博碩士論文 965401021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.238.184.78
姓名 陳昌昇(Chang-Sheng Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以電容負載多重耦合線實現微型化可切換式帶通濾波器
(Miniaturized Switchable Bandpass Filter Based on Capacitive-Loaded Multicoupled Line)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了節省行動裝置中寶貴的電路面積並減少各元件間的連線與失配損耗,本研究提出四種基於電容負載多重耦合線結構的微型化可切換式帶通濾波器,以整合射頻開關與頻帶選擇濾波器。運用圖像轉換法與植入損耗法,可大幅簡化以多重耦合線組成之單刀單擲可切換式帶通濾波器的分析與合成方法。隨後並提出一個微型單刀雙擲可切換式帶通濾波器。藉由運用J型轉阻器來取代過去聯結兩訊號路徑共同接點處之四分之一波長阻抗轉換器,可使得電路尺寸大幅減小,並且可使設計方法簡化。經驗證可知,此電路在導通時具有低植入損耗,在閉止時具有良好的隔離度,且具有高線性度等特性。第二個提出的電路為其輸出埠可為單端或差動輸出的單刀雙擲可切換式帶通濾波器,為前一個單刀雙擲可切換式帶通濾波器的延伸。此時,所提出的多功能電路,可有效整合一單頻收發機中的單刀雙擲射頻開關,發射路徑濾波器,接收路徑濾波器,與平衡-非平衡轉換器。並且此電路仍具有小尺寸,低導通態植入損耗,良好的閉止態隔離度,極佳的線性度與平衡特性。接著提出單刀雙擲可切換式雙工器。其整合了單刀雙擲射頻開關與雙工器,而其中每一個訊號路徑可以單獨使用前述的單刀單擲可切換式帶通濾波器(即植入損耗法)來設計。此外,只要透過對第一個共用諧振器做改良,即可在不增加額外電路元件下,使兩組單刀雙擲可切換式雙工器並聯,而成為一個單刀四擲可切換式四工器。本研究所提出的各種具電容負載下多重耦合線可切換式帶通濾波器,經實做驗證並與其他文獻比較,確實可具有尺寸微小化與其它優良的電路特性,且將可適用於多頻多模射頻前端電路中。
摘要(英) In order to save the valuable circuit size and reduce the mismatching loss on the interconnection between components for mobile device application, in this study, four switchable bandpass filters based on multicoupled line are proposed for integration of the functions of RF switch and band selection filters. By utilizing the graph transformation technique and insertion loss method, the analysis and synthesis procedure of a fundamental single-pole-single-throw (SPST) switchable bandpass filter (BPF) are much simplified. Then, a compact single-pole-double-throw (SPDT) switchable BPF is proposed. By replacing the quarter-wavelength impedance transformer at the common junction in conventional designs with a J-inverter, the circuit size is largely reduced and the design procedure can be much simplified. In addition, low insertion loss in the on state, good isolation in the off state, and good linearity are obtained. The second design is an extension of the proposed SPDT switchable BPF, in which the output port can be designed as either single-ended or differential ones. The proposed multi-functional circuit can thus effectively integrate the SPDT RF switch, TX/RX BPFs, and balun of a single-band transceiver in one single circuit. In addition, compact circuit size, low insertion loss in the on state, good isolation in the off state; excellent linearity and good balanced performance are achieved. Then, the proposed SPDT switchable diplexer integrates the functions of SPDT RF switch and diplexer, and each signal path can be independently synthesized using the insertion loss method. In addition, by a simple modification to the common resonator, a SPQT switchable quadplexer can be achieved by the connection of two proposed SPDT switchable diplexers. Low loss, compact size, good selectivity, and high linearity are also achieved. All the proposed switchable bandpass filters based on multicoupled line feature compact size and good performances, and they can be good solutions for multi-mode, multi-band RF front end application.
關鍵字(中) ★ 帶通濾波器
★ 可切換式
★ 電容負載多重耦合線
★ 多工器
關鍵字(英) ★ Bandpass Filter
★ Switchable
★ Capacitive-Loaded Multicoupled Line
★ Multi-plexer
論文目次 Contents
論文摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables xi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 5
1.3 Contributions 7
1.4 Organization 8
Chapter 2 Analysis of Capacitive-Loaded Multicoupled Line 10
2.1 Graph-Transformation Technique for Multicoupled Line Network Analysis 10
2.1.1 Theory 10
2.1.2 Application 12
2.2 Analysis of Capacitive-Loaded Multicoupled Line Bandpass Filter with the Aid of Graph Transformation Technique 15
2.2.1 Design Procedure of the Second-Order Capacitive-Loaded Coupled-Line Bandpass Filter 15
2.2.2 Design Procedure of the Third-Order Capacitive-Loaded Multicoupled Line Bandpass Filter 17
2.3 Operation Mechanism of Switchable Capacitive-Loaded Bandpass Filter 23
2.3.1 Switchable Components Located at Filter Input and Output Stages 24
2.3.2 SPST Switchable Capacitive-Loaded Multicoupled Line Bandpass Filter 25
2.4 Summary 28
Chapter 3 Miniaturized Single-Pole Double-Throw Switchable Bandpass Filter 29
3.1 Circuit Analysis and Synthesis Procedure 29
3.2 Circuit Implementation 33
3.3 Large Signal Analysis 41
3.3.1 Non-Linear Model Simulation 41
3.3.2 Discussion on p-i-n Diodes 46
3.3.3 Measurement of large signal S-parameters 50
3.4 Discussion and Summary 52
3.4.1 Loss Analysis 52
3.4.2 Performance Comparison of the Two Signal Paths 53
3.4.3 Comparison with Related Researches 55
3.4.4 Summary 56
Chapter 4 Multi-functional SPDT Switchable Bandpass Filter 57
4.1 SPDT Switchable Bandpass Filter with Balanced Output 57
4.1.1 Circuit Analysis and Synthesis Procedure 58
4.1.2 Circuit Implementation 61
4.2 SPDT Switchable Diplexer 70
4.2.1 Circuit Analysis and Synthesis Procedure 70
4.2.2 Circuit Implementation 74
4.2.3 Performance Comparison 80
4.3 Summary 81
Chapter 5 Single-Pole Quadruple-Throw Switchable Quadplexer Using Capacitively-Loaded Multicoupled Line 82
5.1 Circuit Analysis and Synthesis Procedure 82
5.2 Circuit Implementation 86
5.3 Large Signal Analysis 91
5.4 Summary 99
Chapter 6 Conclusion 101
6.1 Conclusion 101
6.2 Future Works 103
Reference 104
Publication List 110
參考文獻 Reference
[1] Hittite Microwave Corporation (Chelmsford, MA USA), HMC231G7 GaAs MMIC SMT HIGH ISOLATION SPST SWITCH, DC - 6 GHz, https://www.hittite.com/content/documents/data_sheet/hmc231g7.pdf
[2] Skyworks Solutions, Inc., 2010, SKY13347-360LF: 0.5 – 3.0 GHz SPST Switch, 50 Ω Terminated, http://www.skyworksinc.com/uploads/documents/201393A.pdf
[3] Skyworks Solutions, Inc., 2010, AS179-92LF: 20 MHz-3.0 GHz GaAs SPDT Switch, http://www.skyworksinc.com/uploads/documents/200176G.pdf
[4] Skyworks Solutions, Inc., 2008, AS192-000: PHEMT GaAs IC High-Power SP4T Switch 0.1–2.5 GHz, http://www.skyworksinc.com/uploads/documents/200144D.pdf
[5] Infineon Technology AG (Munich, Germany), 2009, Application Note No. 175, RF CMOS SPDT Switches, BGS12xx for Applications up to 3GHz, http://www.infineon.com/dgdl/AN175.pdf?fileId=db3a30431ed1d7b2011f22d98ae321eb
[6] Infineon Technology AG (Munich, Germany), 2015, Application Guide for Mobile Communication, http://www.infineon.com/dgdl/Infineon_RPD_AppGuide_Mobile_Communication.pdf?folderId=db3a30431441fb5d01146ec76de80910&fileId=db3a304334c41e910134f6522b346704
[7] G.-L. Matthaei, “Interdigital band-pass filters,” IRE Trans. Microw. Theory Tech., vol. 10, no. 6, pp. 479–491, Nov. 1962.
[8] G. L. Matthaei, “Comb-line band-pass filters of narrow or moderate bandwidth,” Microwave J., vol. 6, pp. 82–91, Aug. 1963.
[9] G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave Filter, Impedance-Matching Networks, and Coupling Structures,” Artech House, Norwood, MA, 1980.
[10] J.-S. Hong and M. J. Lancaster, “Microstrip filters for RF-Microwave applications,” John Wiley & Sons, New York, 2001.
[11] R. J. Wenzel, “Synthesis of combline and capacitively loaded interdigital filters of arbitrary bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 19, no. 8, pp. 678-686, Aug. 1971.
[12] M.-H. Son, S.-S. Lee and Y.-J. Kim, “Low-cost realization of ISM band pass filters using integrated combline structures,” IEEE Proc. Radio and Wireless Conf. (RAWCON), pp.261-264, San Francisco, CA, USA, Sep. 10-13, 2000.
[13] O.-K. Lim, Y.-J. Kim and S.-S. Lee, “A compact integrated combline band pass filter using LTCC technology for C-band wireless applications,” Proc. 33th Europ. Microw. Conf. (EuMC), Munich, Germany, pp. 203-206, Oct. 2003.
[14] K. Huang and T. Chiu, “LTCC wideband filter design with selectivity enhancement,” IEEE Microw. Wirel. Compon. Lett., vol. 19, no. 7, pp. 452-454, Jul. 2009.
[15] C.-L. Tsai and Y.-S. Lin, “Analysis and design of new single-to-balanced multicoupled line bandpass filters using low-temperature co-fired ceramic technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3200-3208, Dec. 2008.
[16] C.-L. Tsai and Y.-S. Lin, “Analysis and design of single-to-balanced combline bandpass filters with two independently controllable transmission zeros in LTCC technology,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 11, pp. 2878-2887, Nov. 2010.
[17] C.-W. You, C.-L. Tsai and Y.-S. Lin, “On-chip single-to-balanced bandpass filters with wide upper stopband,” IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, pp.1-4, Jun 5-10, 2011.
[18] Y.-S. Lin, C.-W. You and C.-L. Tsai, “On-chip single-to-balanced multicoupled line bandpass filters with good selectivity,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3322-3330, Dec. 2011.
[19] Y.-S. Lin, J.-F. Wu, W.-F. Hsia, P.-C. Wang and Y.-H. Chung, “Design of electronically switchable single-to-balanced bandpass low-noise amplifier,” IET Microw. Antennas Propag., vol. 7, no. 7, pp. 510-517, May 2013.
[20] P. Scheele, A. Giere, S. Mueller and R. Jakoby, “Microwave switches based on tunable ferroelectric filters,” Proc. of the IEEE Radio and Wireless Symposium (RWS), pp. 591-594, Jan. 17-19, 2006.
[21] S.-F. Chao, C.-H. Wu, Z.-M. Tsai, H. Wang and C.-H. Chen, “Electronically switchable bandpass filters using loaded stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4193-4201, Dec. 2006.
[22] S.-F. Chao, C.-C. Kuo, Z.-M. Tsai, K.-Y. Lin and H. Wang, “40-GHz MMIC SPDT and multiple-port bandpass filter-integrated switches,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2691-2699, Dec. 2007.
[23] Z. M. Tsai, Y. S. Jiang, J. Lee, K. Y. Lin, and H. Wang, “Analysis and design of bandpass single-pole–double-throw FET filter-integrated switches,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1601–1610, Aug. 2007.
[24] J. Lee, R.-B. Lai, C.-C. Chen, C.-S. Lin, K.-Y. Lin, C.-C. Lin, and H. Wang, “Low insertion-loss single-pole-double-throw reduced-size quarter-wavelength HEMT bandpass filter integrated switches,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3028-3037, Dec. 2008.
[25] K. Ma, S. Mou and K. S. Yeo, “A miniaturized millimeter-wave standing-wave filtering switch with high P1dB,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 4, pp. 1505-1514, Apr. 2013.
[26] S.-F. Chao, “42 GHz MMIC SPDT bandpass filter-integrated switch using HEMT loaded coupled lines,” IET Electronics Lett., vol. 48, no. 9, pp. 505-506, Sep. 2012.
[27] C.-S. Chen, J.-F. Wu and Y.-S. Lin, “Compact single-pole-double-throw switchable bandpass filter based on multicoupled line,” IEEE Microw. Wirel. Compon. Lett.,, vol. 24, no. 2, pp. 87-89, Feb. 2014.
[28] C.-S. Chen and Y.-S. Lin, “Compact SPDT switchable bandpass filter with single and differential outputs,” Microw. Opt. Technol. Lett., vol. 57, no. 7, pp. 1705-1707, Jul. 2015.
[29] S. Srisathit, S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit and M. Chongcheawchamnan, “High isolation and compact size microstrip hairpin diplexer,” IEEE Microw. Wirel. Compon. Lett., vol. 15, no. 2, pp. 101-103, Feb. 2005.
[30] C.-F. Chen, T.-Y. Huang, C.-P. Chou and R.-B. Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1945-1952, May 2006.
[31] J.-H. Lee, N. Kidera, G. DeJean, S. Pinel, J. Laskar and M. M. Tentzeris, “A V-Band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2925-2936, Jul. 2006.
[32] S. Hong and K. Chang, “A 10–35-GHz six-channel microstrip multiplexer for wide-band communication systems,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1370-1378, Apr. 2006.
[33] C.-W. Tang and S.-F. You, “Design methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 717-723, Feb. 2006.
[34] K. Kim, T. Kim, H. Kim, D. Lee and S. Yi, “Low cost embedded duplexer implementation for WiMAX front-end module with multi-layer organic substrate,” Proc. 38th Europ. Microw. Conf. (EuMC), Amsterdam, The Netherlands, pp. 32-35, Oct. 2008.
[35] S. Sakhnenko, D. Orlenko, B. Vorotnikov, O. Aleksieiev, P. Komakha, P. Heide and M. Vossiek, “Ultra-low-profile small-size LTCC front-end module (FEM) for WLAN applications based on a novel diplexer design approach,” IEEE International Microwave Symposium (MTT-S), Boston, MA, pp.609-612, Jun 7-12, 2009.
[36] T. Yang, P.-L. Chi and T. Itoh, “Compact quarter-wave resonator and its applications to miniaturized diplexer and triplexer,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 260-269, Feb. 2011.
[37] S.-C. Lin and T.-L. Jong, “Microstrip bandpass filters with various resonators using connected- and edge-coupling mechanisms and their applications to dual-band filters and diplexers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 4, pp. 975-988, Apr. 2012.
[38] H.-W. Wu, S.-H. Huang and Y.-F. Chen, “Design of new quad-channel diplexer with compact circuit size,” IEEE Microw. Wirel. Compon. Lett.,, vol. 23, no. 5, pp.240-243, May 2013.
[39] A. Goel, B. Analui and H. Hashemi, “Tunable duplexer with passive feed-forward cancellation to improve the RX-TX isolation,” IEEE Trans. on circuits and systems—I: regular papers, vol. 62, no. 2, pp.536-544, Feb. 2015.
[40] P.-H. Deng, M.-I. Lai, S.-K. Jeng and C.-H. Chen, “Design of matching circuits for microstrip triplexers based on stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4185-4192, Dec. 2006.
[41] C.-F. Chen, T.-M. Shen, T.-Y. Huang and R.-B. Wu, “Design of multimode net-type resonators and their applications to filters and multiplexers,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 848-856, Apr. 2011.
[42] S.-J. Zeng, J.-Y. Wu and W.-H. Tu, “Compact and high-isolation quadruplexer using distributed coupling technique,” IEEE Microw. Wirel. Compon. Lett.,, vol. 21, no. 4, pp.197-199, Apr. 2011.
[43] C.-F. Chen, T.-M. Shen, T.-Y. Huang and R.-B. Wu, “Design of compact quadruplexer based on the tri-mode net-type resonators,” IEEE Microw. Wirel. Compon. Lett.,, vol. 21, no. 10, pp.534-536, Oct. 2011.
[44] M. Li, M. El-Hakiki, D. Kalim, T.-f. Kim, A. Link, B. Schumann and R. Aigner, “A fully matched LTE-A carrier aggregation quadplexer based on BAW and SAW technologies,” Proc. of the IEEE International Ultrasonics Symposium (IUS), Chicago, IL, pp. 77-80, Sep. 3-6, 2014.
[45] Y.-S. Lin, P.-C. Wang, C.-W. You and P.-Y. Chang, “New designs of bandpass diplexer and switchplexer bsed on parallel-coupled bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3417-3426, Dec. 2010.
[46] P.-C. Wang, Y.-H. Chung and Y.-S. Lin, “Novel LNA-integrated bandpass switchplexer for highly integrated RF transceiver frontend design,” Proc. of the Asia-Pacific Microw. Conf. (APMC), Kaohsiung, Taiwan, pp. 902-904, Dec. 4-7, 2012.
[47] M.-L. Chuang and M.-T. Wu, “Microstrip multiplexer and switchable diplexer with joint T-shaped resonators,” IEEE Microw. Wirel. Compon. Lett.,, vol. 24, no. 5, pp. 309-311, May 2014.
[48] S.-C. Weng, K.-W. Hsu and W.-H. Tu, “Switchable and high-isolation diplexer with wide stopband,” IEEE Microw. Wirel. Compon. Lett.,, vol. 24, no. 6, pp. 373-375, Jun. 2014.
[49] S.-C. Weng, K.-W. Hsu and W.-H. Tu, “Microstrip bandpass single-pole quadruple-throw switch and independently switchable quadruplexer,” IET Microw. Antennas Propag., vol. 8, no. 4, pp. 244-254, Mar. 2014.
[50] C.-S. Chen and Y.-S. Lin, “Single-pole double-throw switchable diplexer and single-pole quadruple-throw switchable quadplexer using capacitively loaded multicoupled line,” IET Microw. Antennas Propag., vol. 9, no. 14, pp. 1547-1557, Nov. 2015.
[51] R. Sato and E. G. Cristal, “Simplified analysis of coupled transmission line networks,” IEEE Trans. Microw. Theory Tech., vol. 18, no. 3, pp. 122–131, Mar. 1970.
[52] E. G. Cristal, “Band-pass spurline resonators,” IEEE Trans. Microwave Theory Tech., vol. MTT-14, pp. 296–297, June 1966.
[53] W.-H. Liao, C.-S. Chen and Y.-S. Lin, “Single-chip integration of electronically switchable bandpass filter for 3.5GHz WiMAX application,” IEEE MTT-S Int. Microw. Symp. Dig., pp.1368-1371, May 23-28, 2010.
[54] Skyworks Solutions, Inc., 2014, SMP1345 Series: Very Low Capacitance, Plastic Packaged Silicon PIN Diodes, Data Sheet: http://www.skyworksinc.com/uploads/documents/SMP1345_Series_200046S.pdf
, Device model:
http://www.skyworksinc.com/product.aspx?ProductID=486
[55] ROGERS CORP. 2015, RO4000® Series: High Frequency Circuit Materials, https://www.rogerscorp.com/acs/products/55/RO4350B-Laminates.aspx
[56] Double Layer PCB Process: http://us.jetpcb.com/product/product_detail.aspx?pid=24&CategoryID=6&p=0
[57] D. G. Swanson, Jr., “Narrow-band microwave filter design,” IEEE Microw. Magzine, vol. 8, no. 5, pp. 105-114, Oct. 2007.
[58] Murata Chip S-Parameter & impedance Library: http://www.murata.com/en-us/tool/download/mcsil
[59] Panasonic, Signal Relays : TX Relays TH Type : TX2-1.5V-TH datasheet, http://www3.panasonic.biz/ac/e_download/control/relay/signal/catalog/mech_eng_txth.pdf
[60] OMRON Electronic components, G5V-1 Low Signal Relay datasheet, https://www.omron.com/ecb/products/pdf/en-g5v_1.pdf
[61] Maxim Integrated Products, 2002, Application note 1191: The MAX2644 Meets 10μs Switching Time for 802.11b WLAN LNA, http://pdfserv.maximintegrated.com/en/an/AN1191.pdf
[62] Vishay Semiconductors, 2011, VO14642AT: 1 Form A Solid State Relay, http://www.vishay.com/docs/81646/vo14642a.pdf
[63] J. Kim, C. A. Bolle, R. A. Boie, J. V. Gates, A. G. Ramirez, S. Jin and D. J. Bishop, “Integration and Packaging of MEMS Relays,” Proc. SPIE 4019, Design, Test, Integration, and Packaging of MEMS/MOEMS, 333 (April 10, 2000).
[64] J.-F. Yeh, C.-Y. Yang, H.-C. Kuo and H.-R. Chuang, “A 24-GHz transformer-based single-in differential-out CMOS low-noise amplifier,” Proc. of IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA , pp. 299-302, Jun. 7-9, 2009.
[65] H. Zhu, C.-H. Chuang, C.-S. Li, M.-H. Li, J. E.-Y. Lee and S.-S. Li, “The effects of tight capacitive coupling on phase noise performance: a Lamé-mode MEMS oscillator study,” Proc. of the 17th International Conference on Solid-State Sensors, Actuators and Microsystems, Barcelona, Spain, pp. 2304-2307, Jun. 16-20, 2013.
[66] Skyworks Solutions, Inc., 2015, SMV123x Series: Hyperabrupt Junction Tuning Varactors, http://www.skyworksinc.com/uploads/documents/SMV123x_Series_200058V.pdf
指導教授 林祐生(Yo-Shen Lin) 審核日期 2016-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明