博碩士論文 965201108 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.223.196.211
姓名 吳翊碩(Yi-shuo Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 24 GHz汽車防撞雷達收發積體電路之研製
(Design of 24 GHz Radar Integrated Circuits for Automotive Applications)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究
★ 高功率高效率放大器與振盪器研製★ 微波與毫米波寬頻主動式降頻器
★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用★ 寬頻主動式半循環器與平衡器研製
★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製★ 銻化物異質接面場效電晶體之研製及其微波切換器應用
★ 微波毫米波寬頻振盪器與鎖相迴路之研製★ 使用達靈頓對之單晶微波及毫米波寬頻電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要是設計並實現一24 GHz 汽車防撞雷達收發積體電路,此收發積體電路中各個子電路的設計與製作皆是採用穩懋半導體所提供的0.5 ?m E/D-PHEMT製程。
首先本論文的第一章緒論中會介紹汽車雷達測距與測速的原理,第二章則是壓控振盪器的設計原理,第三章為應用於K頻段的差動壓控振盪器,輸出頻率變化可從18.8到27.5 GHz,擁有可調頻率的百分比為38%,輸出功率皆大於4 dBm以上,其性能指標(FOMP)可達-177 dBc/Hz,另外,一個自我定義可變電容大訊號模型亦被提出。第四章與第五章分別為24 GHz 汽車防撞雷達發射與接收系統,第四章的發射系統電路架構是由第三章的差動壓控振盪器和兩級串接功率放大器所組成,操作的頻率為21.7到26 GHz,輸出功率皆大於13 dBm。第五章的接收系統電路架構包含第三章的差動壓控振盪器、低雜訊放大器、緩衝放大器及混頻器,射頻端操作頻率涵蓋22到26 GHz,射頻端至中頻端的轉換增益皆在9 dB以上,降頻後的中頻操作頻率為0.1到3.4 GHz。第六章則是利用台積電的0.18 ?m互補式金氧半場效電晶體製程來設計頻率合成器,且在閉迴路狀態下量測到頻率合成器輸出頻率鎖定1.472 GHz的結果。第七章為結論。
摘要(英) The goal of the thesis is to design and implement a 24-GHz radar integrated circuits for the automotive radar applications. The radar integrated circuits have been designed and fabricated using WIN Semiconductors 0.5-?m E/D-PHEMT technology.
First, the introduction and the theory of the oscillation are presented in chapter 1 and chapter 2, respectively. In chapter 3, a differential voltage controlled oscillation circuit is presented for K-band applications. The frequency of the differential VCO is from 18.8 to 27.5 GHz with a tuning bandwidth of 38% and an output power of higher than 4 dBm. The differential VCO demonstrates a figure-of-merit of -177 dBc/Hz. Besides, a user-defined varactor model has been presented in this chapter. The radar receiver and transmitter for the automotive radar applications are presented in chapter 4 and chapter 5, respectively. The radar transmitter consistes of a differential VCO and a two-stage power amplifier. The frequency of the radar transmitter is from 21.7 to 26 GHz with an output power of higher than 13 dBm. The radar receiver consistes of a differential VCO, a low noise amplifier, a buffer amplifier and a mixer. The RF frequency of the radar receiver is from 21.7 to 26 GHz with a conversion gain of higher than 9 dB and an IF frequency of from 0.1 to 3.4 GHz. The frequency synthesizer are presented using TSMC 0.18-?m CMOS peocess in chapter 6. The measured output frequency is locked at 1.472 GHz in close loop condition. Finally, the conclusion is given in chapter 7.
關鍵字(中) ★ 頻率合成器
★ 壓控振盪器
★ 收發機
關鍵字(英) ★ PLL
★ Transceiver
★ VCO
論文目次 摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 IX
第一章 緒論 1
1.1 研究動機 1
1.2 相關研究發展 2
1.3 雷達原理簡介 3
1.4 論文架構 7
第二章 壓控振盪器設計原理 8
2.1 壓控振盪器簡介 8
2.2 振盪器電路設計方法 8
2.2.1 回授法 9
2.2.2 負電阻法 10
2.2.3 振盪器模型 17
2.3 壓控振盪器電路相關設計參數 19
2.3.1 相位雜訊 19
2.3.2 調諧範圍 21
2.3.3 負載拉移 21
2.3.4 諧波抑制量 22
2.3.5 功率消耗 22
2.4 基本振盪器電路架構 22
2.4.1 交互耦合振盪器 22
2.4.2 考畢茲振盪器 26
第三章 利用假晶格高電子遷移率電晶體設計K頻段差動壓控振盪器 30
3.1 簡介 30
3.2 K頻段差動壓控振盪器設計與分析 31
3.3 K頻段壓控振盪器模擬與量測結果 42
3.4 可變電容模型的建立 46
3.4.1 元件參數萃取流程介紹 46
3.4.2 外部參數萃取 47
3.4.3 內部參數萃取 56
3.4.4 可變電容模型建立結果 59
3.5 結果與討論 63
第四章 24 GHZ汽車防撞發射系統 66
4.1 簡介 66
4.2功率放大器簡介 66
4.3 K頻段兩級串接功率放大器設計 69
4.4 K頻段兩級串接功率放大器模擬與量測結果 71
4.5 24 GHZ汽車防撞發射系統模擬與量測結果 76
4.5 總結 80
第五章 24 GHZ汽車防撞接收系統 82
5.1 簡介 82
5.2 K頻段低雜訊放大器模擬與量測結果 82
5.3 K頻段緩衝放大器模擬與量測結果 89
5.4 K頻段單平衡混頻器模擬與量測結果 95
5.5 K頻段差動壓控振盪器和緩衝放大器之整合電路模擬與量測結果 104
5.6 24 GHZ汽車防撞接收系統模擬與量測結果 108
5.7 總結 115
第六章 互補式金氧半場效電晶體之頻率合成器設計 116
6.1 簡介 116
6.2 頻率合成器的原理與設計 117
6.2.1 相位頻率檢測器、充電泵及低通濾波器原理與設計 117
6.2.2 預除器及可程式化計數器原理與設計 122
6.3 頻率合成器的量測結果 124
6.3.1 壓控振盪器量測結果 124
6.3.2 預除器及可程式化計數器量測結果 124
6.3.3 頻率合成器量測結果 129
6.4 總結 131
第七章 結論 132
參考文獻 135
參考文獻 [1] Brookner, E., “Phased-Array and Radar Astounding Breakthroughs An Update,” IEEE Radar Conference, pp. 1-6, May 2008.
[2] K. W. Chang, H. Wang, G. Shreve, J. Harrison, M. Core, A. Paxton, M. Yu, C. H. Chen, and G. S. Dow, “Forward looking automotive radar using a W-band single-chip transceiver,” IEEE Trans. Microwave Theory Tech., pt.2, vol. 43, pp. 1659-1668, July 1995.
[3] D. A. Williams, “Millimeter wave radars for automotive applications,” 1992 IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, June 1992, pp. 721-724.
[4] E. C. Niehenke, P. Stenger, T. McCormick, and C. Schwerdt, “A planar 94-GHz transceiver with switchable polarization,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 167-170.
[5] R. LaBelle, R. Girard, G., Arbery, “A 94 GHz RF Electronics Subsystem for the CloudSat Cloud Profiling Radar,” IEEE European Microwave Conference, vol.3, pp. 1139-1142 Oct. 2003.
[6] H. Kondoh, K. Sekine, S. Takatani, K. Takano, H. Kuroda, and R. Dabkowski, “77 GHz fully-MMIC automotive forward-looking radar,” in 1999 GaAs IC symp. Dig., pp. 211-214.”
[7] J. Mondal, K. Wong, D. Richardson, K. Vu, K. Peterson, G. Dietz, R. Haubenstricker, N. Calanca, L. Gluck, and S. Moghe, “77 GHz MMIC T/R module for diplex radar application in collision avoidance radar,” in 1998 GaAs IC Symp. Dig., pp. 181-184.
[8] A. Tessmann, L. Verweyen, M. Neumann, H. Massler, W. H. Haydl, A. Hulsmann, and M. Schechtweg, “A 77 GHz GaAs pHEMT transceiver MMIC for automotive sensor applications,” in 1999 GaAs IC Symp. Dig., pp. 207-210.
[9] K. Kamozaki, N. Kurita, W. Hioe, T. Tanimoto, H. Ohta, T. Nakamura, and H. Kondoh, “A 77 GHz T/R MMIC chip set for automotive radar systems,” in 1997 GaAs IC Symp. Dig., pp. 275-278.
[10] H. J. Siweris, A werthof, H. Tischer, T. Grave, H. Werthmann, R. H. Rasshofer, and W. Kellner, “A mixed Si and GaAs chip set for millimeter-wave automotive radar front-ends,” in 2000 Radio Frequency Integrated Circuits Symp. Dig., pp. 191-194.
[11] H. J. Siweris, A. Werthof, H. Tischer, U. Schaper, A. Schafer, L. Verweyen, T. Grave, G. Bock, M. Schlechtweg, and W. Kellner, “Low-cost GaAs pHEMT MMIC’s for millimeter-wave sensor applications,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2560-2567, Dec. 1998.
[12] H. Rohling, M. M. Meinecke, M. Klotz, and E. Mende, “Experience with an experimenatial car controlled by a 77 GHz radar sensor,” 1998 International Radar Symposium, Munich, vol. 1, 1998, pp. 345-354.
[13] Thomas Musch, “A high precision 24-GHz FMCW radar based on a fractional-N ramp-PLL,” IEEE Trans. Instrumentation and Measurement, vol. 52, pp. 324-327, Apr. 2003.
[14] M. Klotz, and H. Rohling, “24 GHz radar sensors for automotive applications,” 2000 Microwave Radar and Wireless Communications Conference Dig., vol. 1, May 2000, pp. 359-362.
[15] D. Richardson, “An FMCW radar sensor for collision avoidance,” 1997 Intelligent Transportation System Conference, Nov. 1997, pp. 427-432.
[16] P. Gulden, M. Vossiek, M. Pichler, and A. Stelzer, “Application of state-space frequency estimation to a 24-GHz FMCW tank level gauging system,” 2003 EUMC digest, vol. 3, Oct. 2003, pp. 995-998.
[17] T. H. Ho, S. J. Chung, “A compact 24 GHz radar sensor for vehicle sideway-looking applications,” 2005 EURAD, Oct. 2005, pp. 351-354.
[18] P. Wennekers, A. Ghazionour, and R. Reuter, “An integrated Sige transmitter circuit for 24 GHz radar sensors,” 2002 Proceedings of Bipolar/BiCMOS Circuits and Technology Meeting, Oct. 2002, pp. 212-215.
[19] G. Prescott, S. Gogineni, D. Depardo, H. Chakravarthula, R. Hosseinmostafa, “MMIC-based FM-CW radar for multipolarization backscatter measurements,” IEEE Quantitative Remote Sensing for Science and Applications, vol.3, pp. 2273-2275, July 1995.
[20] J.E. Muller, T. Grave, H.J. Siweris, M. Karner, A. Schafer, H. Tischer, H. Riechert, L. Schleicher, L. Verweyen, A. Bangert, W. Kellner, T. Meier, “GaAs HEMT MMIC chip set for automotive radar systems fabricated by optical stepper lithography,” IEEE Journal of Solid-State Circuits, vol. 32, issue 9, pp. 1342–1349, Sept. 1997.
[21] H.J. Siweris, A. Werthof, H. Tischer, U. Schaper, A. Schafer, L. Verweyen, T. Grave, G. Bock, M. Schlechtweg, W. Kellner, “Low-cost GaAs pHEMT MMIC's for millimeter-wave sensor applications,” IEEE Transactions on microwave theory and techniques, vol. 46, issue 12,pp. 2560 - 2567, Dec. 1998.
[22] W. Mayer, M. Meilchen, W. Grabherr, P. Nuchter, R. Guhl, “Eight-channel 77-GHz front-end module with high-performance synthesized signal generator for FM-CW sensor applications,” IEEE Transactions on microwave theory and techniques, vol. 52, issue 3, pp. 993-1000, Mar. 2004.
[23] R. Kozhuharov, A. Jirskog, N. Penndal, H. Zirath, ” Single-Chip 24-GHz Synthesizer for a Radar Application,” IEEE Compound Semiconductor Integrated Circuit Symposium, pp. 205-208, Nov. 2006.
[24] Jeong-Geun Kim; Sang-Hoon Sim; Sanghoon Cheon; Songcheol Hong, “24 GHz circularly polarized Doppler radar with a single antenna,” IEEE European Microwave Conference, vol.2, pp. 4-6 Oct. 2005.
[25] Kai Chang, RF and Mircowave Wireless Systems, John Wiley & Sons, Inc. 2000
[26] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, Inc. 2001
[27] G. Gonzalez, “ Microwave Transistor Amplifier-Analysis and Design,” 2nd Ed., Prentice Hall, Inc., 1984.
[28] 高曜煌, “射頻鎖相回路IC設計,” 滄海, 2005.
[29] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998.
[30] D. B. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966.
[31] A. Hajimiri and T. H. Lee, “Design Issues in CMOS Differential LC Oscillators,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 717-724, May 1999.
[32] R. Ludwig and P. Bretchko, RF Circuit Design Theory and Applications, Prentice-Hall, 2000.
[33] R. Aparicio and A. Hajimiri, “A noise-shifting Differential Colpitts VCO,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1728-1736, Dec. 2002.
[34] H. Diahanshahi, N. Saniei, S. P. Voinigescu, M. C. Maliepaard, and C. A. T. Salama, "A 20-GHz InP-HBT voltage-controlled oscillator with wide frequency tuning range," IEEE Trans. on Microwave Theory and Techniques, vol. 49, no.9, Sept. 2001.
[35] J. Lin, Y. K. Chen, D. A. Humphrey, R. A. Hamm, R. J. Malik, Al Tate, R. F. Kopf, and R. W. Ryan, “Ka-band monolithic InGaAs/InP HBT VCO's in CPW structure,” IEEE Microwave and Guided Wave Letters, vol. 5, no. 11, pp. 379-381, Nov. 1995.
[36] L. Zhang, R. Pullela, C. Winczewski, J. Chow, D. Mensa, S. Jaganathan, and R. Yu, “A 37 ~ 50 GHz InP HBT VCO IC for OC-768 fiber optic communication applications,” 2002 IEEE Radio Frequency Integrated Circuit Symposium Digest, June, 2002, pp. 85-88.
[37] K. W. Kobayashi, A. K. Oki, L. T. Tran, J. C. Cowles, A. Gutierrez-Aitken, F. Yamada, T. R. Block, and D. C. Streit, “A 108-GHz InP-HBT monolithic push-push VCO with low phase noise and wide tuning bandwidth,” IEEE Journal of Solid-State Circuits, vol. 34, no. 9, pp. 1225-1232, Sept. 1999.
[38] D. Baek, S. Ko, J. G. Kim, D. W. Kim, and S. Hong, “Ku-band InGaP-GaAs HBT MMIC VCOs with balanced and differential Topologies,” IEEE Transactions on microwave theory and techniques, vol. 52, no. 4,pp. 1353-1359, April 2004.
[39] H. Li and H. M. Rein, “Millimeter-wave VCOs with wide tuning range and low phase noise, fully integrated in a SiGe bipolar production technology,” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, pp. 184-191, Feb. 2003.
[40] Koji Tsutsumi, Miki Kagano, Noriharu Suematsu, “A Double Tuned Ku-Band SiGe-MMIC VCO with Variable Feed-Back Capacitor,” Proceedings of Asia-Pacific Microwave Conference, Dec. 2006, pp. 1118-1127.
[41] B. Jung and R. Harjani, “High-frequency LC VCO design using capacitive degeneration,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2359–2370, Dec. 2004.
[42] A. Scuderi, and G. Palmisano, “A low-phase-noise voltage-controlled oscillator for 17-GHz applications,” IEEE Microwave and Wireless Comp. Lett. vol. 16, no. 4, pp. 191-193, Apr. 2006.
[43] C.-C. Li, C.-C. Chen, B.-J. Huang, P.-C. Huang, K.-Y. Lin, H. Wang, “A novel ring-based triple-push 0.2-to-34 GHz VCO in 0.13-μm CMOS technology,” 2008 IEEE International Microwave Symposium Digest, June, 2008, pp. 347-350.
[44] L. H. Chu, E. Y. Chang, S. H. Chen, Y. C. Lien, and C. Y. Chang, “2 V-operated InGaP-AlGaAs-InGaAs enhancement-mode pseudomorphic HEMT,” IEEE Electron Device. Lett. vol. 26, no. 2, pp. 53-55, Feb. 2005.
[45] WIN Semiconductors, “0.5μm InGaAs pHEMT enhancement / depletion-model device (E/D-mode) device model handbook,” ver.1.0.1, May, 2006.
[46] Sonnet User’s Manual, Release 11, Sonnet Software Inc., North Syracuse, NY, Nov. 2005.
[47] J. Kim J.-O. Plouchart, N. Zamdmer, M. Sherony, Y. T. Meeyoung, Y. R. Trzcinski, M. Talbi, J. Sarfran, A. Ray, L. Wagner, “A power-optimized widely-tunable 5-GHz monolithic VCO in a digital SOI CMOS technology on high resistivity substrate,” 2003 International Symposium on Low Power Electronics and Design Proceeding, Aug, 2003, pp. 434-439.
[48] G. Dambrine, A. Cappy, F. Heliodore and E. Playez, “A New Method for Determining the FET Small-Signal Equivalent Circuit,” IEEE Transaction on Microwave Theory and Techniques, vol. 36, no. 7, pp. 1151-1159, Jan. 1988.
[49] L. Yang and S. I. Long, “New Method to Measure the Source and Drain Resistance of the GaAs MESFET,” IEEE Electron Device Letters, vol. 7, pp. 75-77, Feb. 1986.
[50] Steve C. Cripps, RF Power Amplifiers for Wireless Communications, Second Edition, Artech House, 2006.
[51] Steve Marsh, Practical MMIC Design, Artech House, 2006.
[52] George D. Vendelin, Microwave Circuit Using Linear and Nonlinear Techniques, Second Edition, John Wiley, New Jersey, 2005.
[53] Arshad Hussain, Advance RF Engineering for Wireless System and Networks, John Wiley, New Jersey, 2005.
[54] A. Ghazinour, P. Wennekers, J. Schmidt, Y. Yin, R. Reuter, and J. Teplik, “A fully-monolithic SiGe-BiCMOS transceiver chip for 24 GHz applications,” in BTCM Proceedings. IEEE, pp. 181–184, Sep. 2003.
[55] A. Natarajan, A. Komijani, A. Hajimiri, “A Fully Integrated 24-GHz Phased-Array Transmitter in CMOS,” IEEE JOURNAL OF SOLID STATE CIRCUITS, vol. 40, no. 12, Dec. 2005
[56] C. Cao, Y. Ding, X. Yang, J.-J. Lin, A.K. Verma, J. Lin, F. Martin, and K.K. O, “A 24-GHz Transmitter with an On-Chip Antenna in 130-nm CMOS,” in VLSI Circuits Symp. Dig. IEEE, pp. 148–149, June 2006.
[57] P. Zhao, H. Veenstra, J.R. Long, “ A 24GHz Pulse-Mode Transmitter for Short-Range Car Radar ,” in RFIC Proceedings. IEEE, pp. 379 – 382, June 2007.
[58] R. Kozhuharov, A. Jirskog, N. Penndal, and H. Zirath, “Single-Chip 24- GHz Synthesizer for a Radar Application,” in CSIC Symp. Dig. IEEE, Nov. 2006, pp. 205–208.
[59] Y. Cao, M. Tiebout, V. Issakov, “A 24GHz FMCW radar transmitter in 0.13 μm CMOS,” IEEE European Solid-State Circuits Conference, vol.15-19, pp. 498 – 501, Sept. 2008.
[60] Hong-Yeh Chang, Yi-Shuo Wu, and Yu-Chi Wang, “A 38% Tuning Bandwidth Low Phase Noise Differential Voltage Controlled Oscillator Using a 0.5 μm E/D-PHEMT Process,” IEEE Microwave and Wireless Comp. Lett. vol. 19, no. 07, pp. 467-496, July. 2009.
[61] 詹清硯, “微波及毫米波行進波切換器之研製 Design of Microwave and Millimeter-Wave Traveling Wave Switch,” 國立中央大學電機工程研究所碩士論文, 民國98年6月.
[62] 陳喬民, “應用於DCS-1800之分數型頻率合成器設計 Design of Fractional-N Frequency Synthesizer for DCS-1800,” 國立交通大學電信工程研究所碩士論文, 民國91年6月.
[63] Steghen A. Mass, “ Microwave Mixers,” 2nd Ed., Artech House, Inc., 1993.
[64] S.C. Cripps, "Advanced Techniques in RF Power Amplifier Design," Norwood, MA: Artech House Incorporated, 2002.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明