博碩士論文 965203035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:35.175.191.168
姓名 詹凱文(Kai-Wen Chan)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 在中上衰落通道中分集結合技術之二階統計特性
(Second-Order Statistics for Diversity Combining Techniques in Nakagami Fading Channels)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 先進長程演進系統中載波聚合技術的初始同步★ 基於干擾對齊方法於多用戶多天線下之聯合預編碼器及解碼器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在無線通訊系統下,多重路徑衰落是最常見的干擾並且嚴重地影響通訊品質。因為中上衰落模型具有較好的模擬彈性而且能夠精確地與實驗數據相符合,所以中分衰落模型是最能夠全方位適用於各種通道的模型。分集結合技術是最常用來降低多路徑衰落的效應,並且期望能夠增加系統的效能。為了量化分集結合系統的效能,水平跨越比例和平均衰落期間通常是用來評估在多重路徑衰落下的分集結合系統效能。如果接收天線沒有間隔足夠的距離,通道之間所產生相關性將會降低分集結合系統的效能,所以具有相關性的分集結合系統效能通常都是劣於獨立性的分集結合系統。因此,對於在實驗室中產生相關性中上衰落通道是非常重要的,因為它兼顧了理論與實用的價值;而且對於分析相關性中上衰落通道的統計特性是有其助益的。
摘要(英) In wireless communication systems, multipath fading is commonly encountered and adversely affects the quality of communication. The Nakagami-m fading model is one of the most versatile models, because it has superior flexibility and accurately matches experimental data. Diversity combining techniques are commonly used to reduce multipath fading effects, and they are thus expected to enhance system performance. In order to quantify the performance of diversity combining systems, the level crossing rate and the average fade duration are usually used to evaluate the performance of diversity combining systems in multipath fading channels. However, if the receiver antennas are not sufficiently separated, the diversity combining techniques are diminished over correlated channel branches, whereas the performance in a correlated diversity system is worse than that for independent multipath fading channels. Hence, the generation of correlated Nakagami-m fading channels in a laboratory environment is of theoretical and practical importance, and it is useful to study the statistics of such channels.
關鍵字(中) ★ 平均衰落期間
★ 水平跨越比例
★ 相關性通道
★ 分集結合技術
★ 中上衰落模型
★ 多重路徑衰落
關鍵字(英) ★ average fade duration
★ level crossing rate
★ correlated channel
★ diversity combining techniques
★ Nakagami-m fading model
★ multipath fading
論文目次 Chapter 1 Introduction 1
Chapter 2 A Review of Nakagami-m Fading Channels 5
2.1 Channel Model 5
2.2 Nakagami-m Fading Channels 13
2.3 Simulator for Nakagami-m Fading Channels 16
2.3.1 Clarke’s Fading Model 16
2.3.2 Sum-of- Sinusoids Based on the Nakagami-m Simulator 19
Chapter 3 Diversity Combining, First- and Second-Order Statistics 21
3.1 Diversity Combining 21
3.1.1 Diversity Schemes 21
3.1.2 Combining Technique 22
3.2 First-Order Statistics 23
3.2.1 Channel Capacity 24
3.2.2 Average Bit Error Probability 26
3.2.3 Outage Probability 27
3.3 Second-Order Statistics 27
3.3.1 Level Crossing Rate 27
3.3.2 Average Fade Duration 28
Chapter 4 Second-Order Statistics of Diversity Combining over Independent Nakagami-m Fading Channels 29
4.1 LCR and AFD of Nakagami-m Fading Channels 29
4.2 LCR and AFD of Selection Combining in Independent Nakagami-m Fading Channels 33
4.2.1 Identical Case 33
4.2.2 Non-identical Case 38
4.3 LCR and AFD of Maximal-Ratio Combining in Independent Nakagami-m Fading Channels 42
4.3.1 Identical Case 43
4.3.2 Non-identical Case 47
4.4 LCR and AFD of Equal-Gain Combining in Independent Nakagami-m Fading Channels 51
4.4.1 Identical Case 52
4.4.2 Non-identical Case 54
Chapter 5 Decomposition Technique for the Generation of Correlated Nakagami-m Fading Channels 56
5.1 Cholesky Decomposition 56
5.1.1 Derivation of Correlations for a Gamma Distributed Vector 56
5.1.2 Decomposition Method 58
5.2 Sim’s Method 61
5.3 Q. T. Zhang’s Method 63
5.3.1 Generation of Correlated Nakagami-m Channels 63
5.3.2 Decomposition Method 65
5.3.3 Simulation Results 68
Chapter 6 Conclusions and Future Work 72
Bibliography 73
參考文獻 [1]W. C. Jakes, Jr., Ed., Microwave Mobile Communication. New York: Wily, 1974.
[2]G. L. Siqueira and E. J. A. Vasquez, “Local and global signal variability statistics in a mobile urban environment,” Kiuwer Wireless Pers. Commun., vol. 15, no. 1, pp. 61-78, Oct. 2000.
[3]S. O. Rice, “Statistical properties of a sine wave plus random noise,” Bell System Tech. J., vol. 27, pp. 109-157, Jan. 1948.
[4]S. O. Rice, “Mathematical analysis of random noise,” Bell System Tech. J., vol. 23, pp. 282-332, Jul. 1944.
[5]R. S. Hoyt, “Probability functions for the modulus and angle of the normal complex variate,” Bell System Tech. J., vol. 26, pp. 318-359, Jan. 1947.
[6]M. Nakagami, “The m-distribution–a general formula of intensity distribution of rapid fading,” Statistical Methods in Radio Wave Propagation, W. C. Hoffman, Ed. Elmsford, NY: Pergamon, 1960.
[7]H. Suzuki, “A statistical model for urban radio propagation,” IEEE Trans. Commun., vol. 25, no. 7, pp. 673-680, Jul. 1977.
[8]T. Aulin, “A modified model for the fading signal at a mobile radio channel,” IEEE Trans. Veh. Technol., vol. 28, no. 3, pp. 182-203, Aug. 1979.
[9]D. G. Brennan, “Linear diversity combining techniques,” in Proc. IRE, vol.47, Jun. 1959, pp. 1075-1102.
[10]M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels, 2nd ed. New York: Wiley, 2005.
[11]A. Goldsmith, Wireless Communications, Stanford University Press, 2003.
[12]W. C. Y. Lee, “Statistical analysis of the level crossings and duration of fades of the signal from an energy density mobile radio antenna,” Bell Syst. Tech. J., vol. 46, pp. 417-448, 1967.
[13]W. C. Y. Lee, “Level crossing rates of an equal-gain predetection diversity combiner,” IEEE Trans. Commun. Technol., vol. COM-18, pp. 417-426, Aug. 1970.
[14]F. Adachi, M. T. Feeney, and J. D. Parson, “Effects of correlated fading on level crossing rates and average fade durations with predetection diversity reception,” Proc. Inst. Elect. Eng., vol. 135, pp. 11-17, Feb. 1988.
[15]W. R. Braun and U. Dersch, “A physical mobile radio channel model,” IEEE Trans. Veh. Technol., vol. 40, no. 2, pp. 472-482, May 1991.
[16]M. D. Yacoub, J. E. Bautista, and L. G. D. R. Guedes “On higher order statistics of the Nakagami-m distribution,” IEEE Trans. Veh. Technol., vol. 48, pp. 2360-2369, May 1991.
[17]M. D. Yacoub, C. R. C. M. da Silva, and J. E. Vargas B., “Second-order statistics for equal gain and maximal ratio diversity-combining reception,” Electron. Lett., vol. 36, no. 4, pp. 382-384, Feb. 2000.
[18]Q. T. Zhang, “Exact analysis of postdetection combining for DPSK and NFSK systems over arbitrarily correlated Nakagami channels,” IEEE Trans. Commun., vol. 46, no. 11, pp. 1459-1467, Nov. 1998.
[19]Q. T. Zhang, “Maximal-ratio combining over Nakagami fading channels with an arbitrary branch covariance matrix,” IEEE Trans. Veh. Technol., vol. 48, no. 4, pp. 1141-1150, Jul. 1999.
[20]D. Li and V. K. Prabhu, “Average level crossing rates and average fade durations for maximal-ratio combining in correlated Nakagami channels,” in Proc. WCNC, Mar. 2004, pp. 339-344.
[21]G. K. Karagiannidis, D. A. Zogas, and S. A. Kotsopoulos, “On the multivariate Nakagami-m distribution with exponential correlation,” IEEE Trans. Commun., vol. 51, no. 8, Aug. 2003.
[22]J. Reig, “Multivariate Nakagami-m distribution with constant correlation model,” Int. J. Electron. Commun. (AEU), vol. 63, no. 1, Jan.
[23]V. A. Aalo, “Performance of maximal-ratio diversity systems in a correlated Nakagami-m fading environment,” IEEE Trans. Commun., vol. 43, no. 8, pp. 2360-2369, Aug. 1995. 2009.
[24]O. C. Ugweje and V. A. Aalo, “Performance of selection diversity system in correlated Nakagami fading,” IEEE VTC, vol. 3, pp. 1488-1492, May 1997.
[25]M. S. Alouini, A. Abdi, and M. Kaveh, “Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels,” IEEE Trans. Veh. Technol., vol. 50, no. 6, pp. 1471-1480, Nov. 2001.
[26]K. Zhang, Z. Song, and Y. L. Guan, “Cholesky decomposition model for correlated MRC diversity systems in Nakagami fading channels,” IEEE VTC, vol. 3, pp. 1515-1519, Sep. 2002.
[27]C. H. Sim, “Generating of poisson and gamma random vectors with given marginal and covariance matrix,” J. Stat. Computat. Simulat., vol. 47, no. 1-2, pp. 1-10, 1993.
[28]Q. T. Zhang, “Efficient generation of correlated Nakagami fading channels with arbitrary fading parameter,” in Proc. ICC, 2002, vol. 3, pp. 1358-1362.
[29]Q. T. Zhang, “A decomposition technique for efficient generation of correlated Nakagami fading channels,” IEEE Journ. Sel. Area. Commun., vol. 18, no. 11, pp. 2385-2392, Nov. 2000.
[30]T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.
[31]J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York: McGraw-Hill, 2008.
[32]M. Abramowitz and I. A. Stegun, Handbook of Mathenatical Functions. New York: Dover Publications, 1972.
[33]G. Fraidenraich, J. C. S. S. Filho, and M. D. Yacoub, “Second-order statistics of maximal-ratio and equal-gain combining in Hoyt fading,” IEEE Commun. Lett., vol. 9, no. 1, pp. 19-21, Jan. 2005.
[34]B. Chytil, “The distribution of amplitude scintillation and the conversion of scintillation indices,” J. Atmos. Terr. Phys., vol. 29, pp. 1175-1177, Sep. 1967.
[35]A. Mehrnia and H. Hashemi, “Mobile satellite propagation channel part II—A new model and its performance,” in Proc IEEE Vehicle Technology Conf. (VTC’ 99), Amsterdam, The Netherlands, Sep. 1999, pp. 2780-2784.
[36]C. X. Wang, N. Youseef, and M. Patzold, “Level-crossing rate and average duration of fades of deterministic simulation models for Nakagami-Hoyt fading channels,” in Proc. WPMC’02, Honolulu, HI, Oct. 2002, pp.272-276.
[37]M. K. Simon and M. S. Alouini, “A unified approach to the performance analysis of digital communication over generalized fading channels,” in Proc. IEEE, vol. 86, Sep. 1998, pp. 1860-1877.
[38]A. Annamalai, C. Tellambura, and V. K. Bhargava, “Simple and accurate methods for the outage analysis in cellular mobile radio systems—A unified approach,” IEEE Trans. Commun., vol. 49, pp. 303-316, Feb. 2001.
[39]J. C. S. S. Filho and M. D. Yacoub, “Highly accurate Approximation to the sum of M independent nonidentical Hoyt variates,” Electron. Lett., vol. 4, no. 6, pp. 436-438, Mar. 2005.
[40]R. H. Clarke, “A statistical theory of mobile-radio reception,” Bell Syst. Tech. J., vol. 47, pp.957-1000, Jul-Aug. 1968.
[41]P. Dent, G. E. Bottomley, and T. Croft, “Jakes’ fading model revisited,” Electron. Lett., vol. 29, no. 13, pp. 1162-1163, Jun. 1993.
[42]H. Stark and J. W. Woods, Probability and Random Processes with Application to Signal Processing, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 2001.
[43]M. F. Pop and N. C. Beaulieu, “Limitations of sum-of-sinusoids fading channel simulators” IEEE Trans. Commun., vol. 49, no. 4, pp. 699-708, Apr. 2001.
[44]T. M. Wu, “Generation of Nakagami-m fading channels,” IEEE VTC, vol. 6, pp. 2787-2792, May 2006.
[45]D. G. Brennan, “Linear diversity combining techniques,” in Proc. IRE, vol.47, Jun. 1959, pp. 1075-1102.
[46]C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp.379-423, Oct. 1948.
[47]R. J. McEliece and W. E. Stark, “Channels with block interference,” IEEE Trans. Inform. Theory, pp. 44-53, Jan. 1984.
[48]M. Schwartz, W. R. Bennett, and S. Stein, Communication Systems and Techniques. New York: McGraw-Hill, 1966.
[49]N. Youssef, T. Munakata and M. Takeda, “Fade statistics in Nakagami fading environments,” in Proc. IEEE Int. Symp. Spread Spectrum Techniques and Applications, Mainz, Germany, 1996, pp. 1244–1247.
[50]L. Yang and M. –S. Alouini, “Average level crossing rate and average outage duration of generalized selection combining,” IEEE Trans. Commun., vol. 51, no. 12, pp. 1997-2000, Dec. 2003.
[51]M. D. Yacoub, C. R. C. M. da Silva, and J. E. Vargas B., “Second-order statistics for equal gain and maximal ratio diversity-combining reception,” Electron. Lett., vol. 36, no. 4, pp. 382-384, Feb. 2000.
[52]T. M. Cover and J. E. Thomas, Elements of Information Theory. New York: Wiley, 1991.
[53]C. D. Iskander and P. T. Mathiopoulos, “Analytical level crossing rates and average fade durations for diversity techniques in Nakagami fading channels,” IEEE Trans. Commun., vol. 50, no. 8, pp. 1301-1309, Aug. 2002.
[54]H. Rutagemwa, V. Mahinthan, J. W. Mark, and X. Shen, “Second order statistics of non-identical Nakagami fading channels with maximal-ratio combining,” in Proc. GLOBECOM, Nov. 27- Dec. 1, 2006, pp. 1-5.
[55]P. G. Moschopulos, “The distribution of the sum of independent gamma random variables,” Ann. Inst. Statist. Math. (Part A), vol. 37, pp. 541-544, 1985.
[56]K. Zhang, Z. Song, and Y. L. Guan, “Cholesky decomposition model for correlated mrc diversity systems in Nakagami fading channels,” IEEE VTC, vol. 3, pp. 1515-1519, Sep. 2002.
[57]C. H. Sim, “Generating of poisson and gamma random vectors with given marginal and covariance matrix,” J. Stat. Computat. Simulat., vol. 47, no. 1-2, pp. 1-10, 1993.
[58]Q. T. Zhang, “Efficient generation of correlated Nakagami fading channels with arbitrary fading parameter,” in Proc. ICC, 2002, vol. 3, pp. 1358-1362.
[59]R. T. Smith and R. B. Minton, Calculus, 2ed ed. New York: McGraw-Hill, 2002.
[60]S. Kotz and J. Adams, “Distribution of sum of identically distributed exponentially correlated gamma variables,” Annals Math. Stat., vol. 35, pp. 227–283, Jun. 1964.
[61]Q. T. Zhang, “Exact analysis of postdetection combining for DPSK and NFSK systems over arbitrarily correlated Nakagami channels,” IEEE Trans. Commun., vol. 46, no. 11, pp. 1141-1150, Nov. 1998.
指導教授 林嘉慶(Jia-Chin Lin) 審核日期 2009-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明