博碩士論文 965201070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.238.118.78
姓名 吳喬蓁(Ciao-Jhen Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用在> W頻段(>110GHz)覆晶式具超高飽和電流-頻寬乘積的近彈道傳輸光偵測器
(Extremely High Saturation Current-Bandwidth Product Performance of a Near-Ballistic Uni-Traveling-Carrier Photodiode with a Flip-Chip Bonding Structure)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對1.55μm波長的光纖通訊系統中接收端前級元件光二極體之製作與研究,在元件幾何結構上摻入一層P型的電場承受層,因此可讓內部的電子速度維持在over shoot velocity,克服P-I-N 光偵測器與傳統單載子傳輸光偵測器的缺點,進而達到高速、高響應度、高頻寬的表現。並且利用覆晶結合技術與附有金柱基的氮化鋁基板結合,讓主動區面積28?m2的元件能夠承受更高的飽和電流(13.6mA),而主動區面積144?m2預估擁有創新紀錄的飽和電流-頻寬之乘積(6660mA-GHz, 37mA, 180GHz)。
摘要(英) In this study, we demonstrate near-ballistic uni-traveling carrier photodiodes (NBUTC-PDs) with an optimized flip-chip bonding structure, wide 3-dB optical-to-electrical (O-E) bandwidth (>110GHz), and extremely high saturation current-bandwidth product performance (37mA, >110GHz, >4070mA-GHz). NBUTC-PDs with different active areas (28 to 144?m2) are fabricated and flip-chip bonded with co-planar waveguides (CPWs) onto an AlN based pedestal. This improves the high-power performance without seriously sacrificing the speed performance. In addition, the saturation-current measurement results indicate that after inserting a center bonding pad on the pedestal (located below the p-metal of the NBUTC-PD for good heat-sinking), the saturation current performance of the device becomes much higher than that of the control device (without the center bonding pad), especially for the device with a small active area (28?m2). The measurement and modeling results indicate that a device with a 144?m2 active area and optimized flip-chip bonding pedestal can achieve an extremely high saturation current-bandwidth product (6660mA-GHz, 37mA, 180GHz).
關鍵字(中) ★ 光偵測器
★ 覆晶結合
關鍵字(英) ★ photodiode
★ flip chip bonding
論文目次 Abstract .............................i
摘要 .............................ii
誌謝 .............................iii
目錄 .............................v
圖目錄 .............................vii
表目錄 .............................ix
第一章 序論 1
§1.1 光纖通訊之發展趨勢.............................1
§1.2 光偵測器之發展與應用 .........................7
§1.3覆晶結合技術之發展趨勢 ......................11
§1.4論文動機與架構 ......................................14
第二章 彈道傳輸單載子光偵測器設計 ..............15
§2.1傳統P-I-N光偵測器工作原理 .................15
§2.2單載子傳輸光偵測器工作原理 ...............17
§2.3 彈道傳輸單載子光偵測器之磊晶層設計 ......21
第三章 彈道傳輸單載子光偵測器設計 ...............24
§3.1近彈道傳輸單載子光偵測器之製程 ...............24
第四章 彈道傳輸單載子光偵測器之量測與結果討論...........36
§ 4.1 Heterodyne-Beating 量測系統之架設 ...........36
§ 4.2 頻寬量測結果 ......................................37
§ 4.3 高功率產生量測結果 .............................42
第五章 結論與未來研究方向 .............................45
參考文獻 ...............................................47
參考文獻 [1] Y.-S. Wu, J.-W. Shi, J.-Y. Wu, F.-H. Huang, Y.-J. Chan, Y.-L. Huang, and R. Xuan “High Performance Evanescently Edge Coupled Photodiodes with Partially p-Doped Photo-absorption Layer at 1.55mm Wavelength,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 878-880, Apr. 2005.
[2] Mario Weiß, Mathieu Huchard, Andreas Stöhr, Benoît Charbonnier, Sascha Fedderwitz, and Dieter Stefan Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s” Journal Of Lightwave Technology, vol. 26, no. 15, pp. 2424-2429, Auguest 1 2008.
[3] J. J. Vegas Olmos, Toshiaki Kuri, and Ken-Ichi Kitayama, “60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network,” IEEE Photon. Technol. Lett., vol. 20, no. 8, pp. 617-619, Apr. 15 2008.
[4] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1937-1944, May. 2006.
[5] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul. 1999.
[6] J.-W. Shi, H.-C. Hsu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, Ja-Yu Lu, Chi-Kuang Sun, and Ci-Liang Pan, “Separated-Transport-Recombination p-i-n Photodiode for High-speed and High-power Performance” IEEE Photon. Technol. Lett, vol. 17, pp. 1722-1724, Aug. 2005.
[7] T. H. Stievater and K. J. Williams, “Thermally Induced Nonlinearities in High-Speed p-i-n Photodetectors,” IEEE Photon. Technol. Lett, vol. 16, pp. 239-241, Jan. 2004.
[8] N. Li, H. Chen, N. Duan, M. Liu, S. Demiguel, R. Sidhu, A. L. Holmes, Jr., and J. C. Campbell, “High Power Photodiode Wafer Bonded to Si Using Au With Improved Responsivity and Output Power” IEEE Photon. Technol. Lett, vol. 18, pp. 2526-2528, Dec. 2006.
[9] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 709-727, Jul./Aug. 2004.
[10] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec. 2005.
[11] J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, High-Speed, High-Responsivity, and High-Power Performance of Near- Ballistic Uni-Traveling-Carrier Photodiode at 1.55μm Wavelength,” IEEE Photon. Technol. Lett., vol. 17, pp. 1929-1931, Sep. 2005.
[12] Y.-S. Wu, and J.-W. Shi, “Dynamic Analysis of High-Power and High-Speed Near-Ballistic Unitraveling Carrier Photodiodes at W-Band," IEEE Photon. Technol. Lett., vol. 20, pp. 1160-1162, July. 2008.
[13] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu “Analytical Modeling of a High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55?m Wavelength,” IEEE Photon. Technol. Lett., vol. 18, pp. 938-940, Apr. 2006.
[14] N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-Saturation-Current Charge-Compensated InGaAs-InP Uni-Traveling-Carrier Photodiode,” IEEE Photon. Technol. Lett., vol. 16, pp. 864-866, Mar. 2004.
[15] Ning Duan, Xin Wang, Ning Li, Han-Din Liu, and Joe C. Campbell “ThermalAnalysis of High-Power InGaAs–InP Photodiodes,” IEEE Journal Of Quantum Electronics, vol. 42, no. 12, pp. 1255-1258, Dec. 2006.
[16] Jo Das, Herman Oprins, Hangfeng Ji, Andrei Sarua, Wouter Ruythooren, Joff Derluyn, Martin Kuball, Marianne Germain, and Gustaaf Borghs “Improved Thermal Performance of AlGaN/GaN HEMTs by an Optimized Flip-Chip Design,” IEEE Transactions On Electron Device, vol. 53, no. 11, pp. 2696-2700, Nov. 2006.
[17] S. M. Sze, “Physics of Semiconductor devices,” John Wiley & Sons, 2nd Edition.
[18] Donald A. Neamen“Semiconductor physics & Devices Basic Principle,” second edition.
[19] Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, pp. 709–727, July/August 2004.
[20] N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaA Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz,” IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, Mar. 1998.
[21] T. Ishibashi, “Nonequilibrium Electron Transport in HBTs,” IEEE Trans. Electron Devices, vol. 48, pp. 2595 - 2605, Nov. 2001.
[22] T. Ishibashi and Y. Yamauchi, “A Possible Near-Ballistic Collection in an AlGaAs/GaAs HBT with a Modified Collector Structure,” IEEE Trans. on Electron Devices, vol. 35, pp. 401-404, April. 1988.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2009-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明