博碩士論文 965201124 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.238.98.214
姓名 謝宗佑(Tsung-you Hsieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
(Implementation of EEMD for Real-time control of SSVEP-actuated remote-controlled car)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷
★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除★ 智慧型心電圖遠端監控系統
★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測
★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割★ 應用小波編碼於多通道生理訊號傳輸
★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測★ 利用經驗模態分解法於耳鳴病患之腦磁波穩態聽覺誘發磁場萃取
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 許多脊髓損傷患者或是其他類型患者像是肌萎縮性側索硬化症、腦幹中風、大腦或脊髓受傷、腦性麻痺、肌肉失養症、多發性硬化症等病患。這些患者無法與外界溝通或是自由的移動,為了改善這些行動有困難的人,使他們能夠自由移動,有種使用腦部直接控制電腦機械,不用透過肌肉來控制的一個溝通與控制管道,在此稱為大腦人機介面(Brain Computer interface, BCI),透過這個大腦人機介面,就可以讓這些脊髓損傷患者與部世界傳遞訊息以及傳遞控制命令。
本研究提出一個利用穩態視覺誘發電位達成的大腦人機介面系統,使用黃鍔所提出的整體經驗模態分解法(Ensemble Empirical Mode Decomposition, EEMD)去除基線漂移和其它雜訊,並利用Quadrature Detection來判斷SSVEP之頻率,並將此方法在LabVIEW平台上完成,之後使用433Mhz無線傳輸模組傳送控制訊號給遙控車,達到即時控制遙控車之BCI。
摘要(英) Patients with spinal cord injury or neuromuscular disorders, such as Amyotrophic lateral sclerosis (ALS), brainstem stroke, brain or spinal cord injury, cerebral palsy, muscular dystrophies, multiple sclerosis, and etc, can not communicate with external environments. In order to solve this problem, researchers are engaging themselves in developing new techniques, which are independent of their peripheral neuromuscular functions, to help them express their intentions. One plausible way, the brain–computer interface (BCI), has drawn great attention and regarded as a potential technique.
This study adopts ensemble empirical mode decomposition (EEMD) to implement a fast steady-state visual evoked potential (SSVEP) – based BCI system. Taking the advantage of EEMD for noise suppression in pre-processing step, SSVEPs can be extracted with high signal-to-noise ratio (SNR) and it permits some phase detection technique, such as quadrature detection (QD), can be applied to estimate the existing frequency of SSVEP in a short-time data segment. The proposed system has successfully implemented to control a remote-controlled car with acceptable accuracy and high information transfer rate (ITR).
關鍵字(中) ★ 大腦人機介面
★ 穩態視覺誘發電位
★ 整體經驗模態分解法
關鍵字(英) ★ steady-state evoked potential (SSVEP)
★ brain computer interface (BCI)
★ ensemble empirical mode decomposition (EEMD)
論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目的 2
第二章 大腦結構與視覺誘發電位 3
2.1 腦部結構 3
2.1.1 大腦皮質的各功能區 3
2.1.2 腦波 4
2.1.3 腦波量測 5
2.2 視覺誘發電位 7
2.3 以穩態視覺誘發電位設計的BCI系統 10
第三章 研究理論與方法 15
3.1 BCI系統架構 15
3.2 視覺刺激之設計 16
3.2.1 電腦銀幕達成閃爍光源 17
3.2.2 OpenGL 18
3.2.3 雙重緩衝 18
3.3 閃爍頻率 19
3.4 遙控車設計 19
3.4.1 車體 20
3.4.2 89C51 21
3.4.3 遙控車馬達電路 22
3.4.4 無限傳輸模組 23
3.4.5 ICL232電路 24
3.4.6 無線攝影機 25
3.4.7 無線攝影機接收器 26
3.4.8 攝影機影像顯示 27
3.5 控制面板設計 28
3.6 S型軌道設計 29
3.7腦波放大器 30
3.8 演算法流程 31
3.9 希爾伯特-黃轉換理論 32
3.9.1瞬時頻率(Instantaneous frequency) 34
3.9.2本質模態函數(IMF) 35
3.9.3經驗模態分解法 36
3.10 整體經驗模態分解法 42
3.10.1 經驗模態分解法之缺陷 42
3.10.2 模式混和 (Mode Mixing) 42
3.10.3 整體經驗模態分解法(EEMD) 44
3.10.4 EEMD拆解模擬訊號範例 48
3.10.5 EEMD拆解實際腦波訊號範例 49
3.10.6 DC直流擾動對傳統傅立葉轉換的影響 50
3.11 正交偵測 (Quadrature Detection, QD) 51
第四章 實驗結果 52
4.1 實驗設計 52
4.1.1 非即時實驗設計 52
4.1.2 即時實驗設計 52
4.2 實驗結果 53
4.2.1 非即時實驗 不同秒數作EEMD+QD的正確率比較 53
4.2.2 非即時實驗EEMD+QD、EMD+QD與FFT準確率比較 54
4.2.3 即時實驗 遙控車S型軌道軌跡圖與每秒指令動作 55
4.2.4 即時實驗之結果統計 60
第五章 結論與未來展望 61
5.1 結論 61
5.2 未來展望 62
參考文獻 63
參考文獻 [1] J. Wolpaw, N. Birbaumer, D. McFarland et al., “Brain–computer interfaces for communication and control,” Clinical neurophysiology, vol. 113, no. 6, pp. 767-791, 2002.
[2] N. Birbaumer, A. Kubler, N. Ghanayim et al., “The thought translation device (TTD) for completely paralyzedpatients,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 190-193, 2000.
[3] G. Pfurtscheller, C. Neuper, G. Muller et al., “Graz-BCI: state of the art and clinical applications,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 1-4, 2003.
[4] E. Donchin, K. Spencer, and R. Wijesinghe, “The mental prosthesis: assessing the speed of a P300-basedbrain-computer interface,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 174-179, 2000.
[5] J. Wolpaw, D. McFarland, G. Neat et al., “An EEG-based brain-computer interface for cursor control,” Electroencephalography and clinical neurophysiology, vol. 78, no. 3, pp. 252, 1991.
[6] J. Millan, F. Renkens, J. Mourino et al., “Noninvasive brain-actuated control of a mobile robot by human EEG,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 1026-1033, 2004.
[7] M. Cheng, X. Gao, S. Gao et al., “Design and implementation of a brain-computer interface with high transfer rates,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 10, pp. 1181-1186, 2002.
[8] E. Lalor, S. Kelly, C. Finucane et al., “Brain computer interface based on the steady-state VEP for immersive gaming control,” Biomed. Tech, vol. 49, no. 1, pp. 63–64, 2004.
[9] 潘震澤, "人體生理學第七版," 合計圖書出版社, 2001.
[10] R. Seeley, T. Stephens, and P. Tate, Essentials of anatomy and physiology: WCB/McGraw-Hill Boston, 1999.
[11] J. Malmivuo, and R. Plonsey, Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields: Oxford University Press, USA, 1995.
[12] H. Jasper, “Report of the committee on methods of clinical examination in electroencephalography,” Electroencephalogr Clin Neurophysiol, vol. 10, pp. 370-375, 1958.
[13] A. E. Society, “Guidelines for standard electrode position nomenclature,” J Clin Neurophysiol, vol. 8, pp. 200-202, 1991.
[14] J. Odom, M. Bach, C. Barber et al., “Visual evoked potentials standard (2004),” Documenta ophthalmologica, vol. 108, no. 2, pp. 115-123, 2004.
[15] P. Cilliers, and A. Van Der Kouwe, "A VEP-based computer interface for C2-ouadriplegics." ,IEEE Med. Biol. Eng., pp. 1263-1263.
[16] E. Sutter, “The brain response interface: communication through visually-induced electrical brain responses,” Journal of Microcomputer Applications, vol. 15, no. 1, pp. 31-45, 1992.
[17] 謝竣傑, 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面, 國立中央大學, 碩士論文, 2007
[18] S. Morgan, J. Hansen, and S. Hillyard, "Selective attention to stimulus location modulates the steady-state visual evoked potential," 10, National Acad Sciences, 1996, pp. 4770-4774.
[19] G. Pfurtscheller, C. Neuper, C. Guger et al., “Current trends in Graz brain-computer interface (BCI) research,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 216-219, 2000.
[20] M. Cheng, X. Gao, S. Gao et al., “Design and implementation of a brain-computer interface with high transfer rates,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 10, pp. 1181-1186, 2002.
[21] Y. Wang, R. Wang, X. Gao et al., “A practical VEP-based brain-computer interface,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 234-240, 2006.
[22] P. Lee, C. Wu, J. Hsieh et al., “Visual evoked potential actuated brain computer interface: a brain-actuated cursor system,” Electronics letters, vol. 41, no. 15, pp. 832-834, 2005.
[23] Tom’s hardware, LCD
http://www.tomshardware.com/reviews/viewsonic-overdrive-lcds,1042-7.html
[24] OpenGL, GLUT
http://www.opengl.org/
[25] Microsoft, DirectX
http://www.microsoft.com/downloads/details.aspx?FamilyID=24a541d6-0486-4453-8641-1eee9e21b282&displaylang=en
[26] Wiki, Psychtoolbox
http://psychtoolbox.org/wikka.php?wakka=HomePage
[27] S. Richard Jr, Wright, S, “OpenGL 超級手冊 第二版”, 碁峰資訊股份有限公司, 2000
[28] 蔡俊平, “DirectX遊戲設計for Visual C++” , 文魁資訊, 2005
[29] 益眾, 迷你自走車
http://www.icci.com.tw/web/MdFront?mdId=MD0000002307000854&command=displayDetail
[30] 楊明豐, “8051 單晶片 C 語言設計實務”, 碁峰資訊股份有限公司, 2003.
[31] 益眾, 無線傳輸模組
http://www.icci.com.tw/web/MdFront?command=displayDetail&mdId=MD0000002307001811
[32] 科泰科技, 無線攝影機與接受器
http://www.ktbbc.com/wy/cp/KY-2-4GRUSB.html
[33] 陸其明, “DirectShow實務精選”, 北京科海電子出版社
[34] BRAIN PRODUCTS, QUICKAMP
http://www.cnstudio.com.tw/demo/brain-products/products-quickamp.htm
[35] N. Huang, Z. Shen, S. Long et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings: Mathematical, Physical and Engineering Sciences, pp. 903-995, 1998.
[36] Z. Wu, and N. Huang, “Ensemble empirical mode decomposition: A noise assisted data analysis method”, Center for Ocean Land Atmosphere Studies, 2005.
指導教授 李柏磊(Po-lei Lee) 審核日期 2009-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明