博碩士論文 965401022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.88.220.93
姓名 徐克文(Ko-wen Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於微波之多頻帶通濾波器之設計
(Design of Multi-band Bandpass Filters for Microwave Applications)
相關論文
★ 使用可開關式帶通濾波器之低相位雜訊雙頻振盪器研製★ 共平面波導饋入槽孔偶極天線之寬頻與多頻應用
★ 可具任意通帶之可調式多工器★ 利用非對稱步階式阻抗設計寬通帶寬止帶雙工器
★ 基於散佈式耦合饋入架構之可開關式帶通濾波器★ 共平面波導饋入之寬頻雙圓極化天線
★ 基於多共振路徑所設計之印刷式多頻帶天線★ 微小化倍頻壓抑直交分合波器之研製
★ 可繞式小型偶極天線之研製★ 使用多重模態共振器實現多功能帶通濾波器
★ 應用於Radio-over-Fiber系統之超高速微波光子發射器★ 使用長饋入線架構研製小型且具有高隔絕度的多工器
★ 具有寬截止頻帶的帶通濾波器之研製★ 可調式雙模態帶通濾波器之研究
★ 使用步階式阻抗共振器實現於微小化準八木天線設計★ 利用步階式阻抗共振器之多頻與寬頻共平面波導饋入槽孔偶極天線設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 對於多頻帶通濾波器之設計,本論文使用以下三種方法實現:(a) 使用雙層基板之設計;(b) 使用非對稱式共振器之設計;(c) 使用半集總式共振器之設計。
(a) 使用雙層結構之多頻帶通濾波器設計
在第一部份中,本論文提出一種使用雙層結構之多頻帶通濾波器之設計,探討雙層基板及步階式阻抗共振器之濾波器設計。在雙層基板的使用上,由於可使用的電路佈局面積多了一倍,可比原本的單層基板的使用提供更多的設計空間;在步階式阻抗共振器的使用上,可藉由設計共振器的電子長度比以及阻抗比達到控制高頻諧波的設計。此類設計不但可用於設計多頻帶設計,而且可以達到面積微小化的優點。本論文使用雙層結構設計四頻帶通濾波器,四頻寬止帶帶通濾波器及五頻帶通濾波器。
(b) 使用非對稱式共振器之多頻帶通濾波器設計
在第二部份中,本論文使用之非對稱式共振器是由三段均勻阻抗且不同電子長度之微帶線所構成。藉由本文所推算的理論公式,可準確地設計非對稱式共振器之中心頻率及高頻諧波之模態,進而設計達到理想通帶之響應。本論文使用非對稱式共振器設計三頻帶通濾波器以及具寬止帶抑制之三頻帶通濾波器。
(c) 使用半集總式共振器之多頻帶通濾波器設計
在第三部份中,本論文提出半集總集式共振器之設計,共振器是由兩段均勻阻抗共振器和一電感元件所構成。和一般的均勻阻抗共振器相較之下,半集總集式共振器可藉由電感值和微帶線的設計,可以達到電路面積微小化和高頻諧波的控制。本論文使用半集總集式共振器設計兩個多頻帶通濾波器,各別是使用分散式耦合之六頻帶通濾波器與具高截止度之六頻帶通濾波器。
摘要(英) This dissertation employed three methods to design multi-band bandpass filter: (a) double-layered substrate; (b) asymmetrical resonator and (c) semi-lumped resonator.
(a) Double-layered structure
In the first section, a double-layered structure was proposed to design the multi-band bandpass filter, and explore the use of double-layered structure and stepped-impedance resonators. In the design of double-layered substrate, the useful circuit layout has twice area than the general single-layered substrate provide more design freedom; in the use of stepped-impedance resonator, the fundamental frequency and harmonics can be controlled by the design of the electrical length ratio and impedance ratio. Such design method not only can provide the multi-band bandpass filter design, but also reduce the use of circuit area. In this study, the double-layer structure was used to design the quad-band bandpass filter, quad-band bandpass filter with wide stopband response and quint-band bandpass filter.
(b) Asymmetrical resonator
In the second section, the asymmetrical resonator is composed of three microstrip uniform impedance resonator with different electrical length. By using theoretical analysis, projected herein, may be accurately design asymmetrical center of the resonator frequency and mode of high-frequency wave bands, and then design to achieve the desired passband response. In this study, the use of asymmetrical resonator design tri-band-pass filter, and tri-band pass filter with suppression of a wide stopper.
(c) semi-lumped resonator
In the third section, the semi-lumped resonator was proposed to design multi-band bandpass filter, and it is composed of two microstrip uniform impedance resonator and a lump inductor. Compared with previous general microstrip uniform impedance resonator, the proposed semi-lumped resonator has the characteristic of size reduction and harmonic control by designing the microstrip line and inductance. In this study, the use of the semi-lumped resonator was used to design the distributed sext-band bandpass filter and sharp-rejection sext-band bandpass filter.
關鍵字(中) ★ 多頻帶通濾波器
★ 步階式阻抗共振器
★ 非對稱式共振器
★ 半集總式共振器
關鍵字(英) ★ Asymmetrical resonator
★ multi-band bandpass filter
★ stepped-impedance resonator
★ semi-lumped resonator
論文目次 摘要 I
Abstract III
誌謝 V
Contents VI
List of Figures VIII
List of Tables XI
Chapter 1 Introduction 1
1-1. Background 1
1-2. Literature survey 2
1-3. Organization of the dissertation 10
Chapter 2 Design of the multi-band BPF using double-layered structure 12
2-1. Introduction 12
2-2. Design of the quad-band microstrip BPF using double-layered structure 13
2-3. Design of the quad-band microstrip BPF with wide-stopband response 22
2-4. Design of the quad-band microstrip BPF using double-layered structure 32
2-5. Discuss 41
2-6. Conclusion 51
Chapter 3 Design of the multi-band BPFs using asymmetrical resonator 53
3-1. Introduction 53
3-2. Asymmetrical resonator 54
3-3. Compact triple-band BPF 57
3-4. Wide-stopband triple-band BPF 62
3-5. Discuss 67
3-6. Conclusion 67
Chapter 4 Design of the multi-band BPF using semi-lumped resonator 69
4-1. Introduction 69
4-2. Semi-lumped resonator based on chip inductor 70
4-3. Design of distributed-coupling sext-band BPF 76
4-4. Design of parallel-coupling sext-band BPF 82
4-5. Discuss 89
4-6. Conclusion 90
Chapter 5 Conclusion and future works 91
參考文獻 [1] P. Mondal and M. K. Mandal, ”Design of dual-band bandpass filters using stub-loaded open-loop resonators,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 150–155, Jan. 2008.
[2] J.-T. Kuo and H.-P. Lin, ”Dual-band bandpass filter with improved performance in extended upper rejection band,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 824–829, Apr. 2009.
[3] S. Sun, ”A dual-band bandpass filter using a single dual-mode ring resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 6, pp. 298–300, Jun. 2011.
[4] H.-W. Wu, Y.-F. Chen, and Y.-W. Chen, ”Multi-layered dual-band bandpass filter using stub-loaded stepped impedance and uniform impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 114–116, Mar. 2012.
[5] C.-H. Lee, C.-I. Hsu, and H.-K. Jhuang, ”Design of a new tri-band microstrip BPF using combined quarter-wavelength SIRs,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 11, pp. 594–596, Nov. 2006.
[6] C.-I G. Hsu, C.-H. Lee, and Y.-H. Hsieh, ”Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 19–21, Jan. 2008.
[7] X. Lai, C.-H. Liang, H. Di, and B. Wu, ”Design of tri-band filter based on stub loaded resonator and DGS resonator,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 265–267, May 2010.
[8] K.-W. Hsu and W.-H. Tu ”Design of a novel four-band microstrip bandpass filter using double-layered substrate,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, USA, 2009, pp. 1041–1044.
[9] K.-W. Hsu and W.-H. Tu, ”Compact wide-stopband quad-band bandpass filter with tunable transmission zeros,” in IEEE MTT-S Int. Microw. Symp. Dig., Montreal, CA, 2012, pp. 1–3.
[10] J.-Y. Wu and W.-H. Tu, ”Design of quad-band bandpass filter with multiple transmission zeros,” Electron. Lett., vol. 47, no. 8, pp. 502–503, Apr. 2011.
[11] K.-W. Hsu and W.-H. Tu, ”Sharp-rejection quad-band bandpass filter using meandering structure,” Electron. Lett., vol. 48, no.15, pp. 935–937, Jul. 2012.
[12] M.-J. Tsou and W.-H. Tu. ”Multi-transmission-zero quad-band bandpass filter based on quad-mode resonator,” in Proc. Asia-Pacific Microwave Conf., Melbourne, Australia, 2011, pp. 147–150.
[13] K.-W. Hsu, J.-H. Lin, W.-C. Hung, and W.-H. Tu, ”Design of compact quad-band bandpass filter using semi-lumped resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., Seattle, USA, 2013.
[14] H.-W. Wu and R.-Y. Yang, ”A new quad-band bandpass filter using asymmetric stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 203–205, Apr. 2011.
[15] S.-C. Lin, ”Microstrip dual/quad-band filters with coupled lines and quasi-lumped impedance inverters based on parallel-path transmission,” IEEE Trans. Microw. Theory Tech., 2011, vol. 59, no. 8, pp. 1937–1946.
[16] L.-Y. Ren, ”Quad-band bandpass filter based on dual-plane microstrip/DGS slot structure,” Electronics Lett., vol. 46, no. 10, pp. 691–692, May 2010.
[17] J.-C. Liu, J.-W. Wang, B.-H. Zeng, and D.-C. Chang, ”CPW-fed dual-Mode double-square-ring resonators for quad-band filters,” IEEE Microw. Wireless. Compon. Lett., vol. 20, no.3, pp. 142–144, Mar. 2010.
[18] S. Sun, B. Wu, S. Yang, K. Deng, and C.-H, Liang, ”A novel quad-band filter using centrally shorted-stub loaded resonator and stepped impedance resonator,” in IEEE MTT-S Int. Microw. Symp. Dig., Montreal, CA, 2012, pp. 1–3.
[19] J. Xu, C. Miao, L. Cui, Y. X. Ji, and W. Wu, ”Compact high isolation quad-band bandpass filter using quad-mode resonator,” Electronics Lett., vol. 48, no. 1, pp.28–30, Jan. 2012.
[20] C. M. Cheng and C. F. Yang, ”Develop quad-band (1.57/2.45/3.5/5.2 GHz) bandpass filters on the ceramic substrate,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 268–270, May 2010.
[21] J.-C. Liu, F.-S. Huang, and C.-P. Kuei, ”Quad-band dual-mode resonator with dual-square-loop for WLAN and WiMAX systems,” in Cross Strait Quad-Regional Radio Science and Wireless Techno. Conf. (CSQRWC), Taipei, Taiwan, 2012, pp. 100–103.
[22] S.-C. Weng, K.-W. Hsu, and W.-H. Tu, ”Independently switchable quad-band bandpass filter,” IET Microw. Antennas Propag., vol. 4, no. 12, pp. 2234–2239, Dec. 2010.
[23] M.-S. Wu, Y.-Z. Chueh, J.-C. Yeh, and S.-G. Mao, ”Synthesis of triple-band and quad-band bandpass filters using lumped-element coplanar waveguide resonators,” in Progress In Electromagnetics Research (PIER) B, vol. 13, pp. 433–451, 2009.
[24] C.-F. Chen, ”Design of a compact microstrip quint-band filter based on the tri-mode stub-loaded stepped-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 7, pp. 357–359, Jul. 2012.
[25] K.-W. Hsu, W.-C. Hung, and W.-H. Tu, ”Compact quint-band microstrip bandpass filter using double-layered substrate,” in IEEE MTT-S Int. Microw. Symp. Dig., Seattle, USA, 2013.
[26] R. Gómez-García, J.-M. Muñoz-Ferreras, and M. Sánchez-Renedo, ”Microwave transversal sext-band bandpass planar filter for multi-standard wireless applications,” in IEEE Radio and Wireless Symp. (RWS), Phoenix, USA, 2011, pp.166–169.
[27] D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005.
[28] Y.-S. Lin, C.-C. Liu, K.-M. Li, and C. H. Chen, “Design of an LTCC tri-band transceiver module for GPRS mobile applications,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2718–2724, Dec. 2004.
[29] M.-H. Weng, H.-W. Wu, and Y.-K. Su, “Compact and low loss dualband bandpass filter using pseudo-interdigital stepped impedance resonators for WLANs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 187–189, Mar. 2007.
[30] D. Orlenko, G. Sevskiy, T. Kerssenbrock and P. Heide, “LTCC triplexer for WiMAX applications,” European Microwave Conference, pp. 4–6, Oct. 2005.
[31] M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413–1417, Dec. 1980.
[32] J.-T. Kuo, T.-H. Yeh, and C.-C. Yeh, “Design of microstrip bandpass filters with a dual-passband response,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1331–1337, Apr. 2005.
[33] C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “Design of microstrip bandpass filters with multiorder spurious-mode suppression,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3788–3793, Dec. 2005.
[34] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, New York: Wiley, 2001.
[35] IE3D Version 11.1, Zeland Software Inc., Dec. 2005.
[36] L. K. Yeung and K.-L. Wu, “A compact second-order LTCC bandpass filter with two finite transmission zero,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 337–341, Feb. 2003.
[37] C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “Design of dual-band triple-passband filters using alternately cascaded multiband resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3550–3558, Sep. 2006.
[38] M.-H. Weng, H.-W. Wu, K. Shu, J.-R. Chen, R.-Y. Yang, and Y.-K. Su, “A novel triple-band bandpass filter using multilayer-based substrates for WiMAX,” European Microwave Conf., pp. 325–328, Dec. 2007.
[39] Q.-X. Chu and X.-M. Lin, “Advanced triple-band bandpass filter using tri-section SIR,” Electron. Lett., vol. 44, no. 4, pp. 295–296, Apr. 2008.
[40] F.-C. Chen and Q.-X. Chu, “Tri-band bandpass filter using assembled multiband resonators,” in Asia Pacific Microwave Conf., pp. 1–4, Dec. 2008.
[41] F.-C. Chen and Q.-X. Chu, “Design of compact tri-band bandpass filters using assembled resonators,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 165–171, Jan. 2009.
[42] Q.-X. Chu, F.-C. Chen, Z.-H. Tu, and H. Wang, “A novel crossed resonator and its applications to bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1753–1759, Jul. 2009.
[43] Q.-X. Chu, X.-H. Wu, and F.-C. Chen, “Novel compact tri-band bandpass filter with controllable bandwidths,” IEEE Microw. Wirel. Compon. Lett., vol. 21, no. 12, pp. 655–657, Dec. 2011.
[44] R. H. Geschke, B. Jokanovic, and P. Meyer, “Filter parameter extraction for triple-band composite split-ring resonators and filters,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 6, 2011, pp. 1500–1508, Jun. 2011.
[45] Y. Dong, C.-T. M. Wu, and T. Ltoh, “Miniaturised multi-band substrate integrated waveguide filters using complementary split-ring resonators,” IET Microw. Antenna Propag., vol. 6, no. 6, pp. 611–620, Jun. 2012.
[46] S. Luo, L. Zhu, and S. Sun, “Compact dual-mode triple-band bandpass filters using three sets of degenerate modes in a ring resonator,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1222–1229, May 2011.
[47] L. Wang and B.-R. Guan, “Compact and high selectivity tri-band BPF using nested DDGSRs,” Electron. Lett., vol. 48, no. 7, pp. 378–379, Jul. 2012.
[48] Y.-C. Chang, C.-H. Kao, M.-H. Weng, and R.-Y. Yang, “Design of the compact dual-band bandpass filter with high isolation for GPS/WLAN applications,” IEEE Microw. Wirel. Compon. Lett., vol. 19, 12, pp. 780–782, Dec. 2009.
[49] H.-W. Wu and R.-Y. Yang, “A new quad-band bandpass filter using asymmetrical stepped impedance resonators,” IEEE Microw. Wirel. Compon. Lett., vol. 21, no. 4, pp. 203–205, Apr. 2011.
[50] H. Shaman and J.-S. Hong, “Input and output cross-coupled wideband bandpass filter,” IEEE Trans. Microw. Theory Tech., vol. 12, no. 11, pp. 2562–2568, Dec. 2007.
[51] S. Sun, L. Zhu, and H.-H. Tan, “A compact wideband bandpass filter using transversal resonator and asymmetrical interdigital coupled lines,” IEEE Microw. Wirel. Compon. Lett., vol. 18, no. 3, pp. 173–175, Mar. 2008.
[52] R. Gomez-garcia and J. I. Alonso, “Design of sharp-rejection and low-loss wideband planar filters using signal-interference techniques,” IEEE Microw. Wirel. Compon. Lett., vol, 15, no. 8, pp. 530–532, Aug. 2005.
[53] C. Quendo, E. Rius, C. Person, J.-F. Favennec, Y. Clavet, A. Manchec, R. Bairavasubramanian, S. Pinel, J. Papapolymerou, and J. Laskar, “Wide band, high rejection and miniaturized fifth order bandpass filter on LCP low cost organic substrate,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 2203–2205, Jun. 2005.
[54] K.-M. Shum, W.-T. Luk, C.-H. Chan, and Q. Xue, “A UWB bandpass filter with two transmission zeros using a single stub with CMRC,” IEEE Microw. Wirel. Compon. Lett., vol. 17, no. 1, pp. 43–45, Jan. 2007.
[55] K.-W. Hsu and W.-H. Tu, “Compact high-rejection wideband bandpass filter using asymmetrical resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–4, Jun. 2011.
[56] H. Wang, Q.-X. Chu, and J.-Q. Gong, “A compact wideband microstrip filter using folded multiple-mode resonator,” IEEE Microw. Wirel. Compon. Lett., vol, 19, no. 5, pp. 287–289, May 2009.
[57] J.-Y. Wu and W.-H. Tu, “Compact sharp-rejection broadband microstrip bandpass filter with wide stopband,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–4, Jun. 2011.
[58] L. Zhu and W. Menzel, “Compact microstrip bandpass filter with two transmission zeros using a stub-tapped half-wavelength line resonator,” IEEE Microw. Wirel. Compon. Lett., vol. 13, no. 1, pp. 16–18, Jan. 2003.
[59] M. Nosrati and M. Mirzaee, “Compact wideband microstrip bandpass filter using quasi-spiral loaded multiple-mode resonator,” IEEE Microw. Wirel. Compon. Lett., vol, 20, no. 11, pp. 607–609, Nov. 2010.
[60] K. Song and Q. Xue, “Novel broadband bandpass filters using Y-shaped dual-mode microstrip resonators,” IEEE Microw. Wirel. Compon. Lett., vol. 19, no. 9, pp. 548–590, Sep. 2009.
[61] C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “Novel compact net-type resonators and their applications to microstrip bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 2562–2568, Feb. 2006.
[62] http://www.taisaw.com/en/index.php
[63] http://www.minicircuits.com/homepage/homepage.html
[64] http://www.statschippac.com/
[65] http://www.idealvac.com/
[66] http://www.apollomw.com/index.php
指導教授 凃文化(Wen-hua Tu) 審核日期 2015-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明