博碩士論文 965301024 詳細資訊


姓名 彭康榮(Kang-Jung Peng)  查詢紙本館藏   畢業系所 電機工程學系在職專班
論文名稱 使用田口法於指叉式電容性生物感測器的最佳化設計之二維電場模擬
(Two-dimensional Electric-field Simulation for Optimal Design of Interdigitated Capacitive Biosensor by Taguchi Method)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究期待設計出一套具有最大電容特性及最佳靈敏度的指叉式電容生物感測器之範本。本研究利用先進設計系統(Advanced Design System)軟體進行二維電場模擬及使用田口實驗設計分析法,可獲得指叉式電容感測器之最佳電極幾何參數設計和各電極參數與電容效應之比重關係。針對指叉式電容生物感測器,本研究所設計出的最佳電極之各幾何參數,分別為電極寬度 = 1200 μm、電極間距 = 0.01 μm、電極厚度 = 500 μm以及電極交叉長度 = 10000 μm,其整體電容效應遠大於一般文獻上之指叉式電容生物感測器,約為795.17倍;各電極參數與電容效應之比重關係為電極寬度(31.65%) > 電極間距(26.154%) > 電極厚度(23.154%) > 電極交叉長度(19.039%)。考慮以現今製程技術實現之容易度,將電極寬度與電極間距設定為一般文獻常用值10 μm,而電極厚度及電極交叉長度仍遵循本研又究所得到的最佳參數設計。在設計上遷就製程技術現實所得到的電容效應雖然只是採用最佳電極參數尺寸之設計的5.53分之一,但卻是未採用最佳化設計者的142.96倍。對於生物待測物(例如DNA cylinder、Protein G及MDA231 Cell等)的靈敏度方面,遷就製程技術所設計出的感測器與最佳化設計的表現相近。故本研究的結論建議使用遷就現有製程之最佳電極參數尺寸來設計電容性生物感測器,以利於使用現今製程來實現並提高偵測的靈敏度。
摘要(英) The goal of this research is to develop an interdigitated capacitive biosensor with maximum capacitive response and highest sensitivity. This research concentrated on two-dimensional electric-filed simulation using ADS (Advanced Design System) to analyze and understand the capacitive response of interdigitated biosensors. Furthermore, Taguchi method was employed to find the optimal electrode geometric parameters. The optimal geometric parameters of interdigitated capacitive biosensor thus determined were: electrode width = 1200 μm, electrode spacing = 0.01 μm, electrode thickness = 500 μm, and overlapping length = 10000 μm. The capacitance of this optimal design was 795.17 times as big as that of an interdigitated capacitive biosensor with ordinary geometric parameters. The capacitance of an interdigitated biosensor is determined collectively by its geometric parameters. According to the results by Taguchi method, the relevant parameters and their weights of influences were: electrode width (31.65%), electrode spacing (26.154%), electrode thickness (23.154%), and overlapping length (19.039%). A suboptimal design was proposed to meet the current process limitation. The electrode width and spacing were both changed to 10um, whereas the electrode thickness and overlapping length followed the optimal geometric design. The resultant capacitance was reduced to 1/5.53 times as big as that of the optimal design. Nevertheless, it was still 142.96 times as big as that with the ordinary geometric parameters. For detection of DNA, protein, cell, et. al., by biosensors of suboptimal geometry design, the sensitivity doubled that of the ordinary design and was commensurate to that of the optimal design. Hence, the suboptimal design represents a good choice for capacitive biosensors to attain high sensitivity
under current process limitation.
關鍵字(中) ★ 田口設計分析法
★ 電容效應
★ 指叉式電極
關鍵字(英) ★ Taguchi's method
★ Capacitance
★ Interdigitated electrode
論文目次 中文摘要................................................................................................... I
英文摘要................................................................................................... II
誌謝........................................................................................................... IV
目錄........................................................................................................... V
圖目錄....................................................................................................... IX
表目錄....................................................................................................... XIV
第一章 緒論............................................................................................. 1
1-1 前言.................................................................................................... 1
1-2 生物感測器介紹................................................................................ 2
1-2-1 生物感測器的定義與其發展歷史回顧................................. 2
1-2-2 生物感測器類型與設計......................................................... 5
1-3 電化學生物感測器之電容特性........................................................ 12
1-3-1 不同等效電路的介紹............................................................. 12
1-3-2 電雙層架構與理論................................................................. 15
1-3-3 介電電容原理推導................................................................. 19
1-4 電容式生物感測器之簡介................................................................ 26
1-4-1電容生物感測器應用範圍...................................................... 26
1-4-2 常見電容式感測器之電極型式介紹.................................... 34
1-4-3 指叉式電容感測器之介紹與幾何參數之文獻回顧............ 37
第二章 研究動機與目的......................................................................... 50
2-1 研究動機............................................................................................ 50
2-2 研究目標............................................................................................ 52
第三章 設計最佳指叉式電容生物感測器............................................. 54
3-1 設計指叉式電容生物感測器之幾何參數範圍................................ 54
3-1-1 定義指叉式電極參數及設定幾何參數之分析範圍............ 54
3-1-2實驗目的................................................................................. 54
3-1-3 設定電極寬度對於指叉式電容生物感測器之分析範圍.... 56
3-1-3-1 實驗方法................................................................. 56
3-1-3-2 擴大研究電極寬度對於電容大小之影響............. 57
3-1-4 設定電極間距對於指叉式電容生物感測器之分析範圍.... 58
3-1-4-1 實驗方法................................................................. 58
3-1-4-2 擴大研究電極間距對於電容大小之影響............. 59
3-1-5 設定電極厚度對於指叉式電容生物感測器之分析範圍.... 60
3-1-5-1 實驗方法................................................................. 60
3-1-5-2 擴大研究電極厚度對於電容大小之影響............. 61
3-1-6 設定電極交叉長度對於指叉式電容生物感測器之分析範圍
.................................................................................................................. 62
3-1-6-1 實驗方法................................................................ 62
3-1-6-2 擴大研究電極交叉長度對於電容大小之影響.... 63
3-1-7 ADS模擬軟體之簡介與設計步驟........................................ 64
3-1-7-1 ADS模擬軟體之簡介............................................. 64
3-1-7-2 ADS軟體模擬之設計步驟..................................... 67
3-2 指叉式電容感測器進行最佳化分析............................................... 72
3-2-1實驗背景................................................................................. 72
3-2-2實驗目的................................................................................. 74
3-2-3實驗方法與步驟..................................................................... 74
3-2-4田口設計分析實驗................................................................. 82
第四章 實驗結果與討論......................................................................... 86
4-1指叉式電極之單一幾何參數與電容大小之設計範圍.................... 86
4-1-1 指叉式電極寬度與電容大小之實驗結果............................ 86
4-1-2 指叉式電極間距與電容大小之實驗結果............................ 89
4-1-3 指叉式電極厚度與電容大小之實驗結果............................ 91
4-1-4 指叉式電極交叉長度與電容大小之實驗結果.................... 94
4-1-5 指叉式電極幾何參數之設計範圍與討論............................ 96
4-2指叉式電容感測器最佳化分析結果與討論.................................... 103
4-2-1田口分析法之因子效應分析與最佳化預測......................... 103
4-2-2指叉式電容感測器進行最佳化之分析討論......................... 107
4-3 考慮現有製程設計之討論............................................................... 111
4-4 加上生物待測物之靈敏度比較....................................................... 113
4-4-1實驗方法................................................................................. 113
4-4-2 實驗結果................................................................................ 114
4-5 指叉式電容性生物感測器用於實際應用之分析比較................... 120
4-5-1實驗方法................................................................................. 121
4-5-2 實驗結果................................................................................ 122
第五章 結論與未來展望......................................................................... 127
5-1 結論.................................................................................................... 127
5-2 未來展望............................................................................................ 129
參考文獻................................................................................................... 130
參考文獻 [1] 姚守拙,2006,化學與生物感測器,化學工業出版社。
[2] 台灣大學生物產業機電工程學系,生命科學與機電教學資料。
    20011年7月2日取自:http:// http://140.112.94.11/~dsfon/LifeScience/lifesci.htm 
[3] John F. Kennedy., Nahid Turan., “Immobilized Biomolecules in Analysis: A Practical Approach”, Tony Cass & Frances S. Ligler (Eds.), (2004), 117-118.
[4] T. A. P. Biosensor sense and sensitivity. Science, 290, (2000), 1315-1317.
[5] 吳宗正,1996,生物感測器,生物技術,九州出版社,p24~27。
[6] 張怡南,2000,生物感測器,生物技術的發展與應用,九州出版社,p303~320。
[7] 物理雙月刊廿八卷四期,2006,p704-710。
[8] L. Rayleigh, Proc. London Math. Soc. 17, (1885).
[9] P. T. Kissinger., William R. Heineman, “Cyclic Voltammetry” Journal of Chemical education, 60﹐(1983), 702-706.
[10] H. G. L. Coster, Terry C. Chilcott, Adelle CF. Coster, “Impedance spectroscopy of interfaces, membranes and ultrastructures”, Bioelectrochemistry and Bioenergetics, 40, (1996), 79-98.
[11] A. Abdelghani, C. A. Jacquin, H. Hillebrandt, E. Sackmann, “Cell-based biosensors for inf lammatory agents detection”, Materials Science and Engineering, C 22, (2002), 67-72.
[12] X. Cui, D. Jiang, D. Jiang, P. Diao, J. Li, “Electrochemical studies for the formation of sodium lauryl sulfate monolayer on an octadecanethiol-coated gold electrode”, Colloids and Surfaces A:Physicochemical and Engineering Aspects,175, (2000), 141-145.
[13] A. Amirudin, D. Thierry, “Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals”, Progress in Organic Coatings, 26, (1995), 1-28.
[14] D. Savitri, C. K. Mitra, “Modeling the surface phenomena in carbon paste electrodes by low frequency impedance and double-layer capacitance”, Bioelectrochemistry and Bioenergetics, 48, (1999), 163-169.
[15] W. Jing, E. Wang, “Paint-freeze method to from self-assembled Alkanethiol /phospholipid bilayers on gold”, Analytical Sciences, 14, (1998), 117-120.
[16] C. Tlili, K. Reybier, L. Ponsonnet, C. Martelet, H. B. Ouada, M. Lagarde, and N. J. Renault, “Fibroblast cells:a sensing bioelement for glucose detection by impedance spectroscopy”, Analytical Chemistry, 75, (2003), 3340-3344.
[17] 吳浩青,2001,電化學動力學,科技圖書出版社。
[18] H. A. Pohl , Dielectrophoresis , Cambridge University Press, Cambridge, (1978).
[19] 20011年7月2日取自:http://www.ibmm.informatics.bangor.ac.uk
[20] X. B. Wang, Y. Huang, F. F. Becker, P. R. C. Gascoyne, “A Unified Theory of Dielectrophoresis and Travelling Wave Dielectrophoresis,” Journal ofPhysics D: Applied Physics, 27, (1994), 1571-1574.
[21] W. Xuejiang., S. V. Dzyadevych., J. M. Chovelon., M. J. Renault., C. Ling., X. Siqing., Z. Jianfu., “Conductometric nitrate biosensor based on methylviologen/Nafion/nitrate reductase interdigitated electrodes”, Talanta, 69, (2006), 450-455.
[22] W. Qu., W. Wlodarski., “A thin-film sensing element for ozone, humidity and Temperature”, Sensors and Actuators B, 64, (2000), 42-48.
[23] K. Arshak., I. Gaidan., “Development of a novel gas sensor based on oxide thick films”, Materials Science and Engineering B, 118, (2005), 44-49.
[24] G. Xie., J. Yu., X. Chen., Y. Jiang., “Gas sensing characteristics of WO3 vacuum deposited thin films”, Sensors and Actuators B, 123, (2007), 909-914.
[25] N. A. L., Hunter, K.W., Stanbro, W.D.. The capacitive affinity sensor: a new biosensor, in: Proceedings of the Second International Meeting on Chemical Sensors, Bordeaux, France, July 7–10, (1986), 596–598. 
[26] R. F. Taylor, I.G. Marenchic, R.H. Spencer, Anal. Chim. Acta 249, (1991), 67.
[27] C. Berggren G. Johansson, Anal. Chem 69, (1997), 3651.
[28] C. Berggren, B. Bjarnason, G. Johansson, Biosens. Bioelectron 13, (1998), 1061.
[29] S. Ameur, C. Martehet, N. Jaffrezic-Renault, J.M. Chovelon, C. Plossu, D. Barbier, Proc. Electrochem. Soc 19, (1997), 1019.
[30] A. Gebbert, M. Alvarez-Icaza, W. StoÈcklein, R.D. Schmid, Anal. Chem 64, (1992), 997.
[31] A. Gebbert, M. Alvarez-Icaza, H. Peters, V. JaÈger, U. Bilitewski, R.D. Schmid, J. Biotech 32, (1994), 213.
[32] H. Maupas, A.P. Soldatkin, C. Martelet, N. Jaffrezic-Renault, B. Mandrand, J. Electroanal. Chem, 421, (1997), 165.
[33] S. Ameur, H. Maupas, C. Martelet, N. Jaffrezic-Renault,H. Ben Ouada, S. Cosnier, P. Labbe, Mater. Sci. Eng. C, 5, (1997), 111.
[34] H. U. Meyer, ”An integrated capacitive position sensor” , IEEE Trans. Instrument Meas., 45, (1996), 521-525.
[35] G. Brasseur, “A capacitive 4-turn angular-position sensor”, IEEE Trans. Instrument Meas., 47, (1998), 275-279.
[36] T. Fabian and G. Brasseur, “A robust angular speed sensor”, IEEE Trans. InstrumentMeas., 47, (1998), 280-284.
[37] X. Li and G. C. M. Meijer, “A new method for the measurement of low speed using amultiple-electrode capacitive sensor”, IEEE Trans. Instrument. Meas., 46, (1997), 636-639.
[38] T. Fabin and G. Brasseur, ”A measurement algorithm for capacitive speed encoder with a modified front-end topology”, IEEE Trans. Instrument Meas., 47, (1998), 1341-1345.
[39] F. N. Toth, C. M. Meijer, and M. van der Lee, “A planar capacitive precision gauge for liquid-level and leakage detection”, IEEE Trans. Instrument Meas., 46, (1997), 644-646.
[40] K. Mochizuki, T. Masuda, and K. Watanabe, “An interface circuit for high accuracy signal processing of differential-capacitance transducers”, IEEE Trans. Instrument Meas., 47, (1998), 823-827.
[41] G. A. Bertone, Z. H. Meiksin, and N. L. Carroll, “Investigation of a capacitance-based displacement transducer”IEEE Trans. Instrum. Meas., 39, (1990), 424-428.
[42] A. Fertner and A. Sjolund, “Analysis of the performance of the capacitive displacement transducer”, IEEE Trans. Instrum. Meas., 38, (1989), 870-875.
[43] J. D. Garratt, “Survey of displacement transducer below 50 mm”, J. Phys. E, Sci. Instrum., 12, (1979), 563-573.
[44] L. Michelson, “Greater precision for noncontact sensors”, Mach. Des., (1979), 117-121.
[45] B. E. Noltingk, “A novel proximity gauge”, J. Sci. Instrum., 2, 2, (1969), 356-360.
[46] D. P. Poenar, Ciprian Iliescu b,1,” Glass-based microfluidic device fabricated by parylene wafer-to-wafer bonding for impedance spectroscopy”, Sensors and Actuators A, 139, (2007), 162–171.
[47] L. Yu Li, Wei Fen Jiang, Shun Hua Xiao,Yong Fen Dong, Hui Fang Ji, Xin Jian Li,”Effect of electrode configuration on capacitive humidity sensitivity of silicon nanoporous pillar array”, PhysicaE41, (2009), 621–625. 
[48] S. K. Clark and K.D. Wise, “Pressure sensitivity in anisotropically etched 
    thin-diaphragm pressure sensors,” IEEE Transactions on Electron Devices, 26, (1979), 1887-1896.
[49] W. P. Eaton and J.H. Smith, “Micromachined pressure sensors: review and 
    recent developments,” Smart Master., Struct. 6, (1997), 530-539.
[50] Y R zhao, A P Shi, G Q Chen, Y Y Chang, Z Hang and B M Liu, New Type Multielectrode Capacitance Sensor for Liquid Level, Journal of Physics: Conference Series, 48, (2006), 223–227.
[51] E. R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K., Wolf, B.,. Monitoring of cellular behavior by impedance measurements on interdigitated electrode structures. Biosens. Bioelectrons. 12, 1, (1997), 29–41.
[52] M. Morita, O. Niwa, T. Horiuchi, Interdigitated array microelectrodes as electrochemical sensors, Electrochim. Acta, 42, (1997), 3177–3183.
[53] P. van Gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M.O.D. Beeck, K. Baert, J. Suls,W. Sansen, P. Jacobs, L. Hermans, R. Mertens, Nanoscaled interdigitated electrodes array for biochemical sensors, Sens. Actuators B, 49, (1998), 73–80.
[54] K. A., Yavuz, H., Odabasi, M., Denizli, A,. Human serum albumin chromatography by Cibacron Blue F3GA-derived microporous polyamide hollow-fiber affinity membranes. Journal of Chromatography B, 746, (2000), 123–132.
[55] Z. Z., Kai, J., Rust, M.J., Han, J., Ahn, C.H., Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sensors and Actuators A, 136, (2007) 518–526.
[56] E. R., Baumann, W., Brischwein, M., Schwinde, A., Wolf, B., On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures. Med. Biol. Eng. Comput. 36, (1998), 365–370.
[57] Y. Wang, N. Chong, Y. L. Cheng, H. L. W. Chan, and C. L. Choy,"Dependence of capacitance on electrode configuration for ferroelectric films with interdigital electrodes," Microelectronic Engineering, 66, (2003), 880-886.
[58] A. A Nassr, Wael H Ahmed and Wael W El-Dakhakhni, "Coplanar capacitance sensors for detecting water intrusion in composite structures” Measurement Science and Technology, 19, (2008), 75702.
[59] F. Starzyk, “Parametrisation of interdigit comb capacitor for dielectric impedance spectroscopy” Archives of Materials Science and Engineering, 34, 1, (2008), 31-34.
[60] J. H., Dae Sung YOON1y, Myung-Il PARK, Jongwan CHOI, Tae Song KIM1,” A Dielectric Biosensor Using the Capacitance Change with AC Frequency Integrated on Glass Substrates”, Japanese Journal of Applied Physics, 43, 8A, (2004), 5639–5645.
[61] A.V. Mamisheva,*, Parameter estimation in dielectrometry measurements, Journal of Electrostatics, 56, (2002), 465–492.
[62] Z. C. and Ren C. Luo, Fellow, IEEE, Design and Implementation of Capacitive Proximity Sensor Using Microelectromechanical Systems Technology, IEEE Trans, 45, 6, (1998).
[63] A.V. Mamishev, M. Zahn, B.C. Lesieutre, B.A. Berdnikov/ Influence of geometric parameters on characteristics of an interdigital sensor, in: IEEE Conference on Electrical Insulation and Dielectric Phenomena, San Francisco, CA, October (1996), 550–553.
[64] B.C. Lesieutre, A.V. Mamishev, Y. Du, E. Keskiner, M. Zahn and G.C. Verghese , Forward and inverse parameter estimation algorithms of interdigital dielectrometry sensors. IEEE Trans. Dielectrics. Insul. 8, (2001), 577-588.
[65] Tunability and Calculation of the Dielectric Constant of Capacitor H.N. AL-SHAREEF, Structures with Interdigital Electrodes, Journal of Electroceramics 1, 2, (2007), 145-153.
[66] P. Wang, C. Y. Tan, Analysis of conductor loss in interdigital capacitor based measurement of dielectric constant of ferroelectric thin film, Microwave and Optical Technology Letters, 50, 3, (2008).
[67] R. H. Bhuiyan, Roger A. Dougal, Senior Member, IEEE, and Mohammod Ali, Senior Member, IEEE, Proximity Coupled Interdigitated Sensors to Detect Insulation Damage in Power System Cables, IEEE Sensors Journal, 7, 12, (2007).
[68] A. V. Mamishev, Member, IEEE, "Interdigital Sensors and Transducers", Proceedings of the IEEE, 92, 5, (2004).
[69] A. V. Mamishev, "Interdigital Dielectrometry Sensor Design and Parameter Estimation Algorithms for Nondestructive Materials Evaluation," Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, (1999).
[70] R. Igreja, C.J. Dias, Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure, Sensors and Actuators A, 112, (2004), 291-301.
[71] R. Igreja, C.J. Dias, Dielectric response of interdigital chemocapacitors: The role of the sensitive layer thickness, Sensors and Actuators B, 115, (2006), 69-78.
[72] M. W. den Otter, Approximate expressions for the capacitance and electrostatic potential of interdigitated electrode, Sensors and Actuators A, 96, (2002), 140-144. 
[73] R. Matsuzaki , Akira Todoroki, Wireless flexible capacitive sensor based on ultra-flexible epoxy resin for strain measurement of automobile tires, Sensors and Actuators A, 140, (2007), 32-42.
[74] M. Kitsara a, D. Goustouridis a, S. Chatzandroulis a, M. Chatzichristidi a, Single chip interdigitated electrode capacitive chemical sensor arrays, Sensors and Actuators B, 127, (2007), 186-192.
[75] M. Varshneya, Interdigitated array microelectrode based impedance biosensors for detection of bacterial cells, Biosensors and Bioelectronic, 24, (2009), 2951-2960.
[76] F. A. Jr., D. T. Price., and S. Bhansali., Optimization of Interdigitated Electrode (IDE) Impedance Based Evaluation of Hs 578T Cance Cells, International Conference on Electrical Bioimpedance, 224, (2010), 012134.
[77] 鄭燕琴,1993,田口品質工程技術理論與實務,中華民國品質管制學會。
[78] P. M. S., Quality Engineering Using Robust Design ,AT & T Bell Laboratories, (1985).
[79] 鍾清章等,1994,品質工程(田口方法),中華民國品質學會。
[80] 蘇朝敦,2002,品質工程,中華民國品質學會。
[81] D. C. Montgomery, Introduction to Statistical Quality Control 5th edition, JohnWiley & Sons, Inc, (2005).
[82] 鄭崇義,2000,田口品質工程技術理論與實務,中華民國品質學會。
[83] C. K. Yang, J. S. Chang, S. D. Chao, and K. C. Wu, Appl. Phys. Lett. 91, (2007), 113904.
[84] S. T., and C. L. Brooks, III. Charge screening and the dielectric constant of proteins: insights from molecular dynamics. J. Am. Chem. Soc, 118, (1996), 8452– 8458.
[85] S. Uno, Mami Iio, Hiroaki Ozawa, and Kazuo Nakazato. Full Three-Dimensional Simulation of Ion-Sensitive Field-Effect Transistor Flatband Voltage Shifts Due to DNA Immobilization and Hybridization. Japanese Phys, 49, (2010).
[86] S. E. C.; Bono, S. J.; Shields, G. C. Further quantum mechanical evidence that difluorotoluene does not hydrogen bond. J. Phys. Chem. B, 105, (2001), 8445−8451.
[87] B. F. F. et al. Separation of human breast-cancer cells from blood by differential dielectric affinity. Proc. Natl Acad. Sci. USA, 92, (1995), 860–864.
[88] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides. "New Approaches to Nanofabrication: Molding, Printing, and Other Techniques". American Chemical Society, 105, (2005), 1171–1196.
[89] Sanjv Electronic,技術交流--被動元件產品及技術發展趨勢2,來源http:// www.sanjv.com/
[90] M. Brischwein, S. Herrmann, W. Vonau, F. Berthold, H. Grothe, E. R. Motrescu and B. Wolf. "Electric cell-substrate impedance sensing with screen printed electrode structures". The Royal Society of Chemistry, 6, (2006), 819-822.
[91] C. A. Galan-Vidal, J. Munoz, C. Dominguez, S. Alegret. "Chemical sensors, biosensors and thick-film technology". Trends in analytical chemistry 14, 5, (1995).
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2011-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡