博碩士論文 965201105 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.207.238.169
姓名 黃國原(Kuo-Yuan Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 模擬人工電子耳頻道數、刺激速率與雙耳聽對噪音環境下中文語音辨識率之影響
(Effects of Channel Number, Stimulation Rate, and Electroacoustic Stimulation of Cochlear Implant Simulation on Chinese Speech Recognition in Noise)
相關論文
★ 獨立成份分析法於真實環境中聲音訊號分離之探討★ 口腔核磁共振影像的分割與三維灰階值內插
★ 數位式氣喘尖峰氣流量監測系統設計★ 結合人工電子耳與助聽器對中文語音辨識率的影響
★ 人工電子耳進階結合編碼策略的中文語音辨識成效模擬--結合助聽器之分析★ 中文發聲之神經關聯性的腦功能磁振造影研究
★ 利用有限元素法建構3維的舌頭力學模型★ 以磁振造影為基礎的立體舌頭圖譜之建構
★ 腎小管之草酸鈣濃度變化與草酸鈣結石關係之模擬研究★ 口腔磁振影像舌頭構造之自動分割
★ 微波輸出窗電性匹配之研究★ 以軟體為基準的助聽器模擬平台之發展-噪音消除
★ 以軟體為基準的助聽器模擬平台之發展-回饋音消除★ 用類神經網路研究中文語音聲調產生之神經關聯性
★ 教學用電腦模擬生理系統之建構★ 以軟體為基準的助聽器模擬平台之發展-方向性麥克風
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之目的在於測試不同參數設定對人工電子耳的影響。首先以進階結合編碼策略(ACE)模擬人工電子耳,並以九位聽力正常的成年人作為測試對象,以及使用單字詞作為測試語料,比較白雜訊和弦波兩種載波間的差異,並且結合四種不同的刺激速率(250 Hz、900 Hz、1200 Hz、1800 Hz)做測試。結果發現以白雜訊為載波的情況下,250 Hz的刺激速率下字詞辨識率明顯較低,而900 Hz以上的刺激速率則無顯著差異,另外也發現白雜訊載波的四種聲調辨識率的變化,較符合文獻中臨床實驗的結果,因此後續的實驗皆以白雜訊為載波進行。接下來的實驗中,上述九位個案中的八位參與了後續的實驗。在雙字詞的實驗部分,使用四種刺激頻道數(4 ch、8 ch、12 ch、16 ch)進行測試,發現4個刺激頻道數的辨識率明顯較差,而當刺激頻道數到達8個以上時,辨識率即無顯著差異。另外使用四種刺激速率(與前述四種相同)測試,發現四種刺激速率之間沒有顯著差異,但250 Hz的刺激速率標準差較大,900 Hz以上的辨識率則較為穩定。我們也測試了五種訊雜比(-5 dB、0 dB、5 dB、10 dB、Quiet)的噪音環境下,對雙字詞與句子的辨識率的影響,結果顯示無論何種語料,辨識率皆隨著訊雜比降低而下降,當我們在另一耳加入了模擬助聽器的低頻訊息(截止頻率500 Hz),則兩種語料間四種訊雜比(Quiet環境下未比較)的辨識率皆有提升,尤其是在低訊雜比的情況下效果更明顯。為了比較模擬實驗的結果,我們找了四位實際使用人工電子耳的個案,以雙字詞為語料進行不同訊雜比下的測試,並以是否搭配助聽器作為實驗變因,結果顯示單獨人工電子耳的情況下0 dB與Quiet之間有顯著差異,結合助聽器的情況下則0 dB分別與5 dB、10 dB、Quiet及10 dB與Quiet之間有顯著差異,辨識率大致上隨著訊雜比增加而提高,但就四位臨床個案而言,搭配助聽器對所有訊雜比的情況皆無明顯幫助。
摘要(英) The purpose of this study is to investigate the effects of different parameters in cochlear implant (CI). We used advanced combination encoding (ACE) as a speech processing strategy to simulate cochlear implant. There were nine normal-hearing (NH) adults participating in this experiment. We used monosyllabic words as speech materials to compare the difference between white noise carrier and sine wave carrier. Additionally, we compared four stimulation rates (250 Hz, 900 Hz, 1200 Hz, and 1800 Hz) with conditions of two carriers. As a result, the word recognition was significantly poorer in 250 Hz than those of the others under the condition of white noise carrier. There were no significant differences with the stimulation rates beyond 900 Hz. Besides, the variation of four tones corresponded to the clinical results in the condition of white noise carrier. For this reason, we used white noise as the carrier for CI simulation in the following experiments. Eight subjects from previous experiment attended the next test. In the section of experiment for the disyllabic words, we evaluated four kinds of stimulation channels (4 ch, 8 ch, 12 ch, and 16 ch) and four stimulation rates (the same with the previous test). We found that the recognition rate of 4 ch was significantly lower than those of the others, but there were no significant differences in four stimulation rates. The standard deviation of 250 Hz was much higher than those of the others, so 900 Hz was a more stable stimulation rate. Furthermore, we tested five signal-to-noise ratio (SNR), including -5 dB, 0 dB, 5 dB, 10 dB, and Quiet, for disyllable and sentences. The speech recognition rates decreased with the SNR descending for both speech materials. When we added the signal (cutoff frequency 500 Hz) of hearing aid (HA) in the opposite ear, the test scores all rose up, especially for low SNRs (Quiet condition was not included in this test). For comparison purpose, four CI subjects were tested on different SNR conditions with disyllabic words for both CI only and CI combined with HA conditions. The results show that there were significant differences between 0 dB and Quiet for CI only condition, and significant differences among 0 dB vs. 5 dB, 10 dB, Quiet, and 10 dB vs. Quiet for CI combined HA condition. The speech recognition rates roughly increased with the increasing SNR. Our clinical results show there were no significant benefits when CI was combined with HA for all SNR conditions.
關鍵字(中) ★ 人工電子耳
★ 助聽器
★ 進階結合編碼策略
★ 載波
★ 刺激頻道數
★ 刺激速率
★ 訊雜比
關鍵字(英) ★ Cochlear Implant
★ Hearing Aid
★ ACE
★ Carrier
★ Stimulation Channel
★ Stimulation Rate
★ Signal-to-Noise Ratio
論文目次 中文摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 研究動機 1
1.2 人工電子耳的聽覺產生機制 2
1.3 文獻探討 3
1.3.1 人工電子耳加入助聽器的助益 4
1.3.2 電子耳的參數影響 4
1.3.3 模擬人工電子耳的載波差異 5
1.3.4 語音測試語料的差別 6
1.3.5 背景噪音的種類 7
1.4 研究目標 7
1.5 論文架構 8
第二章 人工電子耳與測試語料 9
2.1 人工電子耳語音處理策略 9
2.2 測試語料 15
2.3 語料的背景噪音 18
第三章 人工電子耳模擬與驗證 21
3.1 人工電子耳模擬架構 21
3.2 模擬人工電子耳之載波比較 23
3.2.1 受測者與測試語料 24
3.2.2 實驗結果 25
第四章 人工電子耳的語音辨識率 29
4.1 雙字詞的辨識率 29
4.1.1 受測者與測試語料 29
4.1.2 實驗結果 30
4.2 句子的辨識率 34
4.2.1 受測者與測試語料 34
4.2.2 實驗結果 34
4.3 臨床實驗的辨識率 36
4.3.1 受測者與測試語料 37
4.3.2 實驗結果 38
第五章 實驗結果討論 40
5.1 雙字詞實驗結果討論 40
5.2 句子實驗結果討論 41
5.3 語料間的辨識率差異 42
5.4 臨床實驗討論 44
第六章 結論與未來展望 45
6.1 結論 45
6.2 未來展望 46
參考文獻 48
附錄 52
參考文獻 Bhattacharya, A., and Zeng, F.-G. (2007). "Companding to improve cochlear-implant speech recognition in speech-shaped noise," J. Acoust. Soc. Am. 122, 1079–1089.
Blarney, P. J., Dowell, R. C., Tong, Y. C., Brown, A. M., Luscornbe, S. M., and Clark, G. M. (1984). "Speech processing studies using an acoustic model of a multiplechannel cochlear implant," J. Acoust. Soc. Am. 76, 104-110.
Carroll, J., and Zeng, F.-G. (2007). "Fundamental frequency discrimination and speech perception in noise in cochlear implant simulations," Hearing Research 231, 42-53.
Ching, T. Y. C., Incerti, P., and Hill, M. (2004). "Binaural Benefits for Adults Who Use Hearing Aids and Cochlear Implants in Opposite Ears," Ear & Hearing 25, 9-21.
Desai, S., Stickney, G., and Zeng, F.-G. (2008). "Auditory-visual speech perception in normal-hearing and cochlear-implant listeners," J. Acoust. Soc. Am. 123, 428–440.
Dorman, M. F., Loizou, P. C., and Rainey, D. (1997). "Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputs," J. Acoust. Soc. Am. 102, 2403-2411.
Fishman, K. E., Shannon, R. V., and Slattery, W. H. (1997). "Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor," Journal of Speech, Language, and Hearing Research 40, 1201-1215.
Friesen, L. M., Shannon, R. V., Baskent, D., and Wang, X. (2001). "Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants," J. Acoust. Soc. Am. 110, 1150-1163.
Fu, Q.-J., Hsu, C.-J., and Horng, M.-J. (2004). "Effects of Speech Processing Strategy on Chinese Tone Recognition by Nucleus-24 Cochlear Implant Users," Ear & Hearing 25, 501-508.
Fu, Q.-J., and Nogaki, G. (2004). "Noise Susceptibility of Cochlear Implant Users: The Role of Spectral Resolution and Smearing," JARO 6, 19-27.
Fu, Q.-J., and Shannon, R. V. (1998). "Effects of amplitude nonlinearity on phoneme recognition by cochlear implant users and normal-hearing listeners," J. Acoust. Soc. Am. 104, 2570-2577.
Fu, Q.-J., Shannon, R. V., and Wang, X. (1998). "Effects of noise and spectral resolution on vowel and consonant recognition: Acoustic and electric hearing," J. Acoust. Soc. Am. 104, 3586-3596.
Greenwood, D. D. (1990). "A cochlear frequency-position function for several species--29 years later," J. Acoust. Soc. Am. 87, 2592-2605.
Kong, Y.-Y., Stickney, G. S., and Zeng, F.-G. (2005). "Speech and melody recognition in binaurally combined acoustic and electric hearing," J. Acoust. Soc. Am. 117, 1351–1361.
Laneau, J., Moonen, M., and Wouters, J. (2006). "Factors affecting the use of noise-band vocoders as acoustic models for pitch perception in cochlear implants," J. Acoust. Soc. Am. 119, 491–506.
Li, A., and Martin, F. N. (1983). "Development of materials for determination of the speech reception threshold in chinese," Chin Med J 32, 282-288.
Liu, T.-C., Chen, H.-P., and Lin, H.-C. (2004). "Effects of Limiting the Number of Active Electrodes on Mandarin Tone Perception in Young Children Using Cochlear Implants," Acta Otolaryngol 124, 1149-1154.
Loizou, P. C. (1998). "Mimicking the human ear," in IEEE Signal Processing Magazine, pp. 101-130.
Luntz, M., Shpak, T., and Weiss, H. (2005). "Binaural-bimodal hearing: Concomitant use of a unilateral cochlear implant and a contralateral hearing aid," Acta Oto-Laryngologica 125.
Nelson, P. B., Jin, S.-H., Carney, A. E., and Nelson, D. A. (2003). "Understanding speech in modulated interference: Cochlear implant users and normal-hearing listeners," J. Acoust. Soc. Am. 113, 961-968.
Nie, K., Stickney, G., and Zeng, F.-G. (2005). "Encoding Frequency Modulation to Improve Cochlear Implant Performance in Noise," IEEE Transactions on Biomedical Engineering 52, 64-73.
Nilsson, M., Soil, S. D., and Sullivan, J. A. (1994). "Development of the Hearing In Noise Test for the measurement of speech reception thresholds in quiet and in noise," J. Acoust. Soc. Am. 95, 1085-1099.
Nissen, S. L., Harris, R. W., and Dukes, A. (2007). "Word Recognition Materials for Native Speakers of Taiwan Mandarin," American Journal of Audiology.
Nissen, S. L., Harris, R. W., Jennings, L.-J., Eggett, D. L., and Buck, H. (2005). "Psychometrically equivalent Mandarin bisyllabic speech discrimination materials spoken by male and female talkers," International Journal of Audiology 44, 379-390.
Nogueira, W., B?chner, A., Lenarz, T., and Edler, B. (2005). "A Psychoacoustic “NofM”-Type Speech Coding Strategy for Cochlear Implants," EURASIP Journal on Applied Signal Processing 18, 3044-3059.
Parikh, G., and Loizou, P. C. (2005). "The influence of noise on vowel and consonant cues," J. Acoust. Soc. Am. 118, 3874–3888.
Rothauser, E. H., Chapman, W. D., Guttman, N., Silbiger, H. R., Hecker, M. H. L., Urbanek, G. E., Sordby, K. S., Weinstock, M., LIcGee, V. E., Pachl, C. P., and Voiers, J. D. (1969). "IEEE Recommended Practice for Speech Quality Measurements," IEEE Transactions on Audio and Electroacoustics AU-17, 225-246.
Shannon, R. V., Zeng, F.-G., Kamath, V., Wygonski, J., and Ekelid, M. (1995). "Speech Recognition with Primarily Temporal Cues," Science 270, 303-304.
Singh, S., Kong, Y.-Y., and Zeng, F.-G. (2009). "Cochlear Implant Melody Recognition as a Function of Melody Frequency Range, Harmonicity, and Number of Electrodes," Ear & Hearing 30, 160-168.
Stickney, G. S., Assmann, P. F., Chang, J., and Zeng, F.-G. (2007). "Effects of cochlear implant processing and fundamental frequency on the intelligibility of competing sentences," J. Acoust. Soc. Am. 122, 1069–1078.
Stickney, G. S., Nie, K., and Zeng, F.-G. (2005). "Contribution of frequency modulation to speech recognition in noise," J. Acoust. Soc. Am. 118, 2412–2420.
Stone, M. A., F?llgrabe, C., and Moore, B. C. J. (2008). "Benefit of high-rate envelope cues in vocoder processing: Effect of number of channels and spectral region," J. Acoust. Soc. Am. 124, 2272–2282.
Tillman, T. W., and Carhart, R. (1966). "An expanded test for speech discrimination utilizing CNC monosyllabic words. Northwestern University Auditory Test NO. 6," USAF School of Aerospace Medicine Technical Report, Brooks Air Force Base, TX.
Turner, C. W., Gantz, B. J., Vidal, C., Behrens, A., and Henry, B. A. (2004). "Speech recognition in noise for cochlear implant listeners: Benefits of residual acoustic hearing," J. Acoust. Soc. Am. 115, 1729-1735.
Turner, C. W., Reiss, L. A. J., and Gantz, B. J. (2008). "Combined acoustic and electric hearing: Preserving residual acoustic hearing," Hearing Research 242, 164-171.
Wong, L. L. N., Soli, S. D., Liu, S., Han, N., and Huang, M.-W. (2007). "Development of the Mandarin Hearing in Noise Test (MHINT)," Ear & Hearing 28, 70S–74S.
Xu, L., Tsai, Y., and Pfingst, B. E. (2002). "Features of stimulation affecting tonal-speech perception: Implications for cochlear prostheses," J. Acoust. Soc. Am. 112, 247-258.
王老得, and 蘇富美 (1979). "中國語音均衡字彙表之編製研究," 耳鼻喉科醫學會雜誌 14, 87-95.
吳炤民, 黃國原, 林鴻清, 何玲玲, 劉佳林, and 吳哲民 (2008). "雙耳聽(人工電子耳與助聽器)對中文語音辨識率影響之研究-模擬與臨床實驗," in 生物醫學工程科技研討會暨國科會醫學工程學門成果發表會 (長庚大學).
林永松, 張簡培崙, and 沈美玲 (1997). "中文揚揚格語詞聽閾檢定表," 中華民國耳鼻喉科醫學會雜誌 32, 7-13.
林鴻清, 徐銘燦, 李國森, and Lin, G. (2007). "Long-term follow-up of true-positives after newborn hearing screening," in 82屆台灣耳鼻喉科醫學會 (彰化基督教醫院).
統計處 (2008). "九十八年第九週內政統計通報(97年底列冊身心障礙者人數統計)," Retrieved July 23, 2009, from http://www.moi.gov.tw/stat/news_content. aspx?sn=2123.
許筱曼 (2003). "改變電刺激速率對於人工電子耳兒童漢語語音及聲調辨識的影響," in 國立台北護理學院聽語障礙科學研究所.
陳小娟, and 利文鳳 (1999). "學齡前兒童國語語音閾語詞之編製," 特殊教育與復健學報 7, 183-217.
黃銘緯 (2005). "台灣地區噪音下漢語語音聽辨測試," in 聽語障礙科學研究所 (國立台北護理學院), p. 70.
楊惠美, and 吳俊良 (2005). "學齡前兒童中文語彙毗鄰測驗的編制與驗證," in 台灣耳鼻喉頭頸外科雜誌, pp. 1-12.
董書豪 (2007). "人工電子耳進階結合編碼策略的中文語音辨識成效模擬--結合助聽器之分析 " in 電機工程研究所 (國立中央大學), p. 91.
劉樹玉, 劉俊榮, 王南梅, 郭于靚, and 黃國祐 (2009). "台灣成人電子耳植入者之使用現況調查," in 台灣聽力語言學會雜誌, pp. 25-53.
鄭惟仁 (2006). "結合人工電子耳與助聽器對中文語音辨識率的影響 " in 電機工程研究所 (國立中央大學), p. 78.
指導教授 吳炤民(Chao-Min Wu) 審核日期 2009-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明