博碩士論文 965201063 詳細資訊


姓名 沈哲豪(Che-Hao Shen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
(Design of Broadband Low-loss RF CMOS Resistive-Ring Mixer )
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要討論運用於微波以及毫米波之混頻器設計,使用金氧半場效電晶體中多層金屬的優點製作面積小且經濟價值高之寬頻混頻器。由於寬頻混頻器在設計上無法同時兼顧轉換損耗以及一分貝增益壓縮值,所以提出藉由分析電晶體閘極不同長度對於兩項特性參數有合影響,首先利用矽化鍺異質接面金氧半場效電晶體0.35 μm製程設計一寬頻無平衡器之混頻器,藉此驗證環狀電阻性架構運用於混頻器之可能性。
進一步結合特性良好且面積小之馬迅平衡器(Marchand Balun) 於18至52 GHz 之雙平衡式混頻器設計上。晶片面積為0.6 × 0.4 mm2。量測轉換損耗為 11.5 dB,中頻頻寬為DC-14 GHz。功率P1dB增益壓縮值為3 dBm,本地振盪到射頻端訊號隔絕度大於40 dB。
第四章則利用功率分配器,90度耦合器以及18-52 GHz之混頻器,組成一正交混頻器,此正交混頻器對於通訊系統有更大之應用。晶片面積為0.8 × 0.5 mm2。正交混頻器量測結果,轉換損耗為12.5 dB,功率P1dB增益壓縮值為1 dBm,本地振盪端到射頻訊號隔絕度為35 dB,鏡像抑制量最好值為-33 dBc。
在論文第五章則利用雙極場效應管(BiFET)製程製作運用於0.8-20 GHz之主動式吉爾伯混頻器[36],雙極場效應管結合異質接面雙極性電晶體(HBTs)以及假晶格高電子遷移率場效電晶體(PHEMTs)兩種不同之電晶體,採用異質接面雙極性電晶體當做轉導級電晶體,假晶格高電子遷移率場效電晶體當作切換級電晶體,藉此來提高混頻器之特性。此設計亦可當作節調器使用,速度可達2 Gbps以上
摘要(英) Several resistive ring-type broadband mixers have been designed and fabricated by using CMOS techniques for microwave and MMW applications in this thesis. Since the broadband operation and the output power requirement are a tradeoff between the conversion loss and output 1 dB compression point, and the total gate area of NMOS transistor further investigated with the conversion loss. A broadband mixer without on-chip balun has been fabricated using 0.35 ?m SiGe BiCMOS process to verify the resistive ring-type mixer.
The doubly balanced mixer with a compact Marchand balun has been presented in CMOS 0.18 ?m technique with a chip size of 0.6 ×0.4 mm2. The mixer exhibits an operation frequency of from 18 to 52 GHz, a measured conversion loss of 11.5 dB, an IF Frequency bandwidth of from DC to 14 GHz, an input P1dB of 3 dBm, and an LO-RF isolation of 40 dB.
In chapter 4, an IQ mixer achieved using the doubly balanced mixer, a power dividers, and a 90。 hybrid couplers is also presented with a chip size of 0.8 ×0.5 mm2 for high-speed orthogonal modulation applications. The IQ mixer demonstrated a measured conversion loss of 12.5 dB, an IF Frequency bandwidth of DC-14 GHz, an input P1dB of 3 dBm, a LO-RF, isolation of 35 dB, and a side-band suppression of -33 dBc.
In chapter 5, an active Gilbert-cell mixer has been presented in BiFET process with the operating frequency of 0.8-20 GHz. BiFET process was compined with HBTs and PHEMTs. For the high performance mixer, HBT devices was designed for trans-conductance stage, PHEMT devices was designed for switch-stage. By the way, the design could been using in a modulator. The data rate is more than 2 Gbps.
關鍵字(中) ★ 混頻器
★ 調變器
★ 雙平衡式
★ 寬頻
關鍵字(英) ★ mixer.modulator
★ broadband
★ doubly balanced mixer
論文目次 摘要 ............................................................................................................................................ i
Abstract ..................................................................................................................................... ii
圖目錄 ...................................................................................................................................... vi
表目錄 ....................................................................................................................................... x
第一章 緒論 ............................................................................................................................... 1
1.1 研究動機及背景 .............................................................................................................. 1
1.2 相關研究與發展 .............................................................................................................. 2
1.3 論文架構 .......................................................................................................................... 2
第二章 寬頻混頻器設計 .......................................................................................................... 4
2.1 混頻器介紹 ...................................................................................................................... 4
2.1.1 介紹 ........................................................................................................................... 4
2.1.1 重要參數規格 ........................................................................................................... 6
2.1.2 混頻器種類 ............................................................................................................ 10
2.2 寬頻混頻器理論 ............................................................................................................ 12
2.2.1 寬頻混頻器阻抗匹配法 ......................................................................................... 12
2.2.2 環狀電阻性混頻器之模型分析[13] ...................................................................... 15
2.2.3 閘極端偏壓法 ........................................................................................................ 21
2.3 平衡器運用於混頻器: ................................................................................................... 22
2.3.1 平衡器介紹以及重要參數規格 ............................................................................. 22
2.3.2 Marchand Balun 介紹[2] ........................................................................................ 25
2.4 0.35 μm SiGe BiCMOS 環狀電阻性混頻器設計 ........................................................ 32
2.4.1 介紹 ......................................................................................................................... 32
2.4.2 降頻端(Down Conversion) 模擬與量測結果討論 ............................................... 35
2.4.3 升頻端(Up Conversion)模擬與量測結果討論 ...................................................... 40
2.4.實驗結果討論 ............................................................................................................ 45
2.5 結論 ............................................................................................................................... 48
第三章 環狀電阻性混頻器設計 ............................................................................................ 49
3.1 簡介 ............................................................................................................................... 49
3.2 0.18 μm CMOS 高線性度環狀電阻性混頻器設計 .................................................... 51
3.2.1 介紹 ........................................................................................................................ 51
3.2.2 平衡器模擬結果 .................................................................................................... 53
3.2.3 降頻端(Down Conversion)模擬與量測結果討論 ................................................. 55
3.2.4 升頻端(Up Conversion) 模擬與量測結果討論 .................................................... 58
3.2.5 訊號隔絕度量測結果: ............................................................................................ 60
3.2.6 實驗結果與討論 .................................................................................................... 62
3.3 0.18 μm CMOS 低損耗環狀電阻性混頻器設計 ........................................................ 63
3.3.1 簡介 ........................................................................................................................ 63
3.3.2 平衡器模擬結果 .................................................................................................... 64
3.3.3 降頻端模擬與量測結果討論(Down Conversion) ................................................ 66
3.3.4 升頻端模擬與量測結果討論 (Up Conversion) .................................................... 71
3.3.5 訊號隔絕度量測結果 ............................................................................................. 73
3.4.6 實驗結果與討論 .................................................................................................... 75
3.4 結論 ............................................................................................................................... 77
第四章正交混頻器設計 .......................................................................................................... 83
4. 1 簡介 .............................................................................................................................. 83
4.1.1 正交混頻器設計方法 ............................................................................................ 85
4.1.2 正交混頻器重要參數介紹 .................................................................................... 87
4. 2 0.18 μm CMOS 正交混頻器 ........................................................................................ 92
4.2.1 介紹 ......................................................................................................................... 92
4.2.2 被動電路模擬結果 ................................................................................................ 93
4.2.3 正交混頻器模擬與量測結果討論 ........................................................................ 97
4.2.4 降頻端模擬與量測結果討論(Down conversion) ................................................ 100
4.2.6 升頻端模擬與量測結果討論(Up conversion) .................................................... 107
4.2.7 訊號隔絕度量測結果 ........................................................................................... 111
4.3 實驗結果與討論 .......................................................................................................... 113
第五章 寬頻式主動混頻器 .................................................................................................. 115
5.1 介紹 .............................................................................................................................. 115
5.2 BiFET 吉爾伯混頻器設計 .......................................................................................... 118
5.2.1 介紹 ...................................................................................................................... 118
5.3 平衡器運用混頻器探討 .............................................................................................. 125
5.4 數位訊號調變之應用 .................................................................................................. 127
5.4.1 介紹 ....................................................................................................................... 127
5.4.2 被動平衡器之調變器應用於數位訊號調變 ....................................................... 127
5.4.3.主動平衡器之調變器應用於數位訊號調變 ....................................................... 129
5.4.4 實驗結果與討論 ................................................................................................... 130
5.5 結論 .............................................................................................................................. 131
第六章 結論 .......................................................................................................................... 134
參考文獻 ............................................................................................................................... 137
參考文獻 參考文獻
[1] 張鴻埜,毫米波反射式調變器之研究及其應用,國立台灣大學電信工程學研究所博士論文,民國九十三年。
[2] 吳佩憙,微波及毫米波平衡不平衡轉換器之設計及其應用,國立台灣大學電信工程學研究所博士論文,民國九十五年。
[3] 張豐證,應用於微波及毫米波頻段之寬頻混波器,國立台灣大學電信工程學研究所碩士論文,民國九十五年。
[4] 梁恭豪,高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統,國立中央大學電機工程研究所博士論文,民國九十七年。
[5] B. Razavi, RF microelectronics, Prentice Hall Inc, New York, 1998.
[6] Stephen A.Mass, Mircowave Mixers, 2nd Edition, Artech House, 1995.
[7] David M.Pozar, Microwave Engineering, 3rd Edition, Wiley,2005.
[8] G. D. Vendelin, A. M. Pavio and U.L. Rohade, Design of Microwave Circuits Using Linear and Nonlinear Techniques, 2nd Edition, Wiley, 2005.
[9] H. S. Kang,B. G. Chol, and C. S. Park, “A New Switching Technique for Low Power Mixer with Body Terminal,” IEEE Radio and Wireless Symposium, pp.439-441, Jan. 2007.
[10] T. Y. Yang and H. K. Chiou, “A 16-46 GHz Mixer Using Broadband Multilayer Balun in 0.18-µm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol.17, no. 7, ,July 2007.
[11] S. Kang,B. G. Chol, and C. S. Park, “A New Switching Technique for Low Power Mixer with Body Terminal,” IEEE Radio and Wireless Symposium, pp.439-441, Jan. 2007.
[12] P. Vizmulleri, RF Design Guide: Systems, Circuits and Equations, Artech House,1995.
[13] Komoni. K, Dawe. G, Sonkusale, S. “Fundamental Performance Limits and Scaling of a CMOS Passive Double-Balanced (FET-Quad) Mixer” Proceedings of the International IEEE Northeast Workshop on Circuits and Systems (NEWCAS '08), Montreal, Canada, June 2008.
[14] Komoni. K, Dawe. G, Sonkusale, S. “Modeling, simulation and implementation of a passive mixer in 130 nm CMOS technology and scaling issues for future technologies” in Proc. IEEE Northeast Workshop on Circuits and Systems (NEWCAS '08), Aug. 2008, pp 410-413.
[15] Y. Hamada, K. Maruhashi, M. Ito, S. Kishimoto, T. Morimoto, and K. Ohata. “60-GHz-band Compact IQ Modulator MMIC for Ultra-high-speed Wireless Communication.” Microwave Symposium Diq.11-16, June 2006, pp.1701-1704.
[16] Joseph C. Bardin and Sander Weinreb,“ A 0.5-20 GHz Quadrature Downconverter.” Bipolar/BiCMOS Circuits and Technology Meeting, pp186-189, Oct. 2008.
[17] Chin-Shen Lin, Hong-Yeh Chang, Pei-Si Wu, Kun-You Lin, and Huei Wang, “A 35-50 GHz IQ-Demodulator in 0.13-μm CMOS Technology”, Microwave Symposium, 2007, IEEE MTT-S International, June 2007, pp1397-1400.
[18] Hung-Chih Chuang, Chih-Ming Lin ,Che-Hung Lin, and Yeong-Her Wang “A K- to Ka-Band Broadband Doubly Balanced Monlithic Ring Mixer” IEEE Microwave and Wireless Components Letters, vol.18, no.6, June 2008, pp 401-403.
[19] J. L. Chen ,S. F. Chang, and B. Y.Laue, “A 20-40 GHz monolithic doubly-balanced mixer using modified planar marchand baluns,” in Proc.Microw.Conf. Asia- Pacific, Dec.2001, 2001,pp.131-134.
[20] Hong Yeh Chang, Pei Si Wu, Tian Wei Huang, Huei Wang, Chung-Long chang and John G.J Chern, “Design and Analysis of CMOS Broad-Band Compact High-Linearity Modulators for Gigabit Microwave/Millimeter-Wave Applications” IEEE Transactions on Microwave Theory and Techniques, vol.54,no.1, pp1190-1199 January 2006.
[21] Hwann Kaeo Chiou, Tsung Yu Yang, “Low-Loss and Broadband Asymmetric Broadside-Coupled Balun for Mixer Design in 0.18-μm CMOS Technology,” design” IEEE Transactions On microwave Theory And Techniques, vol.56, no.4, pp 835-848, April 2008.
[22] Kung Hao Liang, Hong Yeh Chang, Yi Jen Chan “A 0.5-7.5 GHz Ultra low-Voltage Low-Power Mixer Using Bulk-Injection Method by 0.18-um CMOS Technology” IEEE Microwave and Wireless Components Letters, vol.17, no.7, pp 531-533, July 2008.
[23] Chin Shen Lin, Pei si Wu, Mei Chap Yeh, Jia Shiang Fu, Hong Yeh Chang, Kun-You Lin, Huei Wang “Analysis of Multiconductor Coupled-Line Marchand Baluns for Miniature MMIC design” IEEE Transactions On microwave Theory And Techniques, vol.55, no.6, pp 1190-1199
[24] Hung Ju Wei, Chin chun Meng, PO Yi Wu, and Kuan-Chang Tsung “K-band CMOS Sub-Harmonic Resistive Mixer With a Miniature Marchand Balun on Lossy Silicon Substrate” IEEE Microwave and Wireless Components Letters, vol.18, no.1, pp 40-42, January 2008.
[25] C. S. Lin, P. S. Wu, M. C. Yeh, J. S. Fu, H. Y. Chang, K. –Y. in, H. Wang “Analysis of Multiconductor Coupled-Line Marchand Baluns for Miniature MMIC Design,” IEEE Trans. Microw. Theory Tech., vol.55, no.6, June 2007.
[26] H. J. Wei, C. C. Meng, P. Y. Wu, and K. C. Tsung “K-band CMOS Sub-Harmonic Resistive Mixer With a Miniature Marchand Balun on Lossy Silicon Substrate.” IEEE Microw. Wireless Compon. Lett., vol.18, no.1, Jan. 2008.
[27] T. Y. Chang and J. S. Lin, “1-11GHz Ultra-Wideband Resistive Ring Mixer in 0.18-µm CMOS Technology,” in Proc. IEEE RFIC Symp. Dig., pp.11-13, Jun. 2006.
[28] R. Circa, D. Pienkowski, and G. Boeck., “Integrated 130nm CMOS passive mixer for 5 GHz WLAN applications” ,2005 SBMO/IEEE MTT-S Int. Conf., pp. 103-106, July 2005.
[29] R. Circa, D, Pienkowski, G. Boeck, R. Kakerow, M. Mueller, and R. Wittmann, “Resistive mixers for reconfigurable wireless front-ends”, IEEE RFIC Symp., pp. 513-516, June 2005.
[30] T. Chang, and J. Lin, “1-11 GHz ultra-wideband resistive ring mixer in 0.18μm CMOS technology”, IEEE RFIC Symp., June 2006.
[31] B. M. Motlagh, and et al., “Fully integrated 60-GHz single-ended resistive mixer in 90-nm CMOS technology”, IEEE Micro. Wireless Compon. Lets., vol. 16, pp. 25-27, Jan.2006.
[32] M. Varonen, M. Karkkainen, and K.A.I. Halonen, “V-band balanced resistive mixer in 65-nm CMOS”, IEEE ESSCIRC Conf., pp. 360-363, Sept. 2007.
[33] I. Lo, X. Wang, O. Boric-Lubecke, Y. Hong, and C. Song, “Wide-band 0.25 µm CMOS Passive Mixer”, IEEE Radio and Wireless Symposium(RWS’09), pp.502 – 505, Jan. 2009.
[34] 楊宗育,微波/毫米波頻段寬頻與低損耗金氧半導體平衡至不平衡轉換器之研製及其應用,國立中央大學電機工程研究所博士論文,民國九十七年。
[35] P. Gould, C. Zelley, J. Lin, “A CMOS Resistive Ring Mixer MMICS for GSM 900 and DCS 1800, Base Station Applications”, in 2000 IEEE MTT-S Int. Microwave Symp. Dig., ~01.1p, p. 521- 524, 2000.
[36] B. Gilbert, “A precise foure-quadrant multiplier with subnanosecond response,” IEEE JSSCC, vol. SC-3, no. 4, pp. 365-373, Dec 1968.
[37] G. K. W. Hamed, A. P. Freundorfer, Y. M. M. Antar, P. Frank, and D. Sawatzky, “A high-bit rate ka-band direct conversion QPSK demodulator,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 365–367, May 2008.
[38] J.-H. Tsai and T.-W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping forMMWwireless gigabit applications,” IEEE Microw. Theory Tech., vol. 55, no. 10, pp. 2075–2085, Oct. 2007
[39] P. Lindberg, E. Ojefors, E. Sonmez, and A. Rydberg, “A SiGe HBT 24 GHz sub-harmonic direct-conversion IQ-demodulator,” in Proc. Topic Meeting Silicon Monolith. Integr. Circuits RF Syst., Sep. 8–10, 2004, pp. 247–250.
[40] A. P. Freundorfer, K. Hamed, Y. Sun, Y. Antar, P. Frank, and D. Sawatzky, “A direct digital 2 Gb/s modulator/demodulator experiment in GaAs HBT at 30 GHz,” in Proc. Asia-Pacific Microw. Conf., Dec.2006, pp. 1611–1614.
[41] S. Sarkar, D. A. Yeh, S. Pinel, and J. Laskar, “60-GHz direct-conversion gigabit modulator/demodulator on liquid-crystal polymer,” IEEE Microw. Theory Tech., vol. 54, no. 3, pp. 1245–1252, Mar. 2006.
[42] C. Y. Chang, S. H. Weng, C. C. Chiong, “A 30–50 GHz Wide Modulation Bandwidth Bidirectional BPSK Demodulator Modulator With Low LO Power, ” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp.332-334, May 2009.
指導教授 辛裕明、張鴻埜、詹益仁、Hong-Yeh,Chang 審核日期 2009-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡