current and 1012 on/off Current Ratio,” IEEE Electron Device Letters, vol. 32, no. 3, pp. 309-311, 2011.
[61] Z. Peng, Z. Sheng-Lei, X. Jun-Shuai, Z. Kai, M. Xiao-Hua, Z. Jin-Cheng, and H. Yue, “Trap States in Al2O3 InAlN/GaN Metal-Oxide-Semiconductor Structures by Frequency-Dependent Conductance Analysis,” Chinese Physics Letters, vol. 31, no. 3, pp. 037302, 2014.
[62] H.-Y. Kim, C. Lo, L. Liu, F. Ren, J. Kim, and S. Pearton, “Proton-irradiated InAlN/GaN high electron mobility transistors at 5, 10, and 15 MeV energies,” Applied Physics Letters, vol. 100, no. 1, pp. 012107, 2012.
[63] R. Tulek, E. Arslan, A. Bayrakli, S. Turhan, S. Gokden, O. Duygulu, A. A. Kaya, T. Firat, A. Teke, and E. Ozbay, “The effect of GaN thickness inserted between two AlN layers on the transport properties of a lattice matched AlInN/AlN/GaN/AlN/GaN double channel heterostructure,” Thin Solid Films, vol. 551, pp. 146-152, Jan, 2014.
[64] S. W. Kaun, E. Ahmadi, B. Mazumder, F. Wu, E. C. Kyle, P. G. Burke, U. K. Mishra, and J. S. Speck, “GaN-based high-electron-mobility transistor structures with homogeneous lattice-matched InAlN barriers grown by plasma-assisted molecular beam epitaxy,” Semiconductor Science and Technology, vol. 29, no. 4, pp. 045011, 2014.
[65] Y. Fang, S. Dun, B. Liu, J. Yin, B. Sheng, T. Han, Z. He, D. Xing, S. Cai, and Z. Feng, “High performance InAlN/GaN heterostructure and field effect transistor on sapphire substrate by MOCVD,” in Millimeter Waves (GSMM), 2012 5th Global Symposium on, 2012, pp. 650-653.
[66] A. Teke, S. Gökden, R. Tülek, J. H. Leach, Q. Fan, J. Xie, Ü. Özgür, H. Morkoç, S. B. Lisesivdin, and E. Özbay, “The effect of AlN interlayer thicknesses on scattering processes in lattice-matched AlInN/GaN two-dimensional electron gas heterostructures,” New Journal of Physics, vol. 11, no. 6, pp. 063031, 2009.
[67] R. Butté, J. F. Carlin, E. Feltin, M. Gonschorek, S. Nicolay, G. Christmann, D. Simeonov, A. Castiglia, J. Dorsaz, H. J. Buehlmann, S. Christopoulos, G. Baldassarri Höger von Hög, A. J. D. Grundy, M. Mosca, C. Pinquier, M. A. Py, F. Demangeot, J. Frandon, P. G. Lagoudakis, J. J. Baumberg, and N. Grandjean, “Current status of AlInN layers lattice-matched to GaN for photonics and electronics,” Journal of Physics D: Applied Physics, vol. 40, no. 20, pp. 6328-6344, 2007.
[68] A. Dadgar, F. Schulze, J. Bläsing, A. Diez, A. Krost, M. Neuburger, E. Kohn, I. Daumiller, and M. Kunze, “High-sheet-charge–carrier-density AlInN∕GaN field-effect transistors on Si(111),” Applied Physics Letters, vol. 85, no. 22, pp. 5400, 2004.
[69] J. Xue, J. Zhang, and Y. Hao, “Investigation of TMIn pulse duration effect on the properties of InAlN/GaN heterostructures grown on sapphire by pulsed metal organic chemical vapor deposition,” Journal of Crystal Growth, vol. 401, pp. 661-664, 2014.
[70] M. Miyoshi, Y. Kuraoka, M. Tanaka, and T. Egawa, “Metalorganic chemical vapor deposition and material characterization of lattice-matched InAlN/GaN two-dimensional electron gas heterostructures,” Applied physics express, vol. 1, no. 8, pp. 081102, 2008.
[71] Y. Zhou, Z. Lin, C. Luan, J. Zhao, Q. Yang, M. Yang, Y. Wang, Z. Feng, and Y. Lv, “Analysis of interface trap states in InAlN/AlN/GaN heterostructures,” Semiconductor Science and Technology, vol. 29, no. 9, pp. 095011, 2014.
[72] J. S. Xue, J. C. Zhang, and Y. Hao, “Effects of Growth Temperature on Structural and Electrical Properties of InAlN/GaN Heterostructures Grown by Pulsed Metal Organic Chemical Vapor Deposition on c-Plane Sapphire,” Japanese Journal of Applied Physics, vol. 52, no. 8, pp. 08JB04, Aug, 2013.
[73] Y. Ying-Xia, L. Zhao-Jun, L. Chong-Biao, L. Yuan-Jie, F. Zhi-Hong, Y. Ming, and W. Yu-Tang, “Influence of the channel electric field distribution on the polarization Coulomb field scattering in In0. 18Al0. 82N/AlN/GaN heterostructure field-effect transistors,” Chinese Physics B, vol. 23, no. 4, pp. 047201, 2014.
[74] R. Wang, P. Saunier, X. Xing, C. Lian, X. Gao, S. Guo, G. Snider, P. Fay, D. Jena, and H. Xing, “Gate-Recessed Enhancement-Mode InAlN/AlN/GaN HEMTs With 1.9-A/mm Drain Current Density and 800-mS/mm Transconductance,” IEEE Electron Device Letters, vol. 31, no. 12, pp. 1383-1385, 2010.
[75] K. Cico, J. Kuzmík, J. Liday, K. Husekova, G. Pozzovivo, J. Carlin, N. Grandjean, D. Pogany, P. Vogrincic, and K. Frohlich, “InAIN/GaN metal-oxide-semiconductor high electron mobility transistor with Al2O3 insulating films grown by metal organic chemical vapor deposition using Ar and NH3 carrier gases,” Journal of Vacuum Science & Technology B, vol. 27, no. 1, pp. 218-222, 2009.
[76] F. Lecourt, N. Ketteniss, H. Behmenburg, N. Defrance, V. Hoel, M. Eickelkamp, A. Vescan, C. Giesen, M. Heuken, and J. C. De Jaeger, “InAlN/GaN HEMTs on Sapphire Substrate With 2.9-W/mm Output Power Density at 18 GHz,” IEEE Electron Device Letters, vol. 32, no. 11, pp. 1537-1539, 2011.
[77] S. Zhao, J. Xue, P. Zhang, B. Hou, J. Luo, X. Fan, J. Zhang, X. Ma, and Y. Hao, “Enhancement-mode Al2O3/InAlN/AlN/GaN metal–insulator–semiconductor high-electron-mobility transistor with enhanced breakdown voltage using fluoride-based plasma treatment,” Applied Physics Express, vol. 7, no. 7, pp. 071002, 2014.
[78] S. Nsele, L. Escotte, J.-G. Tartarin, S. Piotrowicz, and S. Delage, “Low-frequency noise in reverse-biased Schottky barriers on InAlN/AlN/GaN heterostructures,” Applied Physics Letters, vol. 105, no. 19, pp. 192105, 2014.
[79] K. Čičo, D. Gregušová, Š. Gaži, J. Šoltýs, J. Kuzmík, J. F. Carlin, N. Grandjean, D. Pogany, and K. Fröhlich, “Optimization of the ohmic contact processing in InAlN//GaN high electron mobility transistors for lower temperature of annealing,” physica status solidi (c), vol. 7, no. 1, pp. 108-111, 2010.
[80] S. Haifeng, A. R. Alt, H. Benedickter, E. Feltin, J. F. Carlin, M. Gonschorek, N. R. Grandjean, and C. R. Bolognesi, “205-GHz (Al,In)N/GaN HEMTs,” IEEE Electron Device Letters, vol. 31, no. 9, pp. 957-959, 2010.
[81] J. Guo, Y. Cao, C. Lian, T. Zimmermann, G. Li, J. Verma, X. Gao, S. Guo, P. Saunier, and M. Wistey, “Metal‐face InAlN/AlN/GaN high electron mobility transistors with regrown ohmic contacts by molecular beam epitaxy,” physica status solidi (a), vol. 208, no. 7, pp. 1617-1619, 2011.
[82] A. Watanabe, J. J. Freedsman, R. Oda, T. Ito, and T. Egawa, “Characterization of InAlN/GaN high-electron-mobility transistors grown on Si substrate using graded layer and strain-layer superlattice,” Applied Physics Express, vol. 7, no. 4, pp. 041002, Apr, 2014.
[83] J. Kuzmik, G. Pozzovivo, J. F. Carlin, M. Gonschorek, E. Feltin, N. Grandjean, G. Strasser, D. Pogany, and E. Gornik, “Off‐state breakdown in InAlN/AlN/GaN high electron mobility transistors,” physica status solidi (c), vol. 6, no. S2, pp. S925-S928, 2009.
[84] H. Saito, Y. Takada, M. Kuraguchi, M. Yumoto, and K. Tsuda, “Over 550 V breakdown voltage of InAlN/GaN HEMT on Si,” physica status solidi (c), vol. 10, no. 5, pp. 824-826, 2013.
[85] A. Dadgar, M. Neuburger, F. Schulze, J. Bläsing, A. Krtschil, I. Daumiller, M. Kunze, K. M. Günther, H. Witte, A. Diez, E. Kohn, and A. Krost, “High-current AlInN/GaN field effect transistors,” physica status solidi (a), vol. 202, no. 5, pp. 832-836, 2005.
[86] S. Haifeng, A. R. Alt, H. Benedickter, C. R. Bolognesi, E. Feltin, J. F. Carlin, M. Gonschorek, N. Grandjean, T. Maier, and R. Quay, “102-GHz AlInN/GaN HEMTs on Silicon With 2.5-W/mm Output Power at 10 GHz,” IEEE Electron Device Letters, vol. 30, no. 8, pp. 796-798, 2009.
[87] H. Sun, A. R. Alt, H. Benedickter, C. Bolognesi, E. Feltin, J.-F. Carlin, M. Gonschorek, and N. Grandjean, “Ultrahigh-speed AlInN/GaN high electron mobility transistors grown on (111) high-resistivity silicon with FT= 143 GHz,” Applied physics express, vol. 3, no. 9, pp. 094101, 2010.
[88] S. Arulkumaran, K. Ranjan, G. I. Ng, C. M. Manoj Kumar, S. Vicknesh, S. B. Dolmanan, and S. Tripathy, “High-Frequency Microwave Noise Characteristics of InAlN/GaN High-Electron Mobility Transistors on Si (111) Substrate,” Electron Device Letters, IEEE, vol. 35, no. 10, pp. 992-994, 2014.
[89] K. Cheng, S. Degroote, M. Leys, F. Medjdoub, J. Derluyn, B. Sijmus, M. Germain, and G. Borghs, “Very low sheet resistance AlInN/GaN HEMT grown on 100 mm Si (111) by MOVPE,” physica status solidi (c), vol. 7, no. 7‐8, pp. 1967-1969, 2010.
[90] S. Turuvekere, N. Karumuri, A. A. Rahman, A. Bhattacharya, A. DasGupta, and N. DasGupta, “Gate Leakage Mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: Comparison and Modeling,” IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3157-3165, 2013.
[91] S. Ganguly, A. Konar, Z. Y. Hu, H. L. Xing, and D. Jena, “Polarization effects on gate leakage in InAlN/AlN/GaN high-electron-mobility transistors,” Applied Physics Letters, vol. 101, no. 25, pp. 253519, Dec 17, 2012.
[92] M. Tapajna, N. Killat, V. Palankovski, D. Gregusova, K. Cico, J. F. Carlin, N. Grandjean, M. Kuball, and J. Kuzmik, “Hot-Electron-Related Degradation in InAlN/GaN High-Electron-Mobility Transistors,” IEEE Transactions on Electron Devices, vol. 61, no. 8, pp. 2793-2801, 2014.
[93] J. Kuzmik, “Power electronics on InAlN/(In)GaN: Prospect for a record performance,” IEEE Electron Device Letters, vol. 22, no. 11, pp. 510-512, 2001.
[94] F. Medjdoub, J. F. Carlin, M. Gonschorek, E. Feltin, M. A. Py, D. Ducatteau, C. Gaquiere, N. Grandjean, and E. Kohn, “Can InAlN/GaN be an alternative to high power / high temperature AlGaN/GaN devices?,” in IEDM Tech. Dig., 2006, pp. 1-4.
[95] H. C. Chiu, C. H. Wu, J. F. Chi, J. I. Chyi, and G. Y. Lee, “N2O treatment enhancement-mode InAlN/GaN HEMTs with HfZrO2 High-k insulator,” Microelectronics Reliability, vol. 55, no. 1, pp. 48-51, 2015.
[96] J. I. Chyi, G. Y. Lee, P. T. Tu, and N. T. Yeh, “(Invited) Growth and Characterization of High Power AlInN/GaN HEMTs,” ECS Transactions, vol. 61, no. 4, pp. 3-8, 2014.
[97] J. Jungwoo, and J. A. del Alamo, “Critical Voltage for Electrical Degradation of GaN High-Electron Mobility Transistors,” IEEE Electron Device Letters, vol. 29, no. 4, pp. 287-289, 2008.
[98] J. Kuzmik, G. Pozzovivo, C. Ostermaier, G. Strasser, D. Pogany, E. Gornik, J. F. Carlin, M. Gonschorek, E. Feltin, and N. Grandjean, “Analysis of degradation mechanisms in lattice-matched InAlN/GaN high-electron-mobility transistors,” Journal of Applied Physics, vol. 106, no. 12, pp. 124503, 2009.
[99] Q. Fareed, A. Tarakji, J. Dion, M. Islam, V. Adivarahan, and A. Khan, “High voltage operation of field-plated AlInN HEMTs,” physica status solidi (c), vol. 8, no. 7-8, pp. 2454-2456, 2011.
[100] Q. Zhou, H. Chen, C. Zhou, Z. H. Feng, S. J. Cai, and K. J. Chen, “Schottky Source/Drain InAlN/AlN/GaN MISHEMT With Enhanced Breakdown Voltage,” IEEE Electron Device Letters, vol. 33, no. 1, pp. 38-40, 2012.
[101] H.-S. Lee, D. Piedra, M. Sun, X. Gao, S. Guo, and T. Palacios, “3000-V 4.3-mohm-cm2 InAlN/GaN MOSHEMTs With AlGaN Back Barrier,” IEEE Electron Device Letters, vol. 33, no. 7, pp. 982-984, 2012.
[102] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, “Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High-k Gate Dielectrics,” IEEE Electron Device Letters, vol. 31, no. 3, pp. 189-191, 2010.
[103] Z. Li, and T. P. Chow, “Drift region optimization in high-voltage GaN MOS-gated HEMTs,” physica status solidi (c), vol. 8, no. 7-8, pp. 2436-2438, 2011.
[104] G. Meneghesso, F. Rampazzo, P. Kordos, G. Verzellesi, and E. Zanoni, “Current Collapse and High-Electric-Field Reliability of Unpassivated GaN/AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 53, no. 12, pp. 2932-2941, 2006.
[105] M. Jurkovic, D. Gregusova, V. Palankovski, S. Hascik, M. Blaho, K. Cico, K. Frohlich, J. F. Carlin, N. Grandjean, and J. Kuzmik, “Schottky-Barrier Normally Off GaN/InAlN/AlN/GaN HEMT With Selectively Etched Access Region,” IEEE Electron Device Letters, vol. 34, no. 3, pp. 432-434, Mar, 2013.
[106] D. Jin, and J. A. del Alamo, “Mechanisms responsible for dynamic ON-resistance in GaN high-voltage HEMTs,” in Int. Symp. Power Semiconductor Devices and ICs, Brugge, Belgium, 2012, pp. 333-336.
[107] R. M. Chu, A. Corrion, M. Chen, R. Li, D. Wong, D. Zehnder, B. Hughes, and K. Boutros, “1200-V Normally Off GaN-on-Si Field-Effect Transistors With Low Dynamic ON-Resistance,” IEEE Electron Device Letters, vol. 32, no. 5, pp. 632-634, May, 2011.
[108] Z. K. Tang, Q. M. Jiang, Y. Y. Lu, S. Huang, S. Yang, X. Tang, and K. J. Chen, “600-V Normally Off SiNx/AlGaN/GaN MIS-HEMT With Large Gate Swing and Low Current Collapse,” IEEE Electron Device Letters, vol. 34, no. 11, pp. 1373-1375, Nov, 2013.
[109] A. D. Koehler, N. Nepal, T. J. Anderson, M. J. Tadjer, K. D. Hobart, C. R. Eddy, and F. J. Kub, “Atomic Layer Epitaxy AlN for Enhanced AlGaN/GaN HEMT Passivation,” IEEE Electron Device Letters, vol. 34, no. 9, pp. 1115-1117, Sep, 2013.
[110] K. B. Lee, I. Guiney, S. Jiang, Z. H. Zaidi, H. Qian, D. J. Wallis, M. J. Uren, M. Kuball, C. J. Humphreys, and P. A. Houston, “Enhancement-mode metal–insulator–semiconductor GaN/AlInN/GaN heterostructure field-effect transistors on Si with a threshold voltage of +3.0 V and blocking voltage above 1000 V,” Applied Physics Express, vol. 8, no. 3, pp. 036502, 2015.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2015-12-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明