博碩士論文 965201089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.141.152.173
姓名 洪芮妘(Ruei-Yun Hung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微波與毫米波相位陣列收發積體電路之研製
(Design of Microwave and Millimeter-wave Phase Array Transceiver Integrated Circuits)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 24 GHz汽車防撞雷達收發積體電路之研製★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究
★ 高功率高效率放大器與振盪器研製★ 微波與毫米波寬頻主動式降頻器
★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用★ 寬頻主動式半循環器與平衡器研製
★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製★ 銻化物異質接面場效電晶體之研製及其微波切換器應用
★ 微波毫米波寬頻振盪器與鎖相迴路之研製★ 使用達靈頓對之單晶微波及毫米波寬頻電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要在於設計與研究微波及毫米波相位陣列收發積體電路。第一部份為槽孔天線及振盪器之設計。由於操作頻率提高,其基板所造成的損耗就會越大,藉由將天線與振盪器整合於同一晶片,使振盪器與天線相連接降低訊號損失,可增加天線的有效輻射強度。就整體而言,可降低損耗並縮小面積。第二部份為線性化放大器之設計。電晶體非線性效應主要來自三階非線性轉導(gm3)及閘極-源極電容(Cgs),藉由基底至源極的偏壓大小改變三階非線性轉導的位置,將兩顆具有正負三階非線性轉導峰值的電晶體並聯,消除三階非線性轉導。應用於放大器設計,其三階截斷點(IIP3)改善約6 dB,進而降低訊號失真並改善通訊品質。最後是相位陣列接收機之設計,其電路由放大器與正交調變器所構成,並藉由調整正交調變器的偏壓改變輸出訊號的相位,以達到相位陣列之需求。而此相位陣列接收機的架構易於拓展,其可利用功率結合器(Wilkinson combiner)將電路設計為4×1或8×1的相位陣列接收機。
摘要(英) In this thesis, the microwave and millimeter-wave (MMW) phase array transceiver integrated circuits are presented. First, the design of a slot antenna and a voltage controlled oscillator are proposed using a MMIC technology. The substrate loss is more and more high when the operation frequency is high. To enhance the radiation efficiency of the MMW transmitter, an antenna can be further integrated in the MMIC chip, and also the chip size and the loss are both reduced. Second, a 24-GHz amplifier by using a third-order transconductance (gm3) cancellation technique is presented. The linearity effect of the CMOS device is generally degraded by the gm3 and the gate-to-source capacitor. The characteristic of the gm3 can be adjusted by appling a dc bias to the bulk of the device. The cancellation of gm3 can be achived combining a negative peak gm3 transistor in parallel with a positive peak gm3 transistor. The measured input third-order intercept point (IIP3) is improved over 6 dB. Therefore, the distortion and the communication quality can be both improved. Finally, a phase array receiver, including a low noise amplifier and an IQ modulator, is proposed for the MMW applications. The phase can be controlled by adjusting the bias of the IQ modulator. The topology of the 2×1 receiver can be further extended to 4×1 or 8×1 phase array receiver with a Wilkinson power combiner.
關鍵字(中) ★ 相位陣列
★ 振盪器
關鍵字(英) ★ phase array
★ oscillator
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1.1研究動機與方向 1
1.2相關研究發展與背景 2
1.3論文架構 3
第二章 86-92 GHz頻率鍵控發射機 4
2.1簡介 4
2.2推推振盪器設計 5
2.2.1振盪器概念簡介 5
振盪器基本原理 5
推推振盪器原理 7
鍵控頻移原理 8
2.2.2推推振盪器設計 9
2.2.3推推振盪器模擬與量測結果 12
2.2.4結果與討論 17
2.3 W頻段槽孔天線 21
2.3.1天線簡介 21
反射損耗(Return Loss)及頻寬(Bandwidth) 22
輻射場型(Radiation Pattern)及方向性(Directivity) 22
增益(Gain) 22
2.3.2天線設計 23
2.3.3天線模擬與量測結果 33
2.3.4結果與討論 38
2.4整合天線與振盪器之發射機 38
2.4.1發射機模擬與量測結果 38
2.4.2結果與討論 42
第三章 線性化放大器 47
3.1 線性化放大器相關概念介紹 48
3.1.1雜訊 48
雜訊指數 48
3.1.2非線性效應 49
增益壓縮 50
交互調變失真 51
三階截斷點 52
串接三階截斷點 53
多音交互調變比例 53
鄰近通道功率比例 54
3.1.3常見的線性改善技術 55
電晶體線性改善方法 55
電路線性改善方法 58
3.2 0.18-?m金氧半場效電晶體24 GHz線性化放大器 60
3.2.1三階項轉導消除技術 60
3.2.2線性化放大器電路設計 62
3.2.3線性化放大器模擬與量測結果 63
3.2.4結果與討論 69
3.3 0.18-?m金氧半場效電晶體24 GHz加大閘極-源極偏壓範圍線性化放大器 71
3.3.1加大閘極-源極偏壓範圍的三階項轉導消除技術 71
3.3.2線性化放大器電路設計 72
3.3.3線性化放大器模擬與量測結果 73
3.3.4結果與討論 81
第四章 相位陣列接收機 83
4.1相位陣列原理 83
4.2串接放大器 87
4.2.1放大器 87
4.2.2整合於相位陣列之放大器 92
4.2.3結果與討論 95
4.3正交調變器 99
4.3.1正交調變器操作與設計原理 99
4.3.2整合於相位陣列之正交調變器 102
4.3.3結果與討論 106
4.4單路相位陣列 106
4.4.1單路相位陣列設計與簡介 106
4.4.2單路相位陣列模擬與量測結果 107
4.4.3結果與討論 113
4.5雙路相位陣列 113
4.5.1雙路相位陣列設計 113
4.5.2雙路相位陣列模擬結果 114
4.5.3結果與討論 119
第五章 結論 121
參考文獻 123
參考文獻 [1] C. Cao, Y. Ding, X. Yang, J. J. Lin, H. T. Wu, A. K. Verma, J. Lin, F. Martin and K. K. O “A 24-GHz transmitter with on-chip dipole antenna in 0.13-?m CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1394-1402, June 2008.
[2] C. Lu, A. V. H. Pham, M. Shaw and C. Saint, “Linearization of CMOS broadband power amplifiers through combined multigated transistors and capacitance compensation ,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 11, pp. 2320-2328, Nov., 2007.
[3] S. Kang, B. Choi and B. Kim, “Linearity analysis of CMOS for RF application,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 972-977, Mar., 2003.
[4] K. H. Liang, C. H. Lin, H. Y. Chang and Y. J. Chan, “A new linearization technique for CMOS RF mixer using third-order transconductance cancellation,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 350-352, May, 2008.
[5] J. Rogers and C. Plett, “Radio Frequency Integrated Circuit Design, ” Artech House, 2003.
[6] 杜至庸, “ 線性化射頻功率放大器之數位基頻預失真技術之研究 A study of digital baseband predistortion technique for linearizing RF power amplifiers, ” 國立中山大學電機工程研究所碩士論文, 民國96年七月.
[7] 梁恭豪,“ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統 High linearity and low-power RF CMOS mixers for wireless communication, ” 國立中央大學電機工程研究所博士論文, 民國97年九月.
[8] C. Karnfelt, P. Hallbjorner, H. Zirath and A. Alping, “Hign gain active microstrip antenna for 60-GHz WLAN/WPAN applicaion,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2593-2602, June, 2006.
[9] I-J. Chen, H. Wang, P. Hsu, “A V-band quasi-optical GaAs HEMT monolithic integrated antenna and receiver front-end,” IEEE Trans. on Microwave Theory and Techniques, vol. 51, no.12, pp. 2461-2468, Dec. 2003.
[10] C.-H. Wang, Y.-H. Cho, C.-S. Lin, H. Wang, C.-H. Chen, D.-C. Niu, J. Yeh, C.-Y. Lee, and J. Chern, “A 60GHz transmitter with integrated antenna in 0.18μm SiGe BiCMOS Technology,” 2006 International Solid-State Circuit Conference, San Francisco, Feb. 2006, pp. 659-668.
[11] H. Hashemi, X. Guan, A. Komijani and A. Hajimiri, “A 24-GHz SiGe phased-array receiver-LO phase-shifting approach,” IEEE J. Solid-State Circuits, vol. 53, no. 2, pp. 614-626, Feb. 2005.
[12] A. Babakhani, X. Guan, A. Komijani, A. Natarajan and A. Hajimiri, “A 77-GHz phased-array transceiver with on-chip antennas in silicon: receiver and antennas,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2795-2806, Dec. 2006.
[13] M. Tutt, D. Pavlidis, G. I. Ng, M. Weiss and J. L. Cazauxt, “Monolithic Integrated Circuit Applications of InGaAs/InAlAs HEMTs,” 1988 Gallium Arsenide Integrated Circuits (GaAs IC) Symposium, pp. 293-296, Nov. 1988.
[14] Raymond S. Pengelly, “Early GaAs FET monolithic microwave integrated circuit developments for radar applications at Plessey, UK,” 2008 International Microwave Symposium Digest, pp. 827-830, June 2008.
[15] T. H. Oxley, K. J. Ming, G. H. Swallow, B. J. Climer and M. J. Sisson, “Hybrid Microwave Integrated Circuits For Millimeter Wavelengths,” 1972 International Microwave Symposium Digest, pp. 224-226, May 1972.
[16] K. Tsukamoto, and et al, “Development of gigabit millimeter-wave broadband wireless access system -system overview,” 2003 Asia Pacific Microwave Conference Proceeding, vol. 2, pp. 957-960.
[17] E. A. Monastyrev, O. Y. Malakhovskiy, S. L. Kevruh, and M. A. Korablin, “71–76 GHz wireless bridge for ethernet networks,” in Proc.15th Int. Crimean Conf. Microw. Telecommun. Technol., Oct. 2005, pp.78–79.
[18] Charles W. T. Nicholls, “Extension of the frequency range of ceramic resonator oscillators using push-push circuit topology,” 2001 IEEE International Frequency Control Symposium and PDA Exhibition, pp. 728-733.
[19] PPC-100 Series Wireless LAN Bridge Brochure, ElvaLin LLC Corporation,Solon, OH, Jun. 2004.
[20] L. H. Chu, E. Y. Chang, S. H. Chen, Y. C. Lien, and C. Y. Chang, “2 V-operated InGaP-AlGaAs-InGaAs enhancement-mode pseudomorphic HEMT,” IEEE Electron Device. Lett. vol. 26, no. 2, pp. 53-55, Feb. 2005.
[21] T. Chong, “A low-noise, high-linearity balanced amplifier in enhancement-mode GaAs pHEMT technology for wireless base-stations,” 2005 European Gallium Arsenide and Other Semiconductor Application Symposium, Oct. 2005, pp.461-464.
[22] K. W. Kobayashi, “A novel e-mode PHEMT linearized Darlington cascade amplifier,” 2006 IEEE CSIC Symposium Digest, Oct. 2006, pp.153-156.
[23] WIN Semiconductors, “0.5 ?m InGaAs PHEMT enhancement / depletion-model device (E/D-mode) device model handbook,” ver.1.0.1, May, 2006.
[24] G. Gonzales, Microwave Transistor Amplifiers Analysis and Design, 2nd ed. Upper Saddle River, NJ:Prentice-Hall, 1997, ch. 5.
[25] 邱景鴻,“應用於毫米波射頻接收機前端積體電路之研製 Design and Implementation of RF Receiver Front-end Integrated Circuits for Millimeter-wave Applications, ” 國立中央大學電機工程研究所碩士論文, 民國95年六月.
[26] K. W. Kobayashi, A. K. Oki, L. T. Tran, J. C. Cowles, A. G. Aitken, F. Yamada, T. R. Block and D. C. Streit, “A 108-GHz InP-HBT Monolithic Push-Push VCO with Low Phase Noise and Wide Tuning Bandwidth,” IEEE J. Solid-State Circuits, vol. 34, no. 9, pp. 1225-1232, Sept. 1999.
[27] 張傳生,數位通訊原理,初版,儒林書局,臺北市,民國八十一年。
[28] 賈志靜,數位類比通信系統,初版,全華書局,臺北市,民國八十八年。
[29] Z. Lao, J. Jensen, K. Guinn and M. Sokolich, “80-GHz Differential VCO in InP SHBTs,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 9, pp. 407-409, Sept. 2004.
[30] R. Wanner, H. Schafer, R. Lachner, G. R. Olbrich and P. Russer, “A Fully Integrated SiGe Low Phase Noise Push-Push VCO for 82 GHz,” European Gallium Arsenide and Other Semiconductor Application Symposium, pp. 249-252, Oct. 2005.
[31] H. Li, H. M. Rein, T. Suttorp and J. Bock, “Fully integrated SiGe VCOs with powerful output buffer for 77-GHz automotive radar systems and applications around 100 GHz,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1650-1658, Oct. 2004.
[32] W. Winkler, J. Brorngraber, B. Heinemann and P. Weger, “60 GHz and 76 GHz oscillators in 0.25 ?m SiGe: C BiCMOS,” in Proc. Int. Solid-State Circuit Conf., San Francisco, CA, Feb. 2003, pp.454-455.
[33] F. Lenk, M. Schott, J. Hilsenbeck, J. Wurfl and W. Heinrich, “Low Phase-Noise Monolithic GaInP/GaAs-HBT VCO for 77 GHz ,” IEEE MTT-S Digest, vol. 2, pp. 8-13, June 2003.
[34] N. Zhang and K. K. O, “94 GHz Voltage Controlled Oscillator With 5.8% Tuning Range in Bulk CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 548-550, Aug., 2008.
[35] Y. Baeyens, C. Dorschky, N.Weimann, Q. Lee, R. Kopf, G. Georgiou, J. P. Mattia, R. Hamm and Y. K. Chen, “Compact InP-Based HBT VCOs with a Wide Tuning Range at W- and D-Band,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2403-2408, Dec., 2000.
[36] C. Cao and K. K. O, “A 140-GHz Fundamental Mode Voltage-Controlled Oscillator in 90-nm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 10, pp. 555-557, Oct., 2006.
[37] E. Seok, C. Cao, D. Shim, D. J. Arenas, D. B. Tanner, C. M. Hung and K. K. O, “A 410 GHz CMOS push-push oscillator with an on-chip patch antenna,” in Proc. Int. Solid-State Circuit Conf., San Francisco, CA, Feb. 2008, pp.472-473.
[38] E. Laskin, M. Khanpour, R. Aroca, K. W. Tang, P. Garcia and S. P. Voinigescu, “A 95 GHz receiver with fundamental-frequency VCO and static frequency divider in 65 nm digital CMOS,” in Proc. Int. Solid-State Circuit Conf., San Francisco, CA, Feb. 2008, pp. 180-181.
[39] R. Weber, M. Kuri, M. Lang, A. Tessmann, M. S. Eggebert and A. Leuther, “A PLL-Stabilized W-Band MHEMT Push-Push VCO with Integrated Frequency Divider Circuit,” IEEE MTT-S Digest, pp. 653-656 , June 2007.
[40] R. E. Makon, R. Driad, K. Schneider, R. Aidam, M. Schlechtweg and G. Weimann, “Fundamental W-Band InP DHBT-Based VCOs With Low Phase Noise and Wide Tuning Range,” IEEE MTT-S Digest, pp. 649-652 , June 2007.
[41] P. C. Huang, R. C. Liu, H. Y. Chang, C. S. Lin, M. F. Lei, H. Wang, C. Y. Su and C. L. Chang, “A 131 GHz push-push VCO in 90-nm CMOS technology,” in IEEE RFIC Symp. Dig., Long Beach, CA, Jun. 2005, pp. 131-134.
[42] Z. M. Tsai, C. S. Lin, C. F. Huang, J. G. J. Chern and H. Wang, “A fundamental 90-GHz CMOS VCO using new ring-coupled quad,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 226-228, Mar. 2007.
[43] H.-Y. Chang and H. Wang, “A 98/196 GHz low phase noise voltage controlled oscillator with a mode selector using a 90 nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 3, pp. 170-172, Mar. 2009.
[44] P. C. Huang, M. D. Tsai, G. D. Vendelin, H. Wang, C. H. Chen and C. S. Chang, “A Low-Power 114-GHz Push-Push CMOS VCO Using LC Source Degeneration,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1230-1238, June. 2007.
[45] C. Cao and K. K. O, “A 90-GHz voltage-controlled oscillator with a 2.2-GHz tuning rand in a 130-nm CMOS technology,” in VLSI Symp. Dig., Kyoto, Japan, Jun. 2005, pp. 242-243.
[46] K. Chang, RF and Microwave Wireless Systems, John Wiley & Sons, 2000.
[47] 黃胤年,電波傳播與天線,初版,五南書局,臺北市,民國九十二年。
[48] W. L. Stutzman and G. A. Thiele, Antenna theory and design, 2nd ed. John Wiley & Sons, 1998.
[49] X. Chen, W. Zhang, R. Ma, J. Zhang and J. Gao, “Ultra-wideband CPW-fed antenna with round corner rectangular slot and partial circular patch,” IET Microwaves Antennas Propagat., vol. 1, pp. 847-851, Aug. 2007.
[50] P. B. Kenington, Hing-Linearity RF Amplifier Design, Norwood, MA: Artech House, 2000.
[51] B. Razavi, RF microelectronics, Upper Saddle River, NJ:Prentice-Hall, 1998.
[52] 拉薩維(Behzad Razavi)著,類比CMOS積體電路設計,李俊霣譯,麥格羅希爾出版:滄海總經銷,臺北市,民國九十一年。
[53] C. Lu, A. V. H. Pham, M. Shaw and C. Saint, “Linearization of CMOS Broadband Power Amplifiers Through Combined Multigated Transistor and Capacitance Compensation,” IEEE Trans. Microw. Theory Tech.,vol. 55, no. 11, pp. 2320–2328, Nov. 2007.
[54] J. D. Jin and S. S. Hsu, “A 0.18-mm CMOS balanced amplifier for 24-GHz applications,” IEEE J. Solid-State Circuits, vol. 43, pp.1047-1054, May 2007.
[55] S. C. Shin, M. D. Tsai, R. C. Liu, K. Y. Lin and H. Wang, “A 24-GHz 3.9-dB NF Low-Noise Amplifier Using 0.18?m CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 448-450, July, 2005.
[56] Y. L. Wei, S. S. H. Hsu and J. D. Jin, “A low-power low-noise amplifier for K-band applications”, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 116-118, Feb. 2009.
[57] K. W. Yu, Y. L. Lu, D. C. Chang, V. Liang and M. F. Chang, “K-Band low-noise amplifiers using 0.18?m CMOS technology”, IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106-108, Mar. 2004.
[58] L. M. Franca-Neto, B. A. Bloechel and K. Soumyanath, “17 GHz and 24 GHz LNA Designs based on Extended-S-parameter with Microstrip –on –Die 0.18mm Logic CMOS Technology,” in IEEE, vol. 50, no. 9, pp. 149-152, Sep. 2003.
[59] X. Guan and A. Hajimiri, “A 24GHz CMOS front-end”, IEEE J. Solid- State Circuits, vol. 39, no. 2, pp. 368–373, Feb. 2004.
[60] H.-Y. Liao, K. C. Liang and H. K. Chiou, “A compact and low power consumption K-band differential low noise amplifier design using transformer feedback technique”, Proc. 19th Asia-Pacific Microwave Conf. (APMC 2007),Bangkok, Thailand, 11-14 Dec. 2007, pp. 571–574.
[61] H.-Y. Chang, P. S. Wu, T. W. Huang, H. Wang, C. L. Chang and J. G. J. Chern, “Design and Analysis of CMOS Broad-Band Compact High-Linearity Modulator for Gigabit Microwave/Millimeter-Wave Applications,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 1, pp. 20-30, Jan. 2006.
[62] A. E. Ashtiani, S. I. Nam, A. D. Espona, S. Lucyszyn and I. D. Robertson, “Direct multilevel carrier modulation using millimeter-wave balanced vector modulators,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2611-2619, Dec. 1998.
[63] H.-Y. Chang, “Design of broadband highly linear IQ modulator using a 0.5-mm E/D-PHEMT process for willimeter-wave applications,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 491-493, July 2008.
指導教授 張鴻埜(Hong-yeh Chang) 審核日期 2009-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明