博碩士論文 965401023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.233.242.204
姓名 劉學興(Hsueh-hsing Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化銦鎵/氮化鎵藍光發光二極體效率衰退現象之改善
(Improving the efficiency droop of InGaN/GaN blue light-emitting diodes)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究
★ 砷化銦量子點異質結構與雷射★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析
★ p型披覆層對量子井藍色發光二極體發光機制之影響★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究
★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響
★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析★ P型氮化銦鎵歐姆接觸層對氮化鋁銦鎵藍紫光雷射二極體特性之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文描述以低壓有機金屬化學氣相沉積法成長不同的發光二極體結構去改善氮化銦鎵量子井發光二極體中效率衰退現象,內容分為兩個主要部分: 第一部分是研究在一般c面發光二極體中不同磊晶結構對效率衰退現象的影響,第二部分則是開發半極化發光二極體的磊晶與製程技術,以實現效率衰退現象不明顯的發光二極體。
利用氮化鋁鎵/氮化鎵/氮化銦鎵層插入在量子井下方增加電流散佈,並經由實驗的結果討論電流散佈和效率衰退的關係。由模擬的結果顯示,在氮化銦鎵發光二極體結構中加入一層n型氮化鋁鎵/氮化鎵/氮化銦鎵的電流散佈層於量子井的下方,會比使用n型氮化鋁鎵/氮化鎵和n型氮化鎵/氮化銦鎵兩種結構產生較高的電子濃度,因此此n型電流擴散層可以減緩電流聚集並提升外部量子效率,實驗結果也證實整個LED的發光均勻度更加改善,在350 mA的情況下,外部量子效率以及功率轉換效率可以分別提升18.2 % 和22.2%;而效率衰退在46 A/cm2下,則可以從20.9%改善至12.5%。
本研究亦設計一個氮化銦鎵的預先插入層經由三甲基銦處理後,降低量子井中銦含量的自聚的實驗,用以探討量子井中銦含量波動對效率衰退的影響。這實驗是以氮化銦鎵(In0.03Ga0.97N)/氮化銦鎵(In0.13Ga0.87N)/氮化鎵的複合式量子井為主體,利用三甲基銦處理氮化銦鎵(In0.03Ga0.97N)/氮化銦鎵(In0.13Ga0.87N)的介面,預期可以減緩發光二極體中的效率衰退。經由表面點缺陷密度、X光繞射、倒晶格空間圖及光激螢光等量測分析結果顯示,此方法降低了銦的自聚使得效率衰退效應減少,並且不會犧牲外部量子效率。與標準結構比較,在大面積的發光二極體中外部量子效率衰退點可以從44 A/cm2移至86 A/cm2,而效率衰退在176 A/cm2下則可以從13.7%改善至5.5%。
為了降低電子溢流情形,本論文提出將一p型氮化鎵插入層加在最後一個位障層和p型氮化鋁鎵之間,經由模擬顯示,此結構除了可以增加輸出功率還可以改善效率衰退。實驗結果顯示,發光二極體外部量子效率在25 A/cm2下可以提升12.8 %,其效率衰退的趨勢與模擬結果相當符合。
本研究開發出一種利用現場沉積SiNx遮罩形成自組式雙層島狀氮化鎵緩衝層的技術,可以降低磊晶層差排密度至少至原來的三分之一,因此亦可用以探討差排密度對效率衰退的影響。此實驗是在成長氮化鎵於矽基板上進行的,成長過程中插入適當的氮化矽薄層,即可形成雙層島狀結構,此結構可以有效地降低缺陷密度從9.6×109 cm-2到2.6×109 cm-2,利用穿透式電子顯微鏡的觀察結果,本論文亦提出此雙層島狀結構形成的機制及減少差排的原因。實驗結果顯示,將氮化銦鎵發光二極體成長在雙層島狀結構上,可以改善27%的外部量子效率,而效率衰退在100 A/cm2下則可以從52.1%改善至10.8%。根據變溫光激螢光量測結果推測,差排降低會減少量子井中的銦簇集現象,故可改善效率衰退效應。
本論文的第二部分敘述開發矽基板上成長半極化(1-101)發光二極體技術的過程,並探討此類發光二極體之效率衰退情形。所開發的技術可在有V行凹槽的7°傾斜的(100)矽基板上獲得高品質的半極化(1-101)氮化鎵,實驗結果顯示,1.2 m厚的半極化氮化鎵之表面粗糙度為 0.3 nm,X光繞射量測的(101) and (002)搖擺曲線半高寬分別為523和581 arcsec。在多條紋半極化發光二極體結構上所測得的光譜半高寬為35.9 nm,在350 mA操作時,此半極化發光二極體幾乎沒有效率衰退現象。
摘要(英) This dissertation describes InGaN light-emitting diodes (LEDs) of various structures prepared by low-pressure metal-organic chemical vapor deposition (MOCVD) for improving efficiency droop. The content is composed of two parts: One is investigation of the efficiency droop in c-plane LEDs and the other is developing the technologies of realizing semi-polar (1-101) LEDs on Si for low efficiency droop.
An n-type AlGaN/GaN/InGaN heterostructure layer is inserted below the multiple quantum wells (MQWs) to improve current spreading and efficiency droop. As indicated by one-dimensional simulation, an n-type Al0.1Ga0.9N/GaN/In0.06Ga0.93N heterostructure induces a higher electron concentration than either the n-AlGaN/GaN cladding layer or n-GaN/InGaN current spreading layer used in conventional LEDs. Experimental results show that the light output uniformity across a chip is indeed greatly improved. Consequently, the external quantum efficiency (EQE) and wall-plug efficiency is improved by about 18.2% and 22.2%, respectively, at an injection current of 350 mA. The efficiency droop at 46 A/cm2 is also improved from 20.9% to 12.5%.
As In content variation in the InGaN quantum well might worsen efficiency droop, inserting an In0.03Ga0.97N pre-layer in the quantum wells and using trimethylindium (TMIn) treatment is proposed to reduce In-rich clusters and improve droop effect. Experimental results indicate that the efficiency droop behavior of InGaN LEDs can be alleviated as expected by using an In0.03Ga0.97N/In0.13Ga0.87N/ GaN composite MQW active layer and TMIn treatment at the In0.03Ga0.97N/ In0.13Ga0.87N interface. Growth pit density, x-ray diffraction, reciprocal space mapping and photoluminescence (PL) measurements indicate that this approach reduces the occurrence of In-rich clusters in the MQWs and leads to reduction in the efficiency droop without sacrificing the EQE of the LEDs. The droop point of the EQE shifts from 44 A/cm2 to 86 A/cm2 compared to the reference sample. There is also an improvement in the efficiency droop at 176 A/cm2 from 13.7% to 5.5%. A
In order to decrease the electron overflow current, this study also propose a new InGaN-based LED structure, which has an extra p-GaN spacer layer between the last p-side GaN QW barrier layer and the AlGaN electron blocking layer (EBL). Based on the simulation, this structure is expected to exhibit reduced efficiency droop and enhanced internal quantum efficiency. Experimental results indicate that the EQE is improved by about 12.8 % at an injection current of 25 A/cm2. The experimental results agree very well with the simulation.
This dissertation also reports a novel method to produce a self-assembled double-island buffer layer for reducing threading dislocation density in GaN epilayers grown on (111) Si substrates by using in situ SiNx mask during MOCVD. The effect of dislocation density on efficiency droop can thus be analyzed based on these samples. Experimentally, this method effectively reduces the threading dislocation density from 9.6×109 cm-2 to 2.6×109 cm-2. The mechanisms of double-island formation as well as dislocation reduction are described based on transmission electron microscopy investigations. It is also shown that the InGaN LEDs fabricated on the double-island buffer layer exhibit a 27% improvement in their EQE. The efficiency droop at 100 A/cm2 is improved from 52.1% to 10.8%. Based on the temperature dependent PL results, threading dislocations seem to be the driving force of phase segregation in InGaN and cause In-rich regions in MQWs. Reducing threading dislocations will decrease the appearance of indium clusters in QWs and hence the efficiency droop effect.
The second part of this work aims at the fabrication of (1-101) semi-polar LEDs on 7°-off (001) Si substrates and their efficiency droop behavior. High quality semi-polar (1-101) GaN epilayers on V-grooved 7°-off (001) Si substrates have been realized as evidenced by the root-mean-square roughness of 0.3 nm as well as the (101) and (002) x-ray rocking curves of 523 and 581 arcsec, measured on a 1.2 m (1-101) GaN. Novel multi-stripe (1-101) blue LEDs show electroluminescence full- width at half-maximum of 35.9 nm. At 350 mA, the LEDs are nearly droop-free.
關鍵字(中) ★ 有機金屬化學氣相沉積
★ 發光二極體
★ 效率衰退
關鍵字(英) ★ MOCVD
★ LED
★ efficiency droop
論文目次 論文摘要 i
Abstract iii
致謝 vi
Contents vii
Figure captions x
Table captions xvii
Chapter 1 Introduction 1
1-1 General background 1
1-2 Outline of this dissertation 3
Chapter 2 Description of efficiency droop 4
2-1 What is efficiency droop?? 4
2-2 Plausible mechanisms of efficiency droop 6
2-2-1 Auger recombination 6
2-2-2 Electron overflow 7
2-2-3 Defects and localized effects 8
2-2-4 Current distribution 9
2-3 Experiment design and sample preparation 10
Chapter 3 Improve efficiency and droop effect of c-plane LEDs 11
3-1 Inserting n-type AlGaN/GaN/InGaN current spreading layer 11
3-1-1 Introduction and experimental details 11
3-1-2 Energy band diagrams and carrier concentration distributions 13
3-1-3 Electrical and optical characteristic of devices 16
3-1-4 Summary 18
3-2 Using an In0.03Ga0.97N pre-layer and trimethylindium treatment 19
3-2-1 Introduction and experimental details 19
3-2-2 Determination of the cause of efficiency droop 21
3-2-3 Summary 31
3-3 P-GaN space interlayer 32
3-3-1 Introduction and experimental details 32
3-3-2 Electrical and optical characteristic of devices 34
3-3-3 Comparison of the effect of electron overflow and Auger on droop effect 35
3-3-4 Summary 37
3-4 Double island buffer structure 38
3-4-1 Introduction and experimental details 38
3-4-2 Growth mode 39
3-4-3 Evaluation of crystal quality 44
3-4-3 Performance of LEDs 46
3-4-4 Characteristic of In-rich localization 49
3-4-4 Summary 54
Chapter 4 Semi-polar (1-101) LEDs on 7◦-off (001) Si substrates 55
4-1 Introduction of semi-polar GaN on 7◦-off (001) Si substrates 55
4-2 Preparation of (1-101) GaN templates 56
4-2-1 Growth flow of the V-grooved substrate 56
4-2-2 Covering the etched Si substrate with an AlN buffer layer 58
4-2-3 Residual SiO2 and the undercutting effect 60
4-2-4 Prevention of melt-back etching to obtain a smooth surface 66
4-3 Improvement of the crystal quality and release of the strain 73
4-3-1 Pattern design 73
4-3-2 Insertion of low temperature AlN 83
4-4 Electrical and optical characteristics of semi-polar LEDs 86
4-4-1 Simulation 86
4-4-2 Experimental results 93
4-4-3 Multi-stripe LED structure 100
Chapter 5 Conclusions and future work 108
Reference 110
Publication list 119
參考文獻 [1] V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, et al., "Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap," physica status solidi (b), vol. 229, pp. r1-r3, 2002.
[2] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, et al., "Unusual properties of the fundamental band gap of InN," Applied Physics Letters, vol. 80, p. 3967, 2002.
[3] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III–V compound semiconductors and their alloys," Journal of Applied Physics, vol. 89, p. 5815, 2001.
[4] T. Komine and M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Transactions on Consumer Electronics, vol. 50, pp. 100-107, 2004.
[5] J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, "GaN blue light-emitting diodes," Journal of Luminescence, vol. 5, pp. 84-86, 1972.
[6] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Applied Physics Letters, vol. 48, p. 353, 1986.
[7] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, "P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)," Japanese Journal of Applied Physics, vol. 28, pp. L2112-L2114, 1989.
[8] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, "Hole Compensation Mechanism of P-Type GaN Films," Japanese Journal of Applied Physics, vol. 31, pp. 1258-1266, 1992.
[9] S. Nakamura, "GaN Growth Using GaN Buffer Layer," Japanese Journal of Applied Physics, vol. 30, pp. L1705-L1707, 1991.
[10] X. H. Wu, P. Fini, E. J. Tarsa, B. Heying, S. Keller, U. K. Mishra, et al., "Dislocation generation in GaN heteroepitaxy," Journal of Crystal Growth, vol. 189-190, pp. 231-243, 1998.
[11] Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, "Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy," Journal of Crystal Growth, vol. 144, pp. 133-140, 1994.
[12] K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, "Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III-Nitrides: Effects of Reactor Pressure in MOVPE Growth," physica status solidi (a), vol. 176, pp. 535-543, 1999.
[13] S. Haffouz, H. Lahrèche, P. Vennéguès, P. de Mierry, B. Beaumont, F. Omnès, et al., "The effect of the Si/N treatment of a nitridated sapphire surface on the growth mode of GaN in low-pressure metalorganic vapor phase epitaxy," Applied Physics Letters, vol. 73, p. 1278, 1998.
[14] S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, "A new method of reducing dislocation density in GaN layer grown on sapphire substrate by MOVPE," Journal of Crystal Growth, vol. 221, pp. 334-337, 2000.
[15] C. J. Tun, C. H. Kuo, Y. K. Fu, C. W. Kuo, C. J. Pan, and G. C. Chi, "Dislocation reduction in GaN with multiple MgxNy∕GaN buffer layers by metal organic chemical vapor deposition," Applied Physics Letters, vol. 90, p. 212109, 2007.
[16] P. Gibart, "Metal organic vapour phase epitaxy of GaN and lateral overgrowth," Reports on Progress in Physics, vol. 67, pp. 667-715, 2004.
[17] S.-Y. Kwon, S.-I. Baik, Y.-W. Kim, H. J. Kim, D.-S. Ko, E. Yoon, et al., "Room temperature near-ultraviolet emission from In-rich InGaN∕GaN multiple quantum wells," Applied Physics Letters, vol. 86, p. 192105, 2005.
[18] S.-N. Lee, J. Son, H. Paek, T. Sakong, W. Lee, K. Kim, et al., "Effect of thermal damage on optical and structural properties of In0.08Ga0.92N/In0.02Ga0.98N multi-quantum wells grown by MOCVD," Journal of Crystal Growth, vol. 275, pp. e1041-e1045, 2005.
[19] R. A. Arif, Y.-K. Ee, and N. Tansu, "Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes," Applied Physics Letters, vol. 91, p. 091110, 2007.
[20] H. Zhao, R. A. Arif, Y.-K. Ee, and N. Tansu, "Self-Consistent Analysis of Strain-Compensated InGaN-AlGaN Quantum Wells for Lasers and Light-Emitting Diodes," IEEE Journal of Quantum Electronics, vol. 45, pp. 66-78, 2009.
[21] H. Zhao, R. A. Arif, and N. Tansu, "Self-consistent gain analysis of type-II ‘W’ InGaN–GaNAs quantum well lasers," Journal of Applied Physics, vol. 104, p. 043104, 2008.
[22] J. S. Foresi and T. D. Moustakas, "Metal contacts to gallium nitride," Applied Physics Letters, vol. 62, p. 2859, 1993.
[23] Q. Z. Liu and S. S. Lau, "A review of the metal–GaN contact technology," Solid-State Electronics, vol. 42, pp. 677-691, 1998.
[24] A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang, and I. Adesida, "Metal contacts to n-type GaN," Journal of Electronic Materials, vol. 27, pp. 255-260, 1998.
[25] D. W. Kim, Y. J. Sung, J. W. Park, and G. Y. Yeom, "A study of transparent indium tin oxide (ITO) contact to p-GaN," Thin Solid Films, vol. 398-399, pp. 87-92, 2001.
[26] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, et al., "InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts," Solid-State Electronics, vol. 47, pp. 849-853, 2003.
[27] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, "GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography," Applied Physics Letters, vol. 86, p. 221101, 2005.
[28] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, "Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (1-102) r-plane sapphire," Applied Physics Letters, vol. 81, p. 469, 2002.
[29] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, et al., "Nonpolar InGaN∕GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak," Applied Physics Letters, vol. 85, p. 5143, 2004.
[30] K.-C. Kim, M. C. Schmidt, H. Sato, F. Wu, N. Fellows, M. Saito, et al., "Improved electroluminescence on nonpolarm -plane InGaN/GaN quantum wells LEDs," physica status solidi (RRL) – Rapid Research Letters, vol. 1, pp. 125-127, 2007.
[31] Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, et al., "531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {20-21} Free-Standing GaN Substrates," Applied Physics Express, vol. 2, p. 082101, 2009.
[32] R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, et al., "Demonstration of a semipolar (1013) InGaN∕GaN green light emitting diode," Applied Physics Letters, vol. 87, p. 231110, 2005.
[33] A. E. Romanov, T. J. Baker, S. Nakamura, J. S. Speck, and E. J. U. Group, "Strain-induced polarization in wurtzite III-nitride semipolar layers," Journal of Applied Physics, vol. 100, p. 023522, 2006.
[34] M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, et al., "Blue, Green, and Amber InGaN/GaN Light-Emitting Diodes on Semipolar {11-22} GaN Bulk Substrates," Japanese Journal of Applied Physics, vol. 45, pp. L659-L662, 2006.
[35] A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, "Metalorganic Chemical Vapor Phase Epitaxy of Crack-Free GaN on Si (111) Exceeding 1 µm in Thickness," Japanese Journal of Applied Physics, vol. 39, pp. L1183-L1185, 2000.
[36] A. Dadgar, M. Poschenrieder, J. Bläsing, K. Fehse, A. Diez, and A. Krost, "Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature AlN interlayers and in situ Si[sub x]N[sub y] masking," Applied Physics Letters, vol. 80, p. 3670, 2002.
[37] D. Zhu, C. McAleese, M. Häberlen, M. J. Kappers, N. Hylton, P. Dawson, et al., "High-efficiency InGaN/GaN quantum well structures on large area silicon substrates," physica status solidi (a), vol. 209, pp. 13-16, 2012.
[38] M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, et al., "Origin of efficiency droop in GaN-based light-emitting diodes," Applied Physics Letters, vol. 91, p. 183507, 2007.
[39] J. Xie, X. Ni, Q. Fan, R. Shimada, U. m. Özgür, and H. Morkoç, "On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers," Applied Physics Letters, vol. 93, p. 121107, 2008.
[40] J. Piprek, "Efficiency droop in nitride-based light-emitting diodes," physica status solidi (a), vol. 207, pp. 2217-2225, 2010.
[41] X. Ni, Q. Fan, R. Shimada, U. m. Özgür, and H. Morkoç, "Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells," Applied Physics Letters, vol. 93, p. 171113, 2008.
[42] S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho, M.-K. Kwon, S. P. Lee, et al., "Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes," Applied Physics Letters, vol. 94, p. 231123, 2009.
[43] M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, et al., "Polarization-matched GaInN∕AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop," Applied Physics Letters, vol. 93, p. 041102, 2008.
[44] N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, et al., "Defect-related tunneling mechanism of efficiency droop in III-nitride light-emitting diodes," Applied Physics Letters, vol. 96, p. 133502, 2010.
[45] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Applied Physics Letters, vol. 91, p. 141101, 2007.
[46] K. T. Delaney, P. Rinke, and C. G. Van de Walle, "Auger recombination rates in nitrides from first principles," Applied Physics Letters, vol. 94, p. 191109, 2009.
[47] Y. Yang, X. A. Cao, and C. Yan, "Investigation of the Nonthermal Mechanism of Efficiency Rolloff in InGaN Light-Emitting Diodes," IEEE Transactions on Electron Devices, vol. 55, pp. 1771-1775, 2008.
[48] X. A. Cao, Y. Yang, and H. Guo, "On the origin of efficiency roll-off in InGaN-based light-emitting diodes," Journal of Applied Physics, vol. 104, p. 093108, 2008.
[49] M. F. Schubert and E. F. Schubert, "Effect of heterointerface polarization charges and well width upon capture and dwell time for electrons and holes above GaInN/GaN quantum wells," Applied Physics Letters, vol. 96, p. 131102, 2010.
[50] X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Özgür, et al., "Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them," Journal of Applied Physics, vol. 108, p. 033112, 2010.
[51] N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, et al., "Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200A∕cm2," Applied Physics Letters, vol. 91, p. 243506, 2007.
[52] J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, "Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop," Physical Review Letters, vol. 110, 2013.
[53] J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, et al., "Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes," Applied Physics Letters, vol. 94, p. 011113, 2009.
[54] U. m. Ozgur, L. Huiyong, L. Xing, N. Xianfeng, and H. Morkoç, "GaN-Based Light-Emitting Diodes: Efficiency at High Injection Levels," Proceedings of the IEEE, vol. 98, pp. 1180-1196, 2010.
[55] J.-R. Chen, C.-H. Lee, T.-S. Ko, Y.-A. Chang, T.-C. Lu, H.-C. Kuo, et al., "Effects of Built-In Polarization and Carrier Overflow on InGaN Quantum-Well Lasers With Electronic Blocking Layers," Journal of Lightwave Technology, vol. 26, pp. 329-337, 2008.
[56] C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, et al., "Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer," Applied Physics Letters, vol. 97, p. 261103, 2010.
[57] Y.-Y. Zhang and G.-R. Yao, "Performance enhancement of blue light-emitting diodes with AlGaN barriers and a special designed electron-blocking layer," Journal of Applied Physics, vol. 110, p. 093104, 2011.
[58] C. Liu, Z. Ren, X. Chen, B. Zhao, X. Wang, Y. Yin, et al., "Study of InGaN/GaN Light Emitting Diodes With Step-Graded Electron Blocking Layer," IEEE Photonics Technology Letters, vol. 26, pp. 134-137, 2014.
[59] Y. Zhao, S. Tanaka, C.-C. Pan, K. Fujito, D. Feezell, J. S. Speck, et al., " High-Power Blue-Violet Semipolar (2021) InGaN/GaN Light-Emitting Diodes with Low Efficiency Droop at 200 A/cm2," Applied Physics Express, vol. 4, p. 082104, 2011.
[60] C.-H. Chiu, D.-W. Lin, C.-C. Lin, Z.-Y. Li, W.-T. Chang, H.-W. Hsu, et al., " Reduction of Efficiency Droop in Semipolar (1-101) InGaN/GaN Light Emitting Diodes Grown on Patterned Silicon Substrates," Applied Physics Express, vol. 4, p. 012105, 2011.
[61] X. Li, X. Ni, J. Lee, M. Wu, U. Özgür, H. Morkoç, et al., "Efficiency retention at high current injection levels in m-plane InGaN light emitting diodes," Applied Physics Letters, vol. 95, p. 121107, 2009.
[62] S.-C. Ling, T.-C. Lu, S.-P. Chang, J.-R. Chen, H.-C. Kuo, and S.-C. Wang, "Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes," Applied Physics Letters, vol. 96, p. 231101, 2010.
[63] B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, et al., "Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes," Applied Physics Letters, vol. 100, p. 031905, 2012.
[64] T. Sugahara, M. Hao, T. Wang, D. Nakagawa, Y. Naoi, K. Nishino, et al., "Role of Dislocation in InGaN Phase Separation," Japanese Journal of Applied Physics, vol. 37, pp. L1195-L1198, 1998.
[65] Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, "Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure," Applied Physics Letters, vol. 101, p. 083505, 2012.
[66] V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, "Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes," Applied Physics Letters, vol. 97, p. 251110, 2010.
[67] C.-K. Li and Y.-R. Wu, "Study on the Current Spreading Effect and Light Extraction Enhancement of Vertical GaN/InGaN LEDs," IEEE Transactions on Electron Devices, vol. 59, pp. 400-407, 2012.
[68] X. Guo, Y. L. Li, and E. F. Schubert, "Efficiency of GaN/InGaN light-emitting diodes with interdigitated mesa geometry," Applied Physics Letters, vol. 79, p. 1936, 2001.
[69] H. Kim, J.-M. Lee, C. Huh, S.-W. Kim, D.-J. Kim, S.-J. Park, et al., "Modeling of a GaN-based light-emitting diode for uniform current spreading," Applied Physics Letters, vol. 77, p. 1903, 2000.
[70] H. Kim, S.-J. Park, H. Hwang, and N.-M. Park, "Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs," Applied Physics Letters, vol. 81, p. 1326, 2002.
[71] X. Guo and E. F. Schubert, "Current crowding in GaN/InGaN light emitting diodes on insulating substrates," Journal of Applied Physics, vol. 90, p. 4191, 2001.
[72] E. F. Schubert, I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, et al., "InGaN blue light-emitting diodes with optimized n-GaN layer," vol. 3621, pp. 28-36, 1999.
[73] Y. T. Rebane, Y. G. Shreter, B. S. Yavich, V. E. Bougrov, S. I. Stepanov, and W. N. Wang, "Light Emitting Diode with Charge Asymmetric Resonance Tunneling," physica status solidi (a), vol. 180, pp. 121-126, 2000.
[74] J. K. Sheu, G. C. Chi, and M. J. Jou, "Enhanced output power in an InGaN-GaN multiquantum-well light-emitting diode with an InGaN current-spreading layer," IEEE Photonics Technology Letters, vol. 13, pp. 1164-1166, 2001.
[75] H. C. Lin, G. Y. Lee, H. H. Liu, N. W. Hsu, C. C. Wu, and J. I. Chyi, "Polarization-Enhanced Mg Doping in InGaN/GaN Superlattice for Green Light-Emitting Diodes," p. CMM4, 2009.
[76] I. Vurgaftman and J. R. Meyer, "Band parameters for nitrogen-containing semiconductors," Journal of Applied Physics, vol. 94, p. 3675, 2003.
[77] A. F. Wright, "Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN," Journal of Applied Physics, vol. 82, p. 2833, 1997.
[78] D. Dugdale, S. Brand, and R. Abram, "Direct calculation of k⋅p parameters for wurtzite AlN, GaN, and InN," Physical Review B, vol. 61, pp. 12933-12938, 2000.
[79] S. Chuang and C. Chang, "k⋅p method for strained wurtzite semiconductors," Physical Review B, vol. 54, pp. 2491-2504, 1996.
[80] O. Ambacher, "Growth and applications of Group III-nitrides," Journal of Physics D: Applied Physics, vol. 31, pp. 2653-2710, 1998.
[81] M. Rao, D. Kim, and S. Mahajan, "Compositional dependence of phase separation in InGaN layers," Applied Physics Letters, vol. 85, p. 1961, 2004.
[82] H.-C. Lin, R.-S. Lin, and J.-I. Chyi, "Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment," Applied Physics Letters, vol. 92, p. 161113, 2008.
[83] Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, "Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells," Physical Review B, vol. 55, pp. R1938-R1941, 1997.
[84] X. Han, J. Li, J. Wu, X. Wang, D. Li, X. Liu, et al., "Effects of different modified underlayer surfaces on growth and optical properties of InGaN quantum dots," Vacuum, vol. 77, pp. 307-314, 2005.
[85] Y. L. Li, Y. R. Huang, and Y. H. Lai, "Efficiency droop behaviors of InGaN∕GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness," Applied Physics Letters, vol. 91, p. 181113, 2007.
[86] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, et al., "Effect of dislocation density on efficiency droop in GaInN∕GaN light-emitting diodes," Applied Physics Letters, vol. 91, p. 231114, 2007.
[87] Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, et al., "“S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells," Applied Physics Letters, vol. 73, p. 1370, 1998.
[88] P. G. Eliseev, P. Perlin, J. Lee, and M. Osiński, "“Blue” temperature-induced shift and band-tail emission in InGaN-based light sources," Applied Physics Letters, vol. 71, p. 569, 1997.
[89] A. Dadgar, M. Poschenrieder, J. Bläsing, O. Contreras, F. Bertram, T. Riemann, et al., "MOVPE growth of GaN on Si(111) substrates," Journal of Crystal Growth, vol. 248, pp. 556-562, 2003.
[90] Z. Liliental-Weber and D. Cherns, "Microstructure of laterally overgrown GaN layers," Journal of Applied Physics, vol. 89, pp. 7833-7840, Jun 15 2001.
[91] K. Cheng, M. Leys, S. Degroote, B. Daele, S. Boeykens, J. Derluyn, et al., "Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers," Journal of Electronic Materials, vol. 35, pp. 592-598, 2006.
[92] C.-H. Chiu, C.-C. Lin, D.-M. Deng, D.-W. Lin, J.-C. Li, Z.-Y. Li, et al., "Optical and Electrical Properties of GaN-Based Light Emitting Diodes Grown on Micro- and Nano-Scale Patterned Si Substrate," IEEE Journal of Quantum Electronics, vol. 47, pp. 899-906, 2011.
[93] T. Riemann, T. Hempel, J. Christen, P. Veit, R. Clos, A. Dadgar, et al., "Optical and structural microanalysis of GaN grown on SiN submonolayers," Journal of Applied Physics, vol. 99, p. 123518, 2006.
[94] H. Lahrèche, P. Vennéguès, B. Beaumont, and P. Gibart, "Growth of high-quality GaN by low-pressure metal-organic vapour phase epitaxy (LP-MOVPE) from 3D islands and lateral overgrowth," Journal of Crystal Growth, vol. 205, pp. 245-252, 1999.
[95] R. Datta, M. J. Kappers, M. E. Vickers, J. S. Barnard, and C. J. Humphreys, "Growth and characterisation of GaN with reduced dislocation density," Superlattices and Microstructures, vol. 36, pp. 393-401, 2004.
[96] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, et al., "Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films," Applied Physics Letters, vol. 68, p. 643, 1996.
[97] I. Y. Knoke, E. Meissner, J. Friedrich, H. P. Strunk, and G. Müller, "Reduction of the dislocation density in GaN during low-pressure solution growth," Journal of Crystal Growth, vol. 310, pp. 3351-3357, 2008.
[98] G. Li, S. J. Chua, S. J. Xu, W. Wang, P. Li, B. Beaumont, et al., "Nature and elimination of yellow-band luminescence and donor–acceptor emission of undoped GaN," Applied Physics Letters, vol. 74, p. 2821, 1999.
[99] I. Shalish, L. Kronik, G. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch, et al., "Yellow luminescence and related deep levels in unintentionally doped GaN films," Physical Review B, vol. 59, pp. 9748-9751, 1999.
[100] N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, "Scattering of electrons at threading dislocations in GaN," Journal of Applied Physics, vol. 83, p. 3656, 1998.
[101] D. G. Zhao, H. Yang, J. J. Zhu, D. S. Jiang, Z. S. Liu, S. M. Zhang, et al., "Effects of edge dislocations and intentional Si doping on the electron mobility of n-type GaN films," Applied Physics Letters, vol. 89, p. 112106, 2006.
[102] S. W. Lee, D. C. Oh, H. Goto, J. S. Ha, H. J. Lee, T. Hanada, et al., "Origin of forward leakage current in GaN-based light-emitting devices," Applied Physics Letters, vol. 89, p. 132117, 2006.
[103] D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, et al., " Carrier localization mechanisms in InxGa1-xN/GaN quantum wells," Physical Review B, vol. 83, 2011.
[104] H.-Y. Ryu, D.-S. Shin, and J.-I. Shim, "Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material," Applied Physics Letters, vol. 100, p. 131109, 2012.
[105] H. Lei, J. Chen, and P. Ruterana, "Role of c-screw dislocations on indium segregation in InGaN and InAlN alloys," Applied Physics Letters, vol. 96, p. 161901, 2010.
[106] K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, "Minority carrier diffusion length in GaN: Dislocation density and doping concentration dependence," Applied Physics Letters, vol. 86, p. 052105, 2005.
[107] S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, et al., "Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors," Nat Mater, vol. 5, pp. 810-6, Oct 2006.
[108] S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, et al., " Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,," Applied Physics Letters, vol. 79, p. 4319, 2001.
[109] S. F. Chichibu, A. C. Abare, M. P. Mack, M. S. Minsky, T. Deguchi, D. Cohen, et al., "Optical properties of InGaN quantum wells," Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 59, pp. 298-306, May 6 1999.
[110] J. A. Davidson, P. Dawson, T. Wang, T. Sugahara, J. W. Orton, and S. Sakai, "Photoluminescence studies of InGaN/GaN multi-quantum wells," Semiconductor Science and Technology, vol. 15, pp. 497-505, Jun 2000.
[111] T. Koyama, T. Onuma, H. Masui, A. Chakraborty, B. A. Haskell, S. Keller, et al., " Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1-xN∕GaN blue light emitting diodes fabricated on freestanding GaN substrates," Applied Physics Letters, vol. 89, p. 091906, 2006.
[112] A. Chakraborty, T. J. Baker, B. A. Haskell, F. Wu, J. S. Speck, S. P. Denbaars, et al., "Milliwatt Power Blue InGaN/GaN Light-Emitting Diodes on Semipolar GaN Templates," Japanese Journal of Applied Physics, vol. 44, pp. L945-L947, 2005.
[113] Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, et al., "30-mW-Class High-Power and High-Efficiency Blue Semipolar (10-1-1) InGaN/GaN Light-Emitting Diodes Obtained by Backside Roughening Technique," Applied Physics Express, vol. 3, p. 102101, 2010.
[114] T. Hikosaka, T. Tanikawa, Y. Honda, M. Yamaguchi, and N. Sawaki, "Fabrication and properties of semi-polar (1-101) and (11-22) InGaN/GaN light emitting diodes on patterned Si substrates," physica status solidi (c), vol. 5, pp. 2234-2237, 2008.
[115] J. W. Yang, A. Lunev, G. Simin, A. Chitnis, M. Shatalov, M. A. Khan, et al., "Selective area deposited blue GaN–InGaN multiple-quantum well light emitting diodes over silicon substrates," Applied Physics Letters, vol. 76, p. 273, 2000.
[116] K. P. Streubel, D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, et al., "GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE," presented at the Proc. SPIE, 2009.
[117] J.-Y. Kim, Y. Tak, J. Kim, H.-G. Hong, S. Chae, J. W. Lee, et al., "Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate," presented at the Proc. SPIE, 2012.
[118] E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, et al., "Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy," Applied Physics Letters, vol. 79, p. 3230, 2001.
[119] A. Krost, A. Dadgar, F. Schulze, J. Bläsing, G. Strassburger, R. Clos, et al., "In situ monitoring of the stress evolution in growing group-III-nitride layers," Journal of Crystal Growth, vol. 275, pp. 209-216, 2005.
[120] K.-L. Lin, E.-Y. Chang, Y.-L. Hsiao, W.-C. Huang, T. Li, D. Tweet, et al., "Growth of GaN film on 150mm Si (111) using multilayer AlN∕AlGaN buffer by metal-organic vapor phase epitaxy method," Applied Physics Letters, vol. 91, p. 222111, 2007.
[121] Y. Kawaguchi, Y. Honda, H. Matsushima, M. Yamaguchi, K. Hiramatsu, and N. Sawaki, "Selective Area Growth of GaN on Si Substrate Using SiO 2 Mask by Metalorganic Vapor Phase Epitaxy," Japanese Journal of Applied Physics, vol. 37, pp. L966-L969, 1998.
[122] S. Tanaka, Y. Kawaguchi, N. Sawaki, M. Hibino, and K. Hiramatsu, "Defect structure in selective area growth GaN pyramid on (111)Si substrate," Applied Physics Letters, vol. 76, p. 2701, 2000.
[123] E. Feltin, B. Beaumont, P. Vennéguès, M. Vaille, P. Gibart, T. Riemann, et al., "Epitaxial lateral overgrowth of GaN on Si (111)," Journal of Applied Physics, vol. 93, p. 182, 2003.
[124] Y. Honda, N. Kameshiro, M. Yamaguchi, and N. Sawaki, " Growth of (1-101) GaN on a 7-degree off-oriented (001)Si substrate by selective MOVPE," Journal of Crystal Growth, vol. 242, pp. 82-86, 2002.
[125] F. Schulze, A. Dadgar, J. Bläsing, and A. Krost, "Influence of buffer layers on metalorganic vapor phase epitaxy grown GaN on Si(001)," Applied Physics Letters, vol. 84, p. 4747, 2004.
[126] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, et al., "Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO)," Journal of Crystal Growth, vol. 221, pp. 316-326, 2000.
[127] S. Zamir, B. Meyler, and J. Salzman, "Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy," Applied Physics Letters, vol. 78, p. 288, 2001.
[128] H. Morkoç, “Handbook of Nitride Semiconductors and Devices”, Volume 2, Wiley-VCH, 2008.
[129] F. A. Ponce, D. Cherns, W. T. Young, and J. W. Steeds, "Characterization of dislocations in GaN by transmission electron diffraction and microscopy techniques," Applied Physics Letters, vol. 69, p. 770, 1996.
[130] A. Sakai, H. Sunakawa, and A. Usui, "Defect structure in selectively grown GaN films with low threading dislocation density," Applied Physics Letters, vol. 71, p. 2259, 1997.
[131] T. Hikosaka, T. Narita, Y. Honda, M. Yamaguchi, and N. Sawaki, "Optical and electrical properties of (1-101)GaN grown on a 7° off-axis (001)Si substrate," Applied Physics Letters, vol. 84, p. 4717, 2004.
[132] M. Funato and Y. Kawakami, "Excitonic properties of polar, semipolar, and nonpolar InGaN∕GaN strained quantum wells with potential fluctuations," Journal of Applied Physics, vol. 103, p. 093501, 2008.
[133] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, et al., "Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures," Applied Physics Letters, vol. 73, p. 2006, 1998.
[134] S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, Y.-S. Lin, C. Hsu, et al., "Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures," Journal of Applied Physics, vol. 92, p. 4441, 2002.
[135] T. Wunderer, P. Brückner, J. Hertkorn, F. Scholz, G. J. Beirne, M. Jetter, et al., "Time- and locally resolved photoluminescence of semipolar GaInN∕GaN facet light emitting diodes," Applied Physics Letters, vol. 90, p. 171123, 2007.
[136] T. Tanikawa, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, "Strain relaxation in thick (1-101) InGaN grown on GaN/Si substrate," physica status solidi (b), vol. 249, pp. 468-471, 2012.
指導教授 綦振瀛(Jen-inn Chyi) 審核日期 2014-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明