博碩士論文 965201042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:52.15.143.223
姓名 陳政佑(Cheng-yu Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 分子束磊晶成長氧化鋅系列材料與其特性分析
(Molecular beam epitaxial growth and characterization of zinc oxide-based materials)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的內容主要為利用分子束磊晶成長氧化鋅系列(Zinc-oxide based)材料,為了使氧化鋅材料更廣泛被應用同時開發新穎的氧化物材料,本研究分別就n型高導電率氧化鋅薄膜製備、未摻雜氧化鋅薄膜缺陷分析以及氧硒化鋅三元材料成長進行系統化的探討。
N型高導電率氧化鋅薄膜相當有潛力可應用於元件之透明導電層(Transparent conductive layer),其主要施體雜質為三族元素如鋁、鎵和銦元素,而以銦摻雜氧化鋅(In-doped ZnO)的研究相當少,且特性也不佳,因此本研究以分子束磊晶成長銦摻雜氧化鋅,分析其磊晶品質、電氣與光學特性並評估其應用在透明導電層的潛力。結果顯示銦摻雜氧化鋅相當輕易可藉由摻雜將載子濃度提高至1020 cm-3,但由於銦的原子尺寸較大,使得高摻雜下,氧化鋅磊晶品質與光譜上有明顯的衰化,而濃度雖然有達到減併態(Degenerate)的程度,但弱侷限態導致變溫量測時僅呈現半導體載子傳導型態,因此電阻率僅止於3.4×10-3 Ω∙cm,輔以熱退火來提升材料品質,可觀察到銦摻雜氧化鋅由半導體傳導轉變成金屬傳導型態,而導電率可降至1×10-3 Ω∙cm,惟相較於其他摻雜的氧化鋅特性上並非最佳。
本研究亦探討了鎵摻雜氧化鋅(Ga-doped ZnO)高導電率薄膜之特性,提出氧化鋅成長後結合鋅覆蓋和退火技術,有效抑制了文獻中提到熱退火後因鋅原子熱揮發(Thermal desorption)導致類受體(Acceptor-like)缺陷的形成。實驗結果顯示鎵摻雜氧化鋅電阻率可降至9×10-5 Ω∙cm。相較於他人文獻中的記載,以此退火方式成長的氧化鋅不論在任何濃度下都能有較低的補償比(Compensation ratio),且可維持較低的材料阻值,因此對於鎵摻雜氧化鋅應用於透明導電層上是相當重要技術。
另一方面,由於具高能隙的氧化鋅相當適合應用在透明電晶體(Transparent thin film transistor, TTFT),但氧化鋅的本質缺陷(Intrinsic defect)對電氣特性的影響會造成元件特性不穩定,因此本論文中亦包括針對未摻雜氧化鋅與鎵摻雜氧化鋅系統性研究的結果。在其本質缺陷對電氣特性的影響研究觀察到,未摻雜與鎵摻雜氧化鋅在氮氣與氧氣環境中進行熱退火後產生相異的電氣特性,未摻雜氧化鋅在氧氣環境中退火後顯現出較佳的電性,而鎵摻雜氧化鋅在氮氣環境中退火則表現出穩定的特性。由光激光譜(Photoluminescence)中的缺陷訊號消長推測,氧化鋅電氣特性的變化可歸因於本質缺陷在不同退火環境中的產生與消弭,退火後的未摻雜氧化鋅主要來受到氧空缺(Vacancies)、反位(Anti-sites)和氧間隙(Interstitials)原子所影響,而鎵摻雜氧化鋅在退火過程中則是受到氧間隙原子所主導;針對不同的應用,未摻雜與鎵摻雜氧化鋅則將採用不同的退火環境。
在氧化鋅新穎材料開發方面,本研究探討了氧硒化鋅三元材料之磊晶成長與特性分析。以控制氧流量的方式,於砷化鎵基板上成長出具不同氧含量的氧硒化鋅薄膜,同時首先成長出氧含量達10 %的氧硒化鋅,其光學能隙能由硒化鋅的2.8 eV縮小至2.2 eV,其磊晶品質、光譜特性、載子動態行為等都一起被納入討論,其中重要突破是開發出以氯摻雜成長的n型氧硒化鋅,使該材料能夠被應用於在許多光電元件中。
本研究顯示,氧化鋅材料在應用於透明導電層、電子元件和太陽能電池上,相當具有潛力。
摘要(英) In order to manifest ZnO material into application and develop novel oxide-based materials, I have systematically investigated on three research areas over the past few years, including the development of n-type ZnO-based conductive layers, the influences of point defects on electrical properties in ZnO, and demonstration of ZnSeO alloys by plasma-assisted molecular beam epitaxy (MBE).
Highly conductive n-type ZnO has potential to employ into transparent conductive layers (TCL) and Al, Ga, and In are major dopant sources for achieving n-type characteristics. Al and Ga doped ZnO films have been extensively studied, while few efforts on the growth and characterization of In-doped ZnO films have been reported. Therefore, a serious of In-doped ZnO films was grown by MBE and the characteristics in respect of crystal quality, electrical, and optical properties were investigated and estimated for TCL applications. For electrical characteristics, In-doped ZnO films can easily increase their electron concentration over 1020 cm-3. However, the large size mismatch between Zn and In leads to a degradation on crystal quality and photoluminescence. Even though a degenerated concentration is achieved, no metallic transport behavior was seen and attributed a weak-localization effect caused by atomic disorder arrangement. Thus, when annealing process is introduced to improve crystal quality, a transition from semiconductor to metallic behavior can be observed. The resistivity can be reduced to 1×10-3 Ω∙cm, and it is still not good enough compared to Al and Ga doped ZnO films.
The characteristics of Ga-doped ZnO films were also investigated, following an introduction of in-situ post thermal annealing under Zn flux. It’s found that this method effectively suppress the thermal desorption of Zn and the formation of acceptor-like defects. The resistivity of Ga-doped ZnO can reach as low as 9×10-5 Ω∙cm in this study. Compared to reported findings, Ga-doped ZnO shows lower compensation ratio (NA/ND) at any electron concentration. Ga-doped ZnO with low compensation ratio and low resistivity are achieved simultaneously. In-situ annealing in Zn flux might become an important technology to manifest Ga-doped ZnO into transparent electrodes.
On the other hand, ZnO with large band gap is also suitable for transparent thin film transistor (TTFT). However, the influences of intrinsic defects on electrical properties might lead to unstable output characteristics in devices. Therefore, undoped and Ga-doped ZnO films grown by MBE were prepared for systematic investigations on the influences of native defects on their electrical properties. Distinct electrical properties of the undoped and Ga-doped ZnO films are observed after thermal treatments in nitrogen and oxygen ambient. It is found that the undoped ZnO films show improved characteristics when annealed in oxygen ambient, and Ga-doped ZnO films exhibit stable characteristics when annealed in nitrogen ambient. As revealed by defect emission in photoluminescence, the variation of electrical properties could be attributed to the generation and annihilation of native defects, depending on the ambient of treatments. It is concluded that the annealed undoped ZnO films are affected mainly by oxygen vacancies, antisite oxygen and oxygen interstitials, while the annealed Ga-doped ZnO films are dominated by oxygen interstitials. For specific applications, undoped and Ga-doped ZnO are annealed in different environments.
For development of novel oxide materials, characteristics of ZnSeO alloy were investigation in this thesis. A method for growing ZnSeO alloys on GaAs substrates by carefully controlling the oxygen flow rates was exploited. ZnSeO with varying oxygen content and even near 10 % oxygen was first demonstrated. The optical band gap can be reduced from 2.8 eV (ZnSe) to 2.2 eV. The characteristics including structural properties, optical properties, carrier dynamic and etc. are discussed in this chapter. For the first time, the n-type ZnSeO doped by Cl is obtained. Combined with band gap tuning, it can cover a wide range of wavelength region used in optical devices.
The dissertation shows that the ZnO-based materials with high Ga doping exhibit low resistivity, high transparency, and high stability. Meanwhile, the clarification of ZnO native defects shows very useful information in usage of electronic devices. A development of ZnSeO alloys makes a new opportunity for optoelectronic applications. According to the characteristics above-mentioned, ZnO-based materials show great potential to realize in transparent electrode, electronic devices, and PVs.
關鍵字(中) ★ 氧化鋅
★ 氧硒化鋅
關鍵字(英) ★ Zinc oxide
★ ZnSeO
論文目次 論文摘要................................................ i
Abstract............................................... iii
致 謝................................................. vi
Contents............................................... vii
Figure Captions........................................ ix
Table Caption.......................................... xii
Chapter 1 Introduction........................................... 1
1-1 Background......................................... 1
1-2 Opportunities of ZnO-based Materials............... 1
1-3 Preparation of ZnO-based Materials................. 6
1-4 Plasma-Assisted Molecular Beam Epitaxy System...... 7
Chapter 2 Characterization of In-doped ZnO Films Grown by Plasma-assisted Molecular Beam Epitaxy................. 10
2-1 Introduction....................................... 10
2-2 Experiments........................................ 12
2-3 Characterization of In-doped ZnO films............. 13
2-3-1 Structural properties of In-doped ZnO............ 13
2-3-2 Electrical and transport properties of In-doped ZnO.....................................................15
2-3-3 Luminescence of In-doped ZnO..................... 21
2-3-4 Effect of annealing on In-doped ZnO.............. 23
2-4 Summary............................................ 25
Chapter 3 Low Resistivity and Low Compensation Ratio Ga-doped ZnO Films Grown by Plasma-assisted Molecular Beam Epitaxy................................................ 26
3-1 Introduction....................................... 26
3-2 Experiments........................................ 28
3-3 Characterization of GZO films...................... 29
3-3-1 Influence of GZO annealed under Zn flux.......... 29
3-3-2 Effects of growth temperature on GZO............. 32
3-3-3 Examine of compensation ratio.................... 37
3-4 Summary............................................ 39

Chapter 4 Influence of Point Defects on the Properties of Undoped and Ga-doped ZnO Films Grown by Plasma-Assisted Molecular Beam Epitaxy................................. 40
4-1 Introduction....................................... 40
4-2 Experiments........................................ 41
4-3 Results and discussion............................. 42
4-3-1 Electrical properties of annealed ZnO............ 42
4-3-2 Effects of annealing on crystal structure........ 44
4-3-3 Clarifications of defect emissions............... 48
4-3-4 Analysis of chemical binding energy.............. 51
4-4 Summary............................................ 54
Chapter 5 Characterization of ZnSeO Alloys Grown by Plasma-Assisted Molecular Beam Epitaxy........................ 55
5-1 Introduction....................................... 55
5-2 Experiments........................................ 57
5-3 Characterization of ZnSeO.......................... 58
5-3-1 Surface morphology of ZnSeO on GaAs.............. 58
5-3-2 Structural properties of ZnSeO on GaAs........... 60
5-3-3 Effect of oxygen on PL properties................ 63
5-3-4 Absorption coefficient of ZnSeO.................. 72
5-3-5 Electrical properties of Cl-doped ZnSeO.......... 76
5-4 Summary............................................ 79
Chapter 6 Conclusion................................... 80
Reference.............................................. 82
Publication List....................................... 91
參考文獻 [1] U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, p. 041301, 2005.
[2] A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, and Y. Segawa, "Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices," Applied Physics Letters, vol. 75, p. 980, 1999.
[3] T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, "Radiative and nonradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells," Applied Physics Letters, vol. 77, p. 1632, 2000.
[4] J. C. Sun, J. Z. Zhao, H. W. Liang, J. M. Bian, L. Z. Hu, H. Q. Zhang, X. P. Liang, W. F. Liu, and G. T. Du, "Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO∕p-ZnO:As∕GaAs structure," Applied Physics Letters, vol. 90, p. 121128, 2007.
[5] S. Chu, J. H. Lim, L. J. Mandalapu, Z. Yang, L. Li, and J. L. Liu, "Sb-doped p-ZnO/Ga-doped n-ZnO homojunction ultraviolet light emitting diodes," Applied Physics Letters, vol. 92, 2008.
[6] I. T. Drapak, Semiconductors, vol. 2, p. 624, 1968.
[7] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, and D. M. Bagnall, "Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates," Applied Physics Letters, vol. 83, p. 4719, 2003.
[8] R. L. Hoffman, "ZnO-channel thin-film transistors: Channel mobility," Journal of Applied Physics, vol. 95, p. 5813, 2004.
[9] S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, "Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material," Japanese Journal of Applied Physics, vol. 36, p. L1078, 1997.
[10] H. Y. Liu, V. Avrutin, N. Izyumskaya, M. A. Reshchikov, Ü. Özgür, and H. Morkoç, "Highly conductive and optically transparent GZO films grown under metal-rich conditions by plasma assisted MBE," physica status solidi (RRL) - Rapid Research Letters, vol. 4, p. 70, 2010.
[11] K. J. Kim and Y. R. Park, "Large and abrupt optical band gap variation in In-doped ZnO," Applied Physics Letters, vol. 78, p. 475, 2001.
[12] X. Li, H. Y. Liu, S. Liu, X. Ni, M. Wu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, "InGaN based light emitting diodes with Ga doped ZnO as transparent conducting oxide," physica status solidi (a), vol. 207, p. 1993, 2010.
[13] C. H. Kuo, C. L. Yeh, P. H. Chen, W. C. Lai, C. J. Tun, J. K. Sheu, and G. C. Chi, "Low operation voltage of nitride-based LEDs with Al-doped ZnO transparent contact layer," Electrochemical and Solid-State Letters, vol. 11, p. H269, 2008.
[14] K. Iwata, P. Fons, A. Yamada, H. Shibata, K. Matsubara, K. Nakahara, H. Takasu, and S. Niki, "Bandgap engineering of ZnO using Se," physica status solidi (b), vol. 229, p. 887, 2002.
[15] S.-H. Wei and A. Zunger, "Giant and composition-dependent optical bowing coefficient in GaAsN Alloys," Physical Review Letters, vol. 76, p. 664, 1996.
[16] K. Maeda, M. Sato, I. Niikura, and T. Fukuda, "Growth of 2 inch ZnO bulk single crystal by the hydrothermal method," Semiconductor Science and Technology, vol. 20, p. S49, Apr 2005.
[17] J. Nause, "Cermet, Inc.," 2007.
[18] K.-K. Kim, J.-H. Song, H.-J. Jung, W.-K. Choi, S.-J. Park, and J.-H. Song, "The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering," Journal of Applied Physics, vol. 87, p. 3573, 2000.
[19] R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li, L. G. Salamanca-Riba, A. A. Iliadis, and K. A. Jones, "Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices," Applied Physics Letters, vol. 73, p. 348, 1998.
[20] Y. F. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Q. Zhu, and T. Yao, "Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization," Journal of Applied Physics, vol. 84, p. 3912, 1998.
[21] Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, "Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD," Journal of Electronic Materials, vol. 29, p. 69, 2000.
[22] N. Takahashi, K. Kaiya, T. Nakamura, Y. Momose, and H. Yamamoto, "Growth of ZnO on sapphire (0001) by the vapor phase epitaxy using a chloride source," Japanese Journal of Applied Physics, vol. 38, p. L454, 1999.
[23] S.-H. Jeong, B.-S. Kim, and B.-T. Lee, "Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient," Applied Physics Letters, vol. 82, p. 2625, 2003.
[24] Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, and H. W. White, "Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition," Journal of Applied Physics, vol. 88, p. 201, 2000.
[25] A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, "Single crystalline ZnO films grown on lattice-matched ScAlMgO4(0001) substrates," Applied Physics Letters, vol. 75, p. 2635, 1999.
[26] T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes," Semiconductor Science and Technology, vol. 20, p. S35, 2005.
[27] A. Y. I. Ozgur U, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S.-J. and Morkoc, "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, p. 041301-1, 2005.
[28] H. B. I. B. H. Choi, J. S. Song, and K. H. Yoon, Thin Solid Films, vol. 193, p. 712, 1990.
[29] T. M. A. Suzuki, T. Aoki, Y. Yoneyama, and M. Okuda, Jpn. J. Appl. Phys. Lett., vol. Part 2 38, p. L71, 1999.
[30] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, "Correlation between photoluminescence and oxygen vacancies in ZnO phosphors," Applied Physics Letters, vol. 68, p. 403, 1996.
[31] D. C. Look, J. W. Hemsky, and J. R. Sizelove, "Residual native shallow donor in ZnO," Physical Review Letters, vol. 82, p. 2552-2555, 1999.
[32] S. Cox, E. Davis, S. Cottrell, P. King, J. Lord, J. Gil, H. Alberto, R. Vilão, J. Piroto Duarte, N. Ayres de Campos, A. Weidinger, R. Lichti, and S. Irvine, "Experimental Confirmation of the Predicted Shallow Donor hydrogen state in zinc oxide," Physical Review Letters, vol. 86, p. 2601, 2001.
[33] Y. S. Kim, Y. R. Park, D. Jung, K. C. Kim, S. J. Suh, and T. S. Park, "Physical properties of transparent conducting indium doped zinc oxide thin films deposited by pulsed DC magnetron sputtering," Journal of Electroceramics, vol. 23, p. 536, 2009.
[34] P. S. S. S. S. Shinde, C. H. Bhosale and K. Y. Rajpure, "Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films," J. Phys. D: Appl. Phys, vol. 41, p. 105109, 2008.
[35] M. Miki-Yoshida, F. Paraguay-Delgado, W. Estrada-Lopez, and E. Andrade, "Structure and morphology of high quality indium-doped ZnO films obtained by spray pyrolysis," Thin Solid Films, vol. 376, p. 99, 2000.
[36] T. Ben-Yaacov, T. Ive, C. G. Van de Walle, U. K. Mishra, J. S. Speck, and S. P. Denbaars, "Properties of In-Doped ZnO films grown by metalorganic chemical vapor deposition on GaN(0001) templates," Journal of Electronic Materials, vol. 39, p. 608, 2010.
[37] H. Karzel, W. Potzel, M. Kofferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, "Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures," Physical Review B, vol. 53, p. 11425, 1996.
[38] M. N. Jung, J. H. Chang, E. S. Lee, T. I. Jeon, K. S. Gil, J. J. Kim, Y. Murakami, S. H. Lee, S. H. Park, H. J. Lee, T. Yao, and H. Makino, "Synthesis and investigation on the extrinsic carrier concentration of indium doped ZnO tetrapods," Journal of Alloys and Compounds, vol. 481, p. 649, 2009.
[39] K. P. Vijayakumar, P. M. R. Kumar, and C. S. Kartha, "Doping of spray-pyrolyzed ZnO thin films through direct diffusion of indium: Structural optical and electrical studies," Journal of Applied Physics, vol. 98, p. 023509, 2005.
[40] A. Gurlo, M. Ivanovskaya, A. Pfau, U. Weimar, and W. Gopel, "Sol-gel prepared In2O3 thin films," Thin Solid Films, vol. 307, p. 288, 1997.
[41] T. K. Gupta and W. D. Straub, "Effect of annealing on the ac leakage components of the ZnO varistor. I. Resistive current," Journal of Applied Physics, vol. 68, p. 845, 1990.
[42] O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, "Metal-like conductivity in transparent Al:ZnO films," Applied Physics Letters, vol. 90, p. 252108, 2007.
[43] B. Altshuler, D. Khmel’nitzkii, A. Larkin, and P. Lee, "Magnetoresistance and Hall effect in a disordered two-dimensional electron gas," Physical Review B, vol. 22, p. 5142, 1980.
[44] N. F. Mott, Conduction in Non-Crystalline Materials. Claderon: Oxford, 1993.
[45] V. Bhosle, A. Tiwari, and J. Narayan, "Electrical properties of transparent and conducting Ga doped ZnO," Journal of Applied Physics, vol. 100, p. 033713, 2006.
[46] I. S. C. Jun Hong Noh, Sangwook Lee, Chin Moo Cho, Hyun Soo Han, Jae-Sul An, Chae Hyun Kwak, Jin Yong Kim, Hyun Suk Jung, Jung-Kun Lee, and Kug Sun Hong, Phys. Status Solidi A, vol. 206, p. 2133, 2009.
[47] E. Burstein, Phys. Rev., vol. 93, p. 632, 1954.
[48] K. J. Kim and Y. R. Park, "Large and abrupt optical band gap variation in In-doped ZnO," Applied Physics Letters, vol. 78, p. 475, 2001.
[49] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, "Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition," Thin Solid Films, vol. 445, p. 263, 2003.
[50] P. K. Song, M. Watanabe, M. Kon, A. Mitsui, and Y. Shigesato, "Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering," Thin Solid Films, vol. 411, p. 82-86, 2002.
[51] S.-M. Park, T. Ikegami, and K. Ebihara, "Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition," Thin Solid Films, vol. 513, p. 90, 2006.
[52] T. Yamada, A. Miyake, H. Makino, N. Yamamoto, and T. Yamamoto, "Effect of thermal annealing on electrical properties of transparent conductive Ga-doped ZnO films prepared by ion-plating using direct-current arc discharge," Thin Solid Films, vol. 517, p. 3134, 2009.
[53] H. Makino, N. Yamamoto, A. Miyake, T. Yamada, Y. Hirashima, H. Iwaoka, T. Itoh, H. Hokari, H. Aoki, and T. Yamamoto, "Influence of thermal annealing on electrical and optical properties of Ga-doped ZnO thin films," Thin Solid Films, vol. 518, p. 1386, 2009.
[54] N. Yamamoto, T. Yamada, A. Miyake, H. Makino, S. Kishimoto, and T. Yamamoto, "Relationship Between Residual Stress and Crystallographic Structure in Ga-Doped ZnO Film," Journal of The Electrochemical Society, vol. 155, p. J221, 2008.
[55] C. Kittel, Introduction to Solid State Physics, 6th ed. New York: Wiley, 1986.
[56] J. R. Bellingham, W. A. Phillips, and C. J. Adkins, "Intrinsic performance limits in transparent conducting oxides," Journal of Materials Science Letters, vol. 11, p. 263, 1992.
[57] D. C. Look, K. D. Leedy, D. H. Tomich, and B. Bayraktaroglu, "Mobility analysis of highly conducting thin films: Application to ZnO," Applied Physics Letters, vol. 96, p. 062102, 2010.
[58] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, "Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy," Applied Physics Letters, vol. 77, p. 3761, 2000.
[59] E. Fortunato, V. Assunção, A. Gonçalves, A. Marques, H. Águas, L. Pereira, I. Ferreira, P. Vilarinho, and R. Martins, "High quality conductive gallium-doped zinc oxide films deposited at room temperature," Thin Solid Films, vol. 451, p. 443, 2004.
[60] V. Assunção, E. Fortunato, A. Marques, H. Águas, I. Ferreira, M. E. V. Costa, and R. Martins, "Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature," Thin Solid Films, vol. 427, p. 401, 2003.
[61] G. A. Hirata, J. McKittrick, T. Cheeks, J. M. Siqueiros, J. A. Diaz, O. Contreras, and O. A. Lopez, "Synthesis and optelectronic characterization of gallium doped zinc oxide transparent electrodes," Thin Solid Films, vol. 288, p. 29, 1996.
[62] X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, and H. Ma, "Preparation and properties of ZnO:Ga films prepared by r.f. magnetron sputtering at low temperature," Applied Surface Science, vol. 239, p. 222, 2005.
[63] Q.-B. Ma, Z.-Z. Ye, H.-P. He, S.-H. Hu, J.-R. Wang, L.-P. Zhu, Y.-Z. Zhang, and B.-H. Zhao, "Structural, electrical, and optical properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering," Journal of Crystal Growth, vol. 304, p. 64, 2007.
[64] M. Miyazaki, K. Sato, A. Mitsui, and H. Nishimura, "Properties of Ga-doped ZnO films," Journal of Non-Crystalline Solids, vol. 218, p. 323, 1997.
[65] G. K. Paul and S. K. Sen, "Sol-gel preparation, characterization and studies on electrical and thermoelectrical properties of gallium doped zinc oxide films," Materials Letters, vol. 57, p. 742, 2002.
[66] T. Yamamoto, T. Sakemi, K. Awai, and S. Shirakata, "Dependence of carrier concentrations on oxygen pressure for Ga-doped ZnO prepared by ion plating method," Thin Solid Films, vol. 451-452, p. 439, 2004.
[67] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nature Materials, vol. 4, p. 42, 2004.
[68] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, "Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films," Applied Physics Letters, vol. 72, p. 3270, 1998.
[69] R. L. Hoffman, B. J. Norris, and J. F. Wager, "ZnO-based transparent thin-film transistors," Applied Physics Letters, vol. 82, p. 733, 2003.
[70] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, p. 488, 2004.
[71] K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, and M. Yano, "Characteristics of a Zn0.7Mg0.3O∕ZnO heterostructure field-effect transistor grown on sapphire substrate by molecular-beam epitaxy," Applied Physics Letters, vol. 87, p. 112106, 2005.
[72] A. Janotti and C. G. Van de Walle, "Native point defects in ZnO," Physical Review B, vol. 76, 2007.
[73] B. Du Ahn, S. Hoon Oh, C. Hee Lee, G. Hee Kim, H. Jae Kim, and S. Yeol Lee, "Influence of thermal annealing ambient on Ga-doped ZnO thin films," Journal of Crystal Growth, vol. 309, p. 128, 2007.
[74] N. Y. Garces, N. C. Giles, L. E. Halliburton, G. Cantwell, D. B. Eason, D. C. Reynolds, and D. C. Look, "Production of nitrogen acceptors in ZnO by thermal annealing," Applied Physics Letters, vol. 80, p. 1334, 2002.
[75] H. S. Kang, "Annealing effect on the property of ultraviolet and green emissions of ZnO thin films," Journal of Applied Physics, vol. 95, p. 1246, 2004.
[76] X. J. Wang, I. A. Buyanova, W. M. Chen, C. J. Pan, and C. W. Tu, "Optical characterization studies of grown-in defects in ZnO epilayers grown by molecular beam epitaxy," Physica B: Condensed Matter, vol. 401, p. 413, 2007.
[77] C. Kittel, Introduction to Solid State Physics 6th ed. New York: Wiley 1986.
[78] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, "Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films," Applied Physics Letters, vol. 68, p. 643, 1996.
[79] S.-K. Hong, H.-J. Ko, Y. Chen, and T. Yao, "Defect characterization in epitaxial ZnO/epi-GaN/Al2O3 heterostructures: transmission electron microscopy and triple-axis X-ray diffractometry," Journal of Crystal Growth, vol. 209, p. 537, 2000.
[80] L. Wang, Y. Pu, W. Fang, J. Dai, C. Zheng, C. Mo, C. Xiong, and F. Jiang, "Effect of high-temperature annealing on the structural and optical properties of ZnO films," Thin Solid Films, vol. 491, p. 323, 2005.
[81] F. Leiter, H. Alves, D. Pfisterer, N. G. Romanov, D. M. Hofmann, and B. K. Meyer, "Oxygen vacancies in ZnO," Physica B: Condensed Matter, vol. 340, p. 201, 2003.
[82] C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, "A comparative analysis of deep level emission in ZnO layers deposited by various methods," Journal of Applied Physics, vol. 105, p. 013502, 2009.
[83] L. Kameswara Rao and V. Vinni, "Novel mechanism for high speed growth of transparent and conducting tin oxide thin films by spray pyrolysis," Applied Physics Letters, vol. 63, p. 608, 1993.
[84] J. C. C. Fan and J. B. Goodenough, "X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films," Journal of Applied Physics, vol. 48, p. 3524, 1977.
[85] S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, "Effect of hydrogen plasma treatment on transparent conducting oxides," Applied Physics Letters, vol. 49, p. 394, 1986.
[86] M. Weyers, M. Sato, and H. Ando, "Red Shift of Photoluminescence and Absorption in Dilute Gaasn Alloy Layers," Japanese Journal of Applied Physics Part 2-Letters, vol. 31, p. L853, 1992.
[87] Y. Nabetani, T. Mukawa, Y. Ito, T. Kato, and T. Matsumoto, "Epitaxial growth and large band-gap bowing of ZnSeO alloy," Applied Physics Letters, vol. 83, p. 1148, 2003.
[88] Y. Nabetani, T. Mukawa, T. Okuno, Y. Ito, T. Kato, and T. Matsumoto, "Structure and optical properties of ZnSeO alloys with O composition up to 6.4%," Materials Science in Semiconductor Processing, vol. 6, p. 343, 2003.
[89] R. Broesler, E. E. Haller, W. Walukiewicz, T. Muranaka, T. Matsumoto, and Y. Nabetani, "Temperature dependence of the band gap of ZnSe1-xOx," Applied Physics Letters, vol. 95, p. 151907, 2009.
[90] A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y.-W. Ok, and T.-Y. Seong, "Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers," Applied Physics Letters, vol. 76, p. 550, 2000.
[91] W. Li, M. Pessa, and J. Likonen, "Lattice parameter in GaNAs epilayers on GaAs: Deviation from Vegard’s law," Applied Physics Letters, vol. 78, p. 2864, 2001.
[92] Q. D. Zhuang, A. Krier, and C. R. Stanley, "Strain enhancement during annealing of GaAsN alloys," Journal of Applied Physics, vol. 101, p. 103536, 2007.
[93] M. Oueslati, M. Zouaghi, M. Pistol, L. Samuelson, H. Grimmeiss, and M. Balkanski, "Photoluminescence study of localization effects induced by the fluctuating random alloy potential in indirect band-gap GaAs1-xPx," Physical Review B, vol. 32, p. 8220, 1985.
[94] I. A. Buyanova, W. M. Chen, G. Pozina, J. P. Bergman, B. Monemar, H. P. Xin, and C. W. Tu, "Mechanism for low-temperature photoluminescence in GaNAs/GaAs structures grown by molecular-beam epitaxy," Applied Physics Letters, vol. 75, p. 501, 1999.
[95] A. Polimeni, M. Capizzi, Y. Nabetani, Y. Ito, T. Okuno, T. Kato, T. Matsumoto, and T. Hirai, "Temperature dependence and bowing of the bandgap in ZnSe1-xOx," Applied Physics Letters, vol. 84, p. 3304, 2004.
[96] A. Polimeni, M. Capizzi, M. Geddo, M. Fischer, M. Reinhardt, and A. Forchel, "Effect of nitrogen on the temperature dependence of the energy gap in InxGa1-xAs1-yNy/GaAs single quantum wells," Physical Review B, vol. 63, 2001.
[97] J. Wu, W. Shan, and W. Walukiewicz, "Band anticrossing in highly mismatched III V semiconductor alloys," Semiconductor Science and Technology, vol. 17, p. 860, 2002.
[98] C. Y. Chen, J. I. Chyi, C. K. Chao, and C. H. Wu, "Optical properties of ZnSe1-xOx epilayers," Electronics Letters, vol. 45, p. 1267, 2009.
[99] Morkoç, "Handbook of Nitride Semiconductors and Devices (WileyVCH, Berlin, 2008) " vol. 2.
[100] W. Götz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, "Activation energies of Si donors in GaN," Applied Physics Letters, vol. 68, p. 3144, 1996.
[101] K. Ohkawa, T. Mitsuyu, and O. Yamazaki, "Characteristics of Cl-doped ZnSe layers grown by molecular-beam epitaxy," Journal of Applied Physics, vol. 62, p. 3216, 1987.
[102] K. Akimoto, T. Miyajima, and Y. Mori, "Photoluminescence spectra of oxygen-doped ZnSe grown by molecular-beam epitaxy," Physical Review B, vol. 39, p. 3138, 1989.
指導教授 綦振瀛(Jen-inn Chyi) 審核日期 2013-11-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明