博碩士論文 965202099 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:54.81.220.239
姓名 謝東瀚(Tung-han Hsieh)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 低解析度車牌視訊之強化與辨識
(The Enhancement and Recognition of the Low Resolution License Plate Video)
相關論文
★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)★ 高頻譜影像物質含量估計運用加權最小 平方法
★ 利用X光乳房攝影產生之紋理特徵影像在腫瘤偵測上之研究★ 高光譜影像雜訊模式估計
★ 利用高光譜影像作異常物偵測★ 無參數加權特徵萃取對遙測及醫學影像目標偵測的應用
★ 利用電腦自動化對數值高程模型作線形偵測★ 高光譜影像異常物偵測與識別之平行運算方法與其效能評估
★ 利用多光譜影像的光譜與空間資訊結合數學型態學進行海洋油汙偵測★ 利用遙測影像自動萃取校正點
★ 新的影像融合演算法應用於多光譜遙測影像★ 利用影像處理進行遙測影像的河道偵測與醫學影像的血管偵測
★ 可調式都卜勒主動雷達校正器之改良研究★ 基於色彩校正的遙測影像變遷偵測
★ 利用固定式攝影機即時偵測土石流★ 藉由電腦視覺自動偵測土石流
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 監視系統應用在路況監控已行之有年,但是因為通常路上的監視攝影機距離車輛很遠,再加上車輛移動造成的模糊以及其他雜訊影響,使得影片的品質不好,很難辨識出車牌上的文字。因此我們必須解決這個問題。
在這篇論文中,我們提出了一個不同的影像定位方法來應用在超解析度影像重建上。此方法是利用影像相關性比對以及比對之後的影像幾何轉換來使得所有低解析度影像都能重疊在同樣的影像座標上。定位完成之後,便將所有影像相加起來取平均,以得到重建的高解析度影像。最後我們利用一些後處理使得影像上的車牌文字可以更容易的被辨識出來。
我們拍攝了幾個測試影片來驗證我們的方法。拍攝方式是先在遠距離拍攝且故意讓攝影機失焦以得到模糊的低解析度影片。之後我們將實驗結果拿來跟雙立方內插之結果與之比較。最後實驗證明我們的方法可以成功的改善模糊的低解析度影像之品質,使得車牌上的文字可以清楚地辨識。
摘要(英) The surveillance video camera has been used on the road for traffic for a long time, but the resolution of the video is not fine enough to recognize the letters on the license plate. Addition to motion blur, noise effects and the distance of camera is far away from the vehicle, this becomes a very challenge problem.
In this thesis, a novel approach for super resolution image reconstruction is proposed. We first register multiple blurred low resolution license plate images by correlation matching and geometric transformation with control point pairs, and then we fuse the registered low resolution images by interpolating and averaging them to high resolution image. After the high resolution image is restored, we apply the post process steps to further enhance the readability of the letters on the license plate.
We capture low resolution test video sequence by defocusing the scene with vehicle to verify the proposed method. And we conduct a comparison to bicubic interpolation with the result by applying proposed method. The experimental result shows that our method can improve the quality of blurred low resolution image successively.
關鍵字(中) ★ 車牌影像
★ 車牌視訊
★ 影像重建
★ 超解析度
關鍵字(英) ★ license plate image
★ license plate video
★ image reconstruction
★ super resolution
論文目次 摘 要 ...................................................................... i
Abstract .................................................................. ii
致謝 ..................................................................... iii
Contents .................................................................. iv
Lists of Figures .......................................................... vi
Lists of Tables .......................................................... vii
Chapter 1 Introduction ..................................................... 1
1.1 Motivation ............................................................. 1
1.2 Background ............................................................. 2
1.3 Thesis Organization .................................................... 4
Chapter 2 Related Works .................................................... 5
2.1 Observation Model ...................................................... 5
2.2 Registration ........................................................... 6
2.2.1 Optical Flow ......................................................... 7
2.2.2 Block Matching Algorithm (BMA) ....................................... 8
2.2.3 Hierarchical Block Matching Algorithm (HBMA) ........................ 10
2.3 SR Reconstruction Algorithms .......................................... 11
2.3.1 Non-uniform Interpolation Approach .................................. 11
2.3.2 Bayesian Framework .................................................. 12
2.3.3 Iterative Back Projection ........................................... 14
Chapter 3 Proposed Method ................................................. 15
3.1 Enhancement ........................................................... 15
3.1.1 License Plate Locater ............................................... 16
3.1.2 Registration in Subpixel Precision .................................. 17
3.1.3 SR Process .......................................................... 21
3.1.4 Post-Process ........................................................ 22
3.2 Recognition ........................................................... 22
3.2.1 Pre-Process to Remove the Redundant Areas ........................... 23
3.2.1.1 Eliminate the Upper and Lower Part ................................ 24
3.2.1.2 Eliminate the Right and Left Part ................................. 25
3.2.1.3 Eliminate the white area which inside the license plate ........... 25
3.2.2 Template Matching ................................................... 26
Chapter 4 Experimental Results and Discussions ............................ 28
4.1 Experimental Data Introduction ........................................ 28
4.2 Experimental Results .................................................. 29
4.2.1 Experimental Result 1 ............................................... 29
4.2.2 Experimental Result 2 ............................................... 34
4.2.3 Experimental Result 3 ............................................... 37
Chapter 5 Conclusions and Future Works .................................... 41
References ................................................................ 43
參考文獻 [1] Park S. C., M. K. Park and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Processing Magazine, 2003, (5): pp. 21-36
[2] Tsai R. Y. and T. S. Huang, “Multi-frame image restoration and registration”, Advances in Computing Vision and Image Processing, vol. 1, pp. 317-339, Greenwich, CT: JAI Process Inc., 1984.
[3] Irani M. and S. Peleg, “Improving resolution by image registration”, CVGIP: Graphical Models and Image Processing, Vol. 53, pp.231-239, May 1991.
[4] Barreto D., L. D. Alvarez and J. Abad, “Motion estimation techniques in super-resolution image reconstruction. A performance evaluation, “Virtual Observatory. Plate Content Digitalization, Archive Mining and Image Sequence Processing”, Sofia, Bulgary, Vol. 1, pp 254-268
[5] Clark J. J., M. R. Palmer and P. D. Lawrence, “A transformation method for the reconstruction of functions from nonuniformly sapced samples”, IEEE Trans. Aconst., Speech, Signal Processing, vol. ASSP-33, pp. 1151-1165, 1985
[6] Gilman A. and D. G. Bailey, “Near optimal non-uniform interpolation for image super-resolution from multiple images”, Image and Vision Computing New Zealand, Great Barrier Islandm New Zealandm pp. 31-36, 2006
[7] Alam M. S., J. G. Bognar, R. C. Hardie and B. J. Yasuda, “Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames”, Instrumentation and Measurement, IEEE Trans. Digit. Object Identifier, 49, pp. 915–923, 2000
[8] Ur H. and D. Gross, “Improved resolution from subpixel shifted pictures”, CVGIP: Graphical Models and Image Processing, vol. 54, pp. 181-186, Mar. 1992
[9] Schultz R. R. and R. L. Stevenson, “Extraction of high-resolution frame from video sequence”, IEEE Transactions on Image Processing, vol. 5, pp. 996-1011, 1996
[10] Schultz R. R., L. Meng and R. L. Stevenson, “Subpixel motion estimation for super-resolution image sequence enhancement”, Journal of Visual Communication and Image Representation, special issue on High-Difeity Media Processing, vol. 9 no.1 pp. 38-50, Mar. 1998
[11] Katsaggelos A. K., R. Molina and J. Meteos, “Super resolution of images and video”, Morgan & Calypool, 2007
[12] Irani M. and S. Peleg, “Motion analysis for image enhancement: resolution, occlusion and transparency”, Journal of Visual Communication and Image Representation, Vol. 4, pp. 324-335, Dec. 1993.
[13] Zomet A., A. Rav-Acha and S. Peleg, “Robust super-resolution”, in Proceedings of the Int. Conf. on Computer Vision and Patern Recognition (CVPR), vol. 1, pp. 645-650, Dec. 2001.
[14] Zitova B. and J. Flusser, “Image registration methods: a survey”, Image and Video Computing 21, 2003, pp. 977-1000
[15] Chinag M.-C. and T. E. Boult, “Efficient Image Warping and Super-Resolution”, Proceedings of the Third Workshop on Applications of Computer Vision, pp.56-61, Dec. 1996
[16] Lin F., C. Fookes, V. Chandran and S. Sridharan, “Investigation into Optical Flow Super-Resolution for Surveillance Applications”, Proceedings of APRS Workshop on Digital Image Computing, February 2005, pp. 73-78
[17] Wang Y., J. Ostermann and Y.-Q. Zhang, “Video Processing and Communications,” Prentice-Hall, 2002.
指導教授 任玄(Hsuan Ren) 審核日期 2009-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明