博碩士論文 965401001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.90.45.27
姓名 林貴城(Kuei-cheng Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
(The Implementation on Low Voltage Self-Bias Mixer and High-Linearity Power Amplifier for 5-GHz Band CMOS RF Front-End)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製
★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製
★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製★ 應用於 5-11 GHz寬頻低雜訊放大器與5 GHz/11 GHz雙頻低雜訊放大器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 因為互補式金氧半導體(CMOS)製程技術的進步,滿足了低功耗與高整合度的需求,適用於多頻帶射頻(RF)收發器設計。CMOS射頻收發器已被廣泛應用於消費性產品和無線通訊系統。現今,節能設計機制在CMOS射頻收發器的設計需求變得非常重要,相關研究議題如下:第一、射頻收發器各子電路為了實現低功耗和低電壓的設計需求,其電路將會面臨架構創新的重要問題。隨著低耗電、低電壓需求,傳統的雙平衡式混波器(double-balanced mixer)電路為堆疊架構,將無法正常操作,必須選擇其他電路架構以滿足低電壓操作,例如折疊架構。第二、CMOS製程所提供被動元件損耗較大,將會增加功耗來維持電路效能。整合被動元件(integrated passive device: IPD)製程採用玻璃基板,適合用來實現低損耗被動元件,透過覆晶轉接(Flip-chip)來與CMOS主動元件整合,成為系統封裝SiP來實現高效能特性。第三、功率放大器大多操作在高輸出功率範圍,來驅動無線通訊發射器的天線。功率放大器操作在此範圍通常是非線性的,在輸出節點處會產生嚴重失真。通常,在線性功率控制上,採功率直接調降(power back-off)的方式以滿足線性度要求,基本上會降低功率增加效率(power added efficiency: PAE)。為了改善此現象,使用線性化技術以滿足線性度和PAE的要求。本篇論文主要聚焦在應用於5 GHz射頻電路之低電壓自偏壓式混頻器與高線性化功率放大器之設計與研製。在混波器方面,電路設計概念主要以低電壓操作之應用,並以高轉換增益(conversion gain)、良好線性度與較佳隔離度等方向作為設計目標。在功率放大器方面,電路設計概念主要使用後失真線性化技術(post-distortion)以提升線性輸出功率、效率與低誤差向量幅度等方向作為設計目標。
第二章提出一顆低電壓、低功率消耗操作之自偏壓式技術應用於交流耦合折疊開闢式混頻器(AC-couple folded switch mixer)並以台積電(Taiwan Semiconductor Manufacturing Company, tsmcTM)90奈米CMOS製程研製而成。在低供應電壓操作下,此混波器可以獲得良好的輸入三階截斷點(input third-intercept point: IIP3)及轉換增益。在供應電壓為0.7 V時,整體電路之最佳性能指數(Figure of Merit : FOM)經由計算可達到15.5。將此混波器與差動對低雜訊放大器、多相濾波器(poly-phase filter)組成一5-6 GHz射頻前端直接降頻接收器,在供應電壓為1 V操作下,實際量測後可獲得26 dB之轉換增益與2.7 dB之雜訊指數。隔離度與輸入三階截斷點分別為50 dB與-12 dBm。
第三章是介紹使用一整合被動元件(IPD)的薄膜製程來降低放大器的雜訊指數,目標為降低射頻前端接收機裡第一級低雜訊放大器的雜訊指數,以改善接收機靈敏度。利用覆晶(flip-chip)的封裝技術垂直整合了CMOS 0.18 m與IPD兩種製程技術,實現了一個CMOS與IPD製程之低雜訊放大器設計,相較於使用全積體化的低雜訊放大器,雜訊指數可以改善0.6 dB,整體電路之最佳性能指數可達到16.72。
第四章實現一阻抗轉換比為1:4 IPD figure 8 功率結合變壓器應用於CMOS之功率放大器,功率結合變壓器設計採用IPD製程來設計,達到高功率輸出特性。在放大器的偏壓電路選擇可適性偏壓,可達到增益延伸與提升線性度,且不會產生額外的功率消耗。此放大器可達飽和輸出功率28 dBm、最大功率增進效率(PAE)為25 %。相較於使用全積體化的CMOS變壓器相比,可提升輸出功率1.3 dB、PAE為6 %。
第五章提出一個使用後失真線性化技術的功率放大器,當開啟後失真線性化技術時,可以在1 dB壓縮點改善輸出功率,其1 dB壓縮點輸出功率與飽和輸出功率僅差0.2 dB。與未開啟後失真線性化技術時做比較,其放大器可以改善線性輸出功率2.3 dB。另外,在功率放大器裡的射頻扼流圈(RF choke)採用晶片級bondwire螺旋電感。在5GHz頻率,此電感的品質因數是32,比晶片型螺旋電感的品質因數高出3倍。應用於此線性化功率放大器可以分別改善1.6 dB輸出功率以及7.3 % PAE,最後在第六章做一個總結。
摘要(英) Since the advantage of CMOS technology satisfies the requirements of the low power consumption and high integration level in multi-GHz radio frequency (RF) transceiver designs, RF CMOS transceiver has been popularly applied in consumer products and wireless communications. Nowadays, the demand of green-power design mechanism in CMOS RF transceiver design becomes important, and the related research topics are listed as following. First, the design goals for low-power and low-voltage performances are always the critical issue to innovate for RF transceiver blocks. Conventional Gilbert cell mixer with three- cascode stages is difficult to keep all transistors operating in saturation region under low-voltage. The low-voltage operation requires modified circuit architecture, such as the folded-switch topology has been proposed to reduce the supply voltage and power consumption. Second, the passive device in CMOS process has high insertion loss which increases the power consumption to maintain circuit performance. The integrated passive devices (IPD) technology with glass substrate reduces the loss of substrate to improve the efficiency of RF circuits. The CMOS and IPD chips are assembled by flip-chip technology, which achieves high efficiency RF system-in-a-package (RF-SiP) wireless product. Finally, power amplifier (PA) is used to provide high output power to drive the antenna of a transmitter in wireless communications. PA usually operates in high non-linearity region which produces serious distortion at the output node. In practice, PA is operated at power back-off mode to meet the linearity requirement that substantially degrades power added efficiency (PAE). The linearization technique is required to meet the linearity and PAE specifications. This thesis primarily targets at the design and implementation of low voltage self-bias mixer and high-linearity PA for 5 GHz band CMOS RF front-end. The design goals of the mixer are low voltage operation, high conversion gain (CG), high linearity, and high port-to-port isolations. The PA design uses a post-distortion linearizing technique to achieve high linear output power, high PAE and low error vector magnitude (EVM).
In the thesis, Chapter 2 proposes an AC-coupling folded-switch double balanced mixer (DBM) that uses a novel low-voltage, low power self-bias current reuse technique in taiwan semiconductor manufacturing company (tsmcTM) standard 90 nm CMOS technology. At low supply voltage operation, the proposed DBM obtains good third-order intermodulation intercept point (IIP3) and CG at 5 GHz band. At the supply voltage of 0.7 V, the mixer achieves the best figure of merit (FOM) of 15.5 at 5 GHz band. Two designed mixers are combined with a differential low noise amplifier (DLNA), a poly-phase filter, and two buffer amplifiers to form a 5-6 GHz direct-conversion receiver (DCR) architecture. The DCR achieves a CG of 26 dB with a noise figure (NF) of 2.7 dB from a 1 V supply voltage. The port-to-port isolations are better than 50 dB. The IIP3 of the DCR is -12 dBm.
The first stage of a DCR is typically low noise amplifier (LNA) and requests a minimum NF to improve the sensitivity of the receiving chain. Chapter 3 adopts a thin-film process of integrated passive device (IPD) technology which improves the NF of LNA. Our design combines standard 0.18 m CMOS process, IPD and flip-chip package technologies with a vertical heterogeneous integration to achieve a CMOS-IPD LNA. This fully integrated LNA improves an NF of 0.6 dB as compared to as compared to its counterpart without IPD. The CMOS-IPD LNA achieves the FOM of 16.72 at 5.2 GHz band.
Chapter 4 presents a CMOS-IPD PA which uses an impedance transformation ratio of 1:4. The 1:4 figure 8 power-combining transformer was also fabricated using IPD process to achieve high output power level. The PA uses an adaptive bias linearizer that extends the power gain and improves the linearity without extra power. This PA provides a saturation output power of 28 dBm and a PAE of 25 %. The CMOS-IPD PA improves the output power and PAE of 1.3 dB and 6 %, respectively, as compared to its counterpart without IPD.
Chapter 5 presents a 5 GHz CMOS PA using post-distortion linearizing technique. When the linearizer is turned on, the proposed PA improves the output power at 1 dB gain compression point (OP1dB). Only 0.2 dB discrepancy between the output P1dB and saturated output power is observed. The output P1dB of the PA with post-distortion linearizier is improved by 2.8 dB as compared to its counterpart without linearizer. Furthermore, the RF choke in the PA uses a wafer-level bondwire spiral inductor (BSL). The BSL achieves a Q of 32 which is three times higher than that of a conventional CMOS standard spiral inductor at 5 GHz. The output power and PAE of the PA with wafer-level BSL are improved by 1.6 dB and 7.3 % as compared to those of the fully integrated CMOS PA. Finally, Chapter 6 draws a brief conclusion.
關鍵字(中) ★ 雙平衡式混波器
★ 折疊架構
★ 自偏壓式技術
★ 整合被動元件
★ 功率放大器
★ 後失真線性化技術
關鍵字(英) ★ Gilbert cell mixer
★ folded-switch topology
★ self-bias current reuse technique
★ integrated passive devices
★ power amplifier
★ post-distortion
論文目次 中文摘要 i
Abstract iv
致謝 vii
Contents viii
List of Figure xi
List of Tables xiv
Chapter 1 Introduction 1
1.1. Motivation 1
1.2. Dissertation Contribution 6
1.3. Dissertation Overview 8
Chapter 2 Low Voltage Self-Bias Folded-Switch Mixer for Frond-end Receiver 9
2.1. Introduction 9
2.2. Recently Published Active Mixers 11
2.3. Self-bias Current Reuse Technique and AC-coupling Folded-switch Mixer for 5-GHz Receive 13
2.3.1. Principle of Mixer Design 13
2.3.2. Conversion Gain, Noise Figure and Linearity 15
2.3.3. RF Transconductance for Low Voltage Operation 18
2.3.4. Differential Variable Gain Low Noise Amplifier 23
2.3.5. Poly-phase Filter 23
2.4. Measurement Results 25
2.4.1. Low-Voltage AC-coupling Folded-switch DBM 25
2.4.2. 5-GHz Receiver Front-End 31
2.5. Summary 35
Chapter 3 A Low Noise Figure Low Noise Amplifier Integrating CMOS and IPD Technologies 36
3.1. Introduction 36
3.2. CMOS-IPD DLNA Design 37
3.2.1. Design Flow of the CMOS-IPD Process 37
3.2.2. DLNA Design 39
3.3. Measurement Results 43
3.4. Summary 49
Chapter 4 A CMOS Power Amplifier Using IPD Power-Combining Transformer 50
4.1. Introduction 50
4.2. CMOS-IPD PA Design 51
4.2.1. CMOS-IPD Transformer Design 51
4.2.2. Power Amplifier Design 53
4.3. Measurement Results 55
4.4. Summary 60
Chapter 5 A CMOS Power Amplifier Using Post-distortion Linearizer 62
5.1. Introduction 62
5.2. CMOS PA Design 64
5.2.1. Design of Wafer-level Bondwire Spiral Inductor (BSL) 64
5.2.2. Post-distortion Linearization Technique 68
5.2.3. 5-GHz Power Amplifier with Linearizer 70
5.3. Measurement Results 73
5.4. Summary 78
Chapter 6 Conclusion & Future Work 79
6.1. Conclusion 79
6.2. Future Work 81
Reference 82
Publication List 92

參考文獻 [1] B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Sys. II, vol. 44, no. 6, pp. 428-435, Jun. 1997.
[2] A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1399-1410, Dec. 1995.
[3] I. Vassiliou, K. Vavelidis, T. Georgantas, S. Plevridis, N. Haralabidis, G. Kamoulakos, C. Kapnistis, S. Kavadias, Y. Kokolakis, P. Merakos, J. C. Rudell, A. Yamanaka, S. Bouras, and I. Bouras, “A single-chip digitally calibrated 5.12-5.825GHz 0.18um CMOS transceiver for 802.11a wireless LAN,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2221-2231, Dec. 2003.
[4] P. Zhang, T. Nguyen, C. Lam, D. Gambetta, T. Soorapanth, B. Cheng, S. Hart, I. Sever, T. Bourdi, A. Tham, and B. Razavi, “A 5 GHz direct conversion CMOS transceiver,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2232-2238, Dec. 2003.
[5] M. -Y. Lee, C. -Y. Jeong, C. Yoo, and Y. -H. Kim, “Fully-integrated CMOS direct-conversion receiver for 5 GHz wireless LAN, “Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2007, pp. 201-204.
[6] C. -C. Huang, W. -T. Chen, and K. -Y Chen, “High efficiency linear power amplifier for IEEE 802.11g WLAN applications, “IEEE Microw.Wireless Compon. Lett., vol. 16, no. 9, pp. 508-510, Sep. 2006.
[7] J. Nam, J. Shin, and B. Kim, “Load modulation power amplifier with lumped-element combiner for IEEE 802.11b/g WLAN applications,” Electronics Letters, vol. 42, no. 1, pp. 32-33, Jan. 2006.
[8] W. Feipeng, D. F. Kimball, D. Y. Lie, P. M. Asbeck, and L. E. Larson, “A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier , ” IEEE J. Solid-State Circuit, vol. 42, no. 6, pp. 1271-1281, Jun. 2007.
[9] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer - a new power-combining and impedance-transformation technique, ” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316-331, Jan. 2002.
[10] G. Liu, P. Haldi, T.-J. K. Liu, and A. M. Niknejad, “Fully integrated CMOS power amplifier with efficiency enhancement at power back-off ”, IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 600-609, Mar. 2008.
[11] J. N. Burghartz, “Progress in RF inductors on silicon—understanding substrate losses,” IEEE International Electron Devices Meeting (IEDM) Tech. Dig., 1998, pp. 523-526.
[12] M. Soyuer, J. N. Burghartz, K. A. Jenkins, S. Ponnapalli, J. F. Ewen, and W. E. Pence, “Multilevel monolithic inductors in silicon technology,” Electronics Letters, vol. 31, no. 5, pp. 359-60, Mar. 1995.
[13] J. N. Burghartz, K. A. Jenkins, and M. Soyuer, “Multilevel-spiral inductors using VLSI interconnect technology,” IEEE Electron Device Letters, vol. 11, no. 9, pp. 428-430, Sep. 1996.
[14] J. M. L. Villegas, J. Samitier, C. Cane, and P. Losantos, “Improvement of the quality factor of RF integrated inductors by layout optimization,” IEEE Radio Freq. Integr. Circuits Symp. Dig., 1998, pp. 169-172.
[15] C. -C. Tang, C. -H. Wu, and S. -I. Liu, “Miniature 3-D inductors in standard CMOS process,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 471-480, Apr. 2002.
[16] C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE Trans. Electron Devices, vol. 47, no. 3, pp. 560-568, Mar. 2000.
[17] X. Guan, Y. Jin, and C. Nguyen, “Design of high-performance compact CMOS distributed amplifiers with on-chip patterned ground shield inductors,” Electronics Letters , vo1. 45, no. 15, pp. 791-792, Jul. 2009.
[18] V. Govind, S. Dalmia, and M. Swaminathan, “Design of integrated low noise amplifier (LNA) using embedded passives in organic substrates,” IEEE Trans. Advanced Packaging, vol. 27, no. 1, pp. 79-89, Feb. 2004.
[19] A. C. Kundu, M. Megahed, and D. Schmidt, “Comparison and analysis of integrated passive device technologies for wireless radio frequency module,” IEEE Electronic Components and Technology Conference, 2008, pp. 683-687.
[20] C. -M. Tai and C. -N. Liao, “Multilevel suspended thin-film inductors on silicon wafers,” IEEE Transactions on Electron Devices, vol. 54, no. 6, pp. 1510-1514, Jun. 2007.
[21] R. R. Tummala, “SOP: what is it and why? a new microsystem-integration technology paradigm-Moore’s law for system integration of miniaturized convergent systems of the next decade,” IEEE Trans. Advanced Packaging, vol. 27, no. 2, pp. 241-249, May 2004.
[22] K. Zoschke, M. J. Wolf, M. Topper, O. Ehrmann, T. Fritzsch, K. Kaletta, F. J. Schmuckle, and H. Reichl, “Fabrication of application specific integrated passive devices using wafer level packaging technologies,” IEEE Trans. Advanced Packaging, vol. 30, no. 3, pp. 359-368, Aug. 2007.
[23] S. -M. Su, S. -M. Wu, C. -C. Lai, Y. -C. Tai, W. -Y. Lin, and S. -W. Guan, “ Analysis and modeling of IPD for spiral inductor on glass substrate,” International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2008, pp. 1274-1277.
[24] S. P. Liu, C. T. Wang, C. H. Lee, and W. Wang, “Miniaturized WiFi system module using SiP IPD for handheld device applications,” in International Conf. Microsystems, Packaging, Assembly and Circuits Technology, 2007, pp. 146-148.
[25] Y. -G. Lee, S. -K. Yun, and H. -Y. Lee, “Novel high-Q bondwire inductor for MMIC,” IEEE International Electron Devices Meeting (IEDM) Tech. Dig., 1998, pp. 548-551.
[26] S. -J. Kim, Y. -G. Lee, S. -K. Yun, and H. -Y. Lee, “Realization of high-Q inductors using wirebonding technology,” IEEE Asia Pacific Conference on ASIC (AP-ASIC), 1999, pp. 13-16.
[27] M. C. Clausen and J. McMonagle, “Advanced manufacturing techniques for next generation power FET technology,” European Gallium Arsenide and Other Semiconductor Application Symposium, 2005, pp. 1-4.
[28] D. H. Lee, J. Han, C. Park, and S. Hong, “A CMOS active balun using bond wire inductors and a gain boosting technique,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 9, pp. 676-678, Sep. 2007.
[29] H. Khatri, P. S. Gudem, and L. E. Larson, “Integrated RF interference suppression filter design using bond-wire inductors,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1024-1034, May 2008.
[30] I. Vassiliou, K. Vavelidis, and N. Haralabidis, “A 65 nm CMOS multistandard, multiband TV tuner for mobile and multimedia applications,” IEEE J. Solid-State Circuits, vol. 43, no. 7, pp. 1522-1533, Jul. 2008.
[31] F. Svelto and R. Castello, “A bond-wire inductor-MOS varactor VCO tunable from 1.8 to 2.4 GHz,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 403-407, Jan. 2002.
[32] K. -J. Kim, K. H. Ahn, and T. H. Lim, “Low phase noise bond wire VCO for DVB-H,” IEEE International Symposium on Electronic Design Test & Application, 2008, pp. 103-106.
[33] B. Razavi, RF Microelectronics, Englewood Cliffs, NJ: Prentice-Hall, 1998.
[34] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits. Cambridge University Press, 1998.
[35] B. Gilbert, “A precise four quadrant multiplier with subnanosecond response,” IEEE J. Solid-State Circuits, vol. 3, no. 4, pp. 365-373. Dec. 1968.
[36] J. C. Rudell, J. J. Ou, T. B. Cho, G. Chien, F. Brianti, J. A. Weldon, and P. R. Gray, “A 1.9 GHz wide-band IF double conversion CMOS receiver for cordless telephone applications,” IEEE J. Solid-State Circuits, vol. 32, no. 12, pp. 2071-2088, Dec. 1997.
[37] S. K. Hampel, O. Schmitz, M. Tiebout, and I. Rolfes, “Inductorless low-voltage and low-power wideband mixer for multistandard receivers,“ IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1384-1390, May. 2010.
[38] A. Karanicolas et al., “A 2.7-V 900-MHz CMOS LNA and mixer,” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1939-1944, Dec. 1996.
[39] V. H. Le, S. -K. Han, J. -S. Lee, and S. -G. Lee, “Current-Reused ultra low power, low noise LNA+mixer,“IEEE Microw. Wireless Compon. Lett., vol. 19, no. 11, pp. 755-757, Nov. 2009.
[40] K. -H. Liang and H. -Y. Chang, “0.5-6 GHz low-voltage low-power mixer using a modified cascode topology in 0.18 μm cmos technology,“ IET Microwaves, Antennas & Propagation, vol. 5, no. 2, pp. 167-174, Jan. 2011.
[41] R -L Wang, H -H Chien, C -C Chuang, C -H Liu, and Y -K Su, “A low power mixer with LC phase shifters for a single-end input ,“Asian-Pacific Microwave Conf., 2010, pp. 574-577.
[42] T. -Y. Yang, H. -L. Tu, and H. -K. Chiou, “Low-voltage high-linear and isolation transformer based mixer for direct conversion receiver,” IEEE International Symposium on Circuits and Systems, 2006, pp. 3754-3757.
[43] E. A. M. Klumperink, S. M. Louwsma, G. J. M. Wenk, and B. Nauta “A CMOS switched transconductor mixer,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1231-1240, Aug. 2004.
[44] V. Vidojkovic, J. V. D. Tang, A. Leeuwenburgh, and A. V. Roermund, “Mixer topology selection for a 1.8 - 2.5 GHz multi-standard front-end in 0.18 μm CMOS,” IEEE International Symposium on Circuits and Systems, 2003, pp. 300-303.
[45] V. Vidojkovic, J. V. D. Tang, A. Leeuwenburgh, and A. H. M. V. Roermund “A low-voltage folded-switching mixer in 0.18-μm CMOS,“ IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1259-1264 , Jun. 2005.
[46] K. -H. Liang, H. -Y. Chang, and Y. -J. Chang, “A 0.5–7.5 GHz ultra low-voltage low-power mixer using bulk-injection method by 0.18-um CMOS technology,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 7, pp. 531-533, May 2007.
[47] M. -F. Hung, C. -J. Kuo, and S. -Y. Lee, “A 5.25-GHz CMOS folded-cascode even-harmonic mixer for low-voltage applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 660-669, Feb.2006.
[48] K. Choi, D. H. Shin, and C. P. Yue, “A 1.2-V, 5.8-mW, ultra-wideband folded mixer in 0.13-μm CMOS,” IEEE Radio Freq. Integr. Circuits Symp. Dig., 2007, pp. 489-492.
[49] H. Y. Wang, K. F. Wei, J. S. Lin, and H. R. Chuang, “A 1.2-V low LO-power 3–5 GHz broadband CMOS folded-switching mixer for UWB receiver, “ IEEE Radio Freq. Integr. Circuits Symp. Dig., 2008, pp. 621-624.
[50] C. -H. Chen, P. -Y. Chiang, and C. F. Jou, “A low voltage mixer with improved noise figure,“ IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 92-94, Feb. 2009.
[51] M.T. Terrovitis and R.G. Meyer, “Noise in current-commutating CMOS mixers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 772-783, Jun. 1999.
[52] D. Manstretta, R. Castello, and F. Svelto, “Low 1/f noise CMOS active mixer for direct conversion,” IEEE Trans. Circuits Sys. II, vol. 48, no. 9, pp. 846-850, Sep. 2001.
[53] C. D. Hull and R. G. Meyer, “A systematic approach to the analysis of noise in mixer,” IEEE Trans. Circuits Sys. I, vol. 40, no. 12, pp. 909-919, Dec. 1993.
[54] H. Darabi and A.A Abidi, “Noise in RF-CMOS mixers: a simple physical model,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 15-25, Jan. 2000.
[55] J. Park, C. -H. Lee, B. -H. Kim, and B. Kim, “Design and analysis of low flicker-noise CMOS mixers for direct-conversion receiver,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4372-4380, Dec. 2006.
[56] J. C. Rudell, J. J. Ou, T. B. Cho, G. Chien, F. Brianti, J. A. Weldon, and P. R. Gray, “A 1.9 GHz wide-band IF double conversion CMOS receiver for cordless telephone applications,” IEEE J. Solid-State Circuits, vol. 32, no. 12, pp. 2071-2088, Dec. 1997.
[57] D. Manstretta, M. Brandolini, and F. Svelto, “Second-order intermodulation mechanisms in CMOS downconerters,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 394-406, Jan. 2003.
[58] B. G. Choi, S. B. Hyun, G. Y. Tak, H. T. Lee, S. S. Park, and C. S. Park, “A single transistor stack direct-conversion mixer for low-voltage low-power multi-band radios,” IT-SoC Conference, 2004, pp. 526-529.
[59] A. Karanicolas et al., “A 2.7-V 900-MHz CMOS LNA and mixer,” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1939-1944, Dec. 1996.
[60] C. Debono, et al., “A 900 MHz, 0.9 V low-power CMOS down-conversion mixer,” in Proc. IEEE Custom Integrated Circuit Conf. (CICC), 2001, pp. 527-530.
[61] C. Hermann et al., “A 0.6 V 1.6 mW transformer based 2.5 GHz downconversion mixer with 5.4 dB gain and -2.8 dBm IIP3 in 0.13 um CMOS,” IEEE Radio Freq. Integr. Circuits Symp. Dig., 2004, pp. 35-38.
[62] C. Kienmayer, M. Tiebout, W. Simburger, and A. L. Scholtz, “A low-power low-voltage NMOS bulk-mixer with 20 GHz bandwidth in 90 nm CMOS,” IEEE International Symposium on Circuits and Systems, 2004, pp. 23-26.
[63] E. Klumperink et al., “A CMOS switched transconductor mixer,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1231-1240, Aug. 2004.
[64] A. F. Tong, W. M. Lim, K. S. Yeo, C. B. Sia, and W. C. Zhou, “A scalable RFCMOS noise model,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 1009-1019, May. 2009.
[65] S. -Y. Lee, M. -F. Huang, and C. J. Kuo, “Analysis and implementation of a CMOS even harmonic mixer with current reuse for heterodyne/direct conversion receivers,” IEEE Trans. Circuits Sys. I, vol. 52, no. 9, pp. 1741-1751, Sep. 2005.
[66] J. Xie, A. Do, K. S. Yeo, C. C. Boon, “Analysis and design of RC polyphase network for quadrature signal generation in the 2.45 GHz ISM band,” Int. Symp. on Integrated Circuits, 2007, pp. 430-433.
[67] J. Kaukovuori, K. Stadius, J. Ryynanen, and K. Halonen, “Analysis and design of passive polyphase filters,” IEEE Trans. Circuits Sys. I, vol. 55, no. 10, pp. 3023-3037, Nov. 2008.
[68] Y. Wang, J. S. Duster, K. T. Kornegay, H. -M. Park, and J. Laskar, ”An 18 GHz low noise high linearity active mixer in SiGe,” IEEE International Symposium on Circuits and Systems, 2005, pp. 3243-3246.
[69] M. Krcmar, V. Subramanian, M. D. Jamal, and G. Boeck,“ High gain low noise folded CMOS mixer, ” European Conference on Wireless Technology (EuWiT), 2008, pp. 13-16.
[70] F. -C. Chang, P. -C. Huang, S. -F. Chao, and H. Wang, “A low power folded mixer for UWB system applications in 0.18-um CMOS technology,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 5, pp. 367-369, May 2007.
[71] S. K. Hampel, O. Schmitz, M. Tiebout, and I. Rolfes, “Low-voltage, inductorless folded down-conversion mixer in 65nm CMOS for UWB applications,” IEEE Radio Freq. Integr. Circuits Symp. Dig., 2009, pp. 119-122.
[72] H. Samavati, H. R. Rategh, and T. H. Lee, “A 5-GHz CMOS wireless LAN receiver front end,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 765-772, May. 2000.
[73] C. -Y. Cha, and S. -G. Lee, “A 5.2-GHz LNA in 0.35-μm CMOS utilizing inter-stage series resonance and optimizing the substrate resistance,” IEEE J. Solid-State Circuits, vol. 38, no. 4, pp. 669-672, Apr. 2003.
[74] H. -W. Chiu, S. -S. Lu, and Y. -S. Lin, “A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10-mW DC power consumption,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 813-824, Mar. 2005.
[75] A. Tanabe, K. Hijioka, H. Nagase, and Y. Hayashi, “A low power LNA using miniature 3D inductor without area penalty of passive components,” IEEE Radio Freq. Integr. Circuits Symp. Dig., 2010, pp. 315-318.
[76] D. J. Cassan and J. R. Long, “A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 427-435, Mar. 2003.
[77] V. Govind, S. Dalmia, and M. Swaminathan, “Design of integrated low noise amplifier (LNA) using embedded passives in organic substrates,” IEEE Trans. Advanced Packaging, vol. 38, no. 3, pp. 427-435, Mar. 2003.
[78] K. Itoi, M. Sato, H. Abe, H. Sugawara, H. Ito, K. Okada, K. Masu, and T. Ito, “On-chip high-Q Cu inductors embedded in wafer-level chip-scale package for silicon RF application,” IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp. 197-200.
[79] G. Banerjee, R. Bishop, K. Soumyanath, and D. J. Allstot, “A 1.4 V/5 GHz, 90-nm system-in-a-package LNA,” in IEEE Radio and Wireless Symp., 2006, pp. 35-38.
[80] G. Carchon, X. Sun, G. Posada, D. Linten, and E. Beyne, “Thin-film as enabling passive integration technology for RF SOC and SiP,” ISSCC Dig. Tech., 2005, pp. 398-399.
[81] H. K. Chen, Y. C. Hsu, T. Y. Lin, D. C. Chang, Y. Z. Juang, and S. S. Lu, “CMOS wideband LNA design using integrated passive device,” IEEE MTT-S int. Microwave Symp. Dig., 2009, pp. 673-676.
[82] Y. -C. Hsu, H. -K. Chiou, H. -K. Chen, T. -Y. Lin, D. -C. Chang, and Y. -Z. Juang, “Low phase noise and low power consumption VCO using CMOS and IPD technologies,” IEEE Trans. Components, Packaging and Manufacturing, vol. 1, no. 5, pp. 673-680, May 2011.
[83] Advanced Design System Data Manual, Agilent Technologies Inc., 2000.
[84] D. K. Shaeffer and T. H. Lee, “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” IEEE J. Solid-state Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
[85] S. -H. Lee, Y. -Z. Juang, C. -F. Chiu, and H. -K. Chiou, “A novel low noise design method for CMOS L-degeneration cascoded LNA,” in Proc. 2004 Asia-Pacific Microw. Conf., 2012, pp. 273-276.
[86] J. Borremans, P. Wambacq, C. Soens, Y. Rolain, and M. Kuijk, “Low-area active-feedback low-noise amplifier design in scaled digital CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2422-2433, Nov. 2008.
[87] H. C. Lai and Y. M. Lin, “A low noise gain-variable LNA for 802.11a WLAN,” IEEE Conf. on Electron Devices and Solid State Circuits (EDSSC), 2007, pp. 973-976.
[88] B. Park, S. Choi, and S. Hong, “A low-noise amplifier with tunable interference rejection for 3.1- to 10.6-GHz UWB systems,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 40-42, Jan. 2010.
[89] A. I. A. Galal, R. K. Pokharel, H. Kanay, and K. Yoshida, “Ultra-wideband low noise amplifier with shunt resistive feedback in 0.18μm CMOS process,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2010, pp. 33-36.
[90] D. Gangopadhyay, S. Shekhar, J. S. Walling, and D. J. Allstot, “A 1.6 mW 5.4 GHz transformer-feedback gm-boosted current-reuse LNA in 0.18μm CMOS,” IEEE International Symp. Circuits and Systems, 2010, pp. 1635-1638.
[91] D. C. Howard, L. Xiangtao, and J. D. Cressler, “A low power 1.8-2.6 dB noise figure, SiGe HBT wideband LNA for multiband wireless applications,” IEEE Bipolar/BiCMOS Circuit and Technology Meeting (BCTM), 2009, pp. 55-58.
[92] D. C. Howard, J. Poh, T. S. Mukerjee, and J. D. Cressler, “A 3-20 GHz SiGe HBT ultra-wideband LNA with gain and return loss control for multiband wireless applications,” IEEE international Midwest Symposium on Circuit and Systems (MWSCAS), 2010, pp. 445-448.
[93] C. -S. Wu, T. -Y. Lin, C. -H. Chang, and H. -M. Wu, “A ultrawideband 3-10 GHz low-noise amplifier MMIC using inductive-series peaking technique,” International Conference on Electric Information and Control Engineering (ICEICE), 2011, pp. 5667-5670.
[94] Z. Hasan-Abrar, Y. H. Chow, and Y. W. Eng, “A Low-voltage, fully-integrated (1.5-6) GHz low-noise amplifier in E-mode pHEMT technology for multiband, multimode applications,” European Microwave Integrated Circuit Conference (EuMIC), 2008, pp. 306-309.
[95] P. Haldi, D. Chowdhury, G. Liu, and A. M. Niknejad, “A 5.8 GHz linear power amplifier in a standard 90nm CMOS process using a 1V power supply,” IEEE Radio Freq. Integr. Circuits Symp. Dig., 2007, pp. 431-434.
[96] P. Haldi, G. Liu, and A. M. Niknejad, “CMOS compatible transformer power combiner ”, Electron Lett., vol. 42, no. 19, pp. 1091-1092, Sep. 2006.
[97] L. Liu, S. M. Kuo, J. Abrokwah, M. Ray, D. Maurer, and M. Miller, “Compact harmonic filter design and fabrication using IPD technology”, IEEE Trans. Components and Packaging Technologies, vol. 30, no. 4, pp. 556-562, Dec. 2007.
[98] S. P. Liu, C. T. Wang, C. H. Lee, and W. Wang, “Miniaturized WiFi system module using SiP IPD for handheld device applications”, in International Conf. Microsystems, Packaging, Assembly and Circuits Technology, 2007, pp. 146-148.
[99] K. -C. Lin, H. -K. Chiou, D. -C. Chang, and Y. -Z. Juang, “A 2.1 dB NF 5.2 GHz CMOS LNA using wafer-level integrated passive device technology with a DC power consumption of 10 mW ”, IET Microwaves, Antennas & Propagation., vol. 6, no. 11, pp. 1286-1290, Aug. 2012.
[100] P. Haldi, D. Chowdhury, G. Liu, and A. M. Niknejad, “A 5.8 GHz linear power amplifier in a standard 90nm CMOS process using a 1V power supply”, IEEE Radio Freq. Integr. Circuits Symp. Dig., 2007, pp. 431-434.
[101] Agilent Technologies [Online]. Available: http://edocs.soco.agilent.com/display/ads2009/Momentum
[102] K. -C. Lin, T. -Y. Yang, K. -Y. Chen, and H. -K. Chiou, “High efficiency open collector adaptive bias SiGe HBT differential power amplifier”, IEICE TRANS. Electronics, vol. E89-C, no. 11, pp. 1704-1707, Nov. 2006.
[103] T. Sowlati and D. M. W. Leenaerts, “A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier,” IEEE J. Solid-State Circuits, vol. 38, no. 8, pp. 1318-1324, Aug. 2003.
[104] B. Koo, Y. Na, and S. Hong , “Integrated bias circuits of RF CMOS cascode power amplifier for linearity enhancement,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 2, pp. 340-351, Feb. 2012.
[105] Y. Uchida, S. He, X. Yang, Q. Liu, and T. Yoshimasu, “5-GHz band linear CMOS power amplifier IC with a novel integrated linearizer for WLAN applications,” IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2012, pp. 240-242.
[106] B. Koo, Y. Na, and S. Hong, “Integrated bias circuits of RF CMOS cascode power amplifier for linearity enhancement,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 2, pp. 340-351, Feb. 2012.
[107] H. Jeon, K. -S. Lee, O. Lee, K. H. An, Y. Yoon, H. Kim, K. W. Kobayashi, C. -H. Lee, and J. S. Kenney, “A cascode feedback bias technique for linear CMOS power amplifiers in a multistage cascode topology,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 2, pp. 890-901, Feb. 2013.
[108] C. -C. Huang and W. -C. Lin, “A compact high-efficiency CMOS power amplifier with built-in linearizer,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 587-589, Sep. 2009.
[109] S. Aloui, B. Leite, N. Demirel, R. Plana, D. Belot, and E. Kerherve, “High-gain and linear 60-GHz power amplifier with a thin digital 65-nm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 6, pp. 2425-2437, Jun. 2013.
[110] A. Sutono, N. G. Cafaro, J. Laskar, and E. Tentzeris, “Experimental study and modeling of microwave bond wire interconnects,” IEEE Antennas and Propagation Society International Symposium, 2000, pp. 2020-2023.
[111] Steve C. Cripps, “RF Power Amplifier for Wireless Communications,” Edition 1999.
指導教授 邱煥凱(Hwann-kaeo Chiou) 審核日期 2014-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明