博碩士論文 965402602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:18.224.68.104
姓名 李大衛(David Chunhu Li)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 車載隨意行動網路中之智慧型節能及車輛密度感知路由協定
(Intelligent Energy Efficient and Traffic Density Aware Routing Protocols for Vehicular Ad Hoc Networks)
相關論文
★ 無線行動隨意網路上穩定品質服務路由機制之研究★ 應用多重移動式代理人之網路管理系統
★ 應用移動式代理人之網路協同防衛系統★ 鏈路狀態資訊不確定下QoS路由之研究
★ 以訊務觀察法改善光突發交換技術之路徑建立效能★ 感測網路與競局理論應用於舒適性空調之研究
★ 以搜尋樹為基礎之無線感測網路繞徑演算法★ 基於無線感測網路之行動裝置輕型定位系統
★ 多媒體導覽玩具車★ 以Smart Floor為基礎之導覽玩具車
★ 行動社群網路服務管理系統-應用於發展遲緩兒家庭★ 具位置感知之穿戴式行動廣告系統
★ 調適性車載廣播★ 車載網路上具預警能力之車輛碰撞避免機制
★ 應用於無線車載網路上之合作式交通資訊傳播機制以改善車輛擁塞★ 智慧都市中應用車載網路以改善壅塞之調適性虛擬交通號誌
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 車載隨意行動網路(英語:Vehicular Ad-Hoc Networks,縮寫為VANETs),又稱車用行動通訊網路。這種網路是一種行動通訊技術,是以移動中的車輛及交通設施為節點,利用無線通訊技術,來形成行動網路。加入這種網路的車輛,會成為一個無線節點,或是無線路由。
在車載隨意行動網路中,如何設計新穎原創的無線路由協定以支援各種各樣的應用服務一直是很重要的研究議題。而由於能源短缺的問題日益加劇,車載隨意網路中的車輛將以電動車或者混合動力驅動車為主將是必然趨勢。如何設計節約能源或者提升能源利用效能的通訊協定已經是迫在眉睫。因此,本博士論文將針對上述兩個關鍵議題進行研究。先調查了車載網路中關於路由協定的最先進的研究分類,探討了各種路由策略方法。然後探討了封包在車載網路中傳遞過程中的能量消耗方式。建立了以節約能源的封包傳遞模型並且設計了一個有效使用能源的地域廣播的車載網路路由協定。通過完整的電腦模擬,實驗結果證明本研究設計的兩種路由協定能有效的改進網路效能和節約能源的效能。本論文研究了車輛間通訊模型。提出了影響車間通訊的三個重要參數。針對網路中車輛密度稀疏和壅塞的兩種環境,本研究分別設計了基於通訊鏈路穩定度的車載網路路由協定和基於最小化傳輸延遲的路由協定。
摘要(英) Vehicular Ad Hoc Network (VANET) is an emerging area of wireless ad hoc networks that facilitates ubiquitous connectivity between smart vehicles through Vehicle-to-Vehicle (V2V) or Vehicle-to-Roadside (V2R) communications. Vehicles located inside the VANETs are communication nodes, relay nodes or routers.
How to design novel communication protocols to support various applications have been an important research challenge in vehicular networks. In particular, energy shortage and energy crisis are increasing severe problems that hinder economy developments in the world. Many automotive manufacturers have conduct researches on enhancement of interior of vehicles with green technologies, for instance hybrid technology of gasoline and electric engine, or full electric vehicles. Thus, developing energy efficient communication protocols in VANETs is imminent. This dissertation is to study aforementioned important research issues and proposes energy-efficient and traffic density awareness routing protocols for VANETs. An energy efficient geocast routing protocol is also proposed to save the energy in routing packets to region of interests. Extensive simulations are conducted to evaluate performances or proposed two routing protocols. Simulation results show that proposed protocols outperform compared routing protocols in literature in terms of network performance and green performance. Moreover, traffic density prediction model, inter-vehicle connectivity model and energy efficiency on packet forwarding are studied. As a result, this dissertation presents a link-stability based routing protocol for dense vehicle density vehicular networks and a min-delay based routing protocol for sparse vehicle density network environment, respectively.
關鍵字(中) ★ 車輛密度
★ 節能
★ 模型
★ 路由協定
★ 車載隨意行動網路
關鍵字(英) ★ Traffic Density
★ Energy Efficient
★ Model
★ Routing Protocol
★ VANETs
論文目次 Contents

Chapter 1. Introduction 1
1.1 Motivation and Scope 1
1.2 Research Problems and Objectives 5
1.3 Contributions of Dissertation 8
1.4 Dissertation Organization 9
Chapter 2. Survey of Routing Protocols in Vehicular Ad Hoc Networks 11
2.1 Research Background 11
2.2 Multicast/Geocast Routing Protocols Taxonomy 13
2.3 Unicast Routing Protocols Taxonomy 16
2.4 VANET Simulators Taxonomy 20
2.5 Mobility Generators Taxonomy 25
Chapter 3. Energy Efficiency on Packet Geocasting Model 28
3.1 Energy Consumption Model on Geocasting Messages 30
3.2 Energy-Efficiency in Geocasting Packets 31
Chapter 4. Energy Efficiency Min-Delay based Geocast Routing Protocol for Vehicular Ad Hoc Networks 37
4.1 Related Works 37
4.2 Selection of Region of Forwarding 38
4.3 Selection of Relay Nodes 39
4.4 Geographic Min-Delay based Routing 40
4.5 Routing Process in Energy-Efficiency Geocast Routing Protocol 42
4.6 Simulation Evaluation of Energy Efficiency Min-Delay based Geocast Routing Protocol 48
4.6.1 Average Power Consumption of Paths 49
4.6.2 Maximum Power Consumption of Nodes 51
4.6.3 Packet Delivery Delay 52
4.6.4 Packet Delivery Ratio 54
4.6.5 Routing Overhead 56
Chapter 5. Inter-Vehicle Communication Model 58
5.1 Assumptions 58
5.2 Prediction of Traffic Density in Vehicular Networks 60
5.3 Relative Inter-Vehicle Velocity 62
5.4 Inter-vehicle Communication Link Lifetime 63
5.5 Average Packet Waiting Time at Buffer Queue 64
Chapter 6. Traffic Density Aware Routing Protocol for Vehicular Ad Hoc Networks 66
6.1 Related Works 66
6.2 Link Stability based Unicast Routing Algorithm in Dense Vehicle Traffic Environment 67
6.3 Routing Process in Dense Vehicle Vehicular Networks 73
6.4 Min-Delay based Unicast Routing Algorithm in Sparse Vehicle Traffic Environment 76
6.5 Routing Process in Sparse Vehicle Vehicular Networks 78
6.6 Simulation Evaluation of Traffic Density Aware Routing Protocol 81
6.6.1 Packet Delivery Delay 85
6.6.2 Packet Delivery Ratio 88
6.6.3 Number of Control Bytes Transmitted per Data Byte Delivered 90
6.6.4 Number of Total Packets Transmitted per Data Packet Delivered 92
6.6.5 Goodput 94
Chapter 7. Conclusions, Research Limitations and Future Works 97
7.1 Conclusions 97
7.2 Research Limitations 98
7.3 Future Works 100
References 104
Appendix 117
Publication List 118


參考文獻 References
[1]. S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan, “A comprehensive survey on vehicular ad hoc network,” Journal of Network and Computer Applications, vol. 37, pp. 380–392, 2014.

[2]. L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.
[3]. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, architectural elements, and future directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.
[4]. M. Gerla, E.-K. Lee, G. Pau, and U. Lee, “Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds,” in Proceedings of 2014 IEEE World Forum on Internet of Things (WF-IoT), 2014, pp. 241–246.
[5]. A. P. Bianzino, C. Chaudet, D. Rossi, and J. Rougier, “A survey of green networking research,” IEEE Communications Surveys & Tutorials, vol. 14, no. 1, pp. 3–20, 2012.
[6]. N. Chilamkurti, S. Zeadally, and F. Mentiplay, “Green networking for major components of information communication technology systems,” EURASIP Journal on Wireless Communications and Networking, vol. 2009, p. 35, 2009.
[7]. V. Gay, P. Medagliani, F. Broekaert, J. Leguay, and M. L. Ramos, “Industrial application of green networking: smarter cities,” Green Networking, pp. 233–269, 2013.
[8]. G. Dimitrakopoulos and P. Demestichas, “Intelligent transportation systems,” IEEE Vehicular Technology Magazine, vol. 5, no. 1, pp. 77–84, 2010.
[9]. R. Bishop, Intelligent vehicle technology and trends, in: Artech House Publishers, 2005, pp. 23 - 47.
[10]. Google Self-Driving Car. [Online]. Available: https://tctechcrunch2011.files.wordpress.com/2014/05/screen-shot-2014-05-14-at-1-02-48-pm.png?w=1006&h=569, Accessed on: May 21, 2015.
[11]. D. C. Li, L-D Chou, L-M Tseng, Y-M Chen, “Energy Efficient Min Delay-based Geocast Routing Protocol for the Internet of Vehicles.” Journal of Information Science and Engineering. [Accepted and to be published].
[12]. Heavy Vehicle Traffic Density. [Online]. Available: http://files.stv.tv/imagebase/124/623x349/124087-general-view-traffic-queues-on-motorway-congestion-road-quality-image.jpg, Accessed on: April. 14, 2015.
[13]. Light Vehicle Traffic Density. [Online]. Available: http://www.german-autobahn.eu/traffic/low_traffic.jpg, Accessed on: April. 14, 2015.
[14]. D. J. Deng, H. C. Chen, H. C. Chao, and Y. M. Huang, “A collision alleviation scheme for IEEE 802.11p VANETs,” Wireless Personal Communications, vol. 56, no. 3, pp. 371–383, 2011.
[15]. J. L. Chen, Y. C. Chang, Y. S. Lin, and H. W. Du, “Embedded WiMAX-based vehicular router for Telematics computing,” in 11th International Conference on Advanced Communication Technology, 2009 (ICACT 2009), 2009, vol. 3, pp. 1857–1862.
[16]. W. Chen, R. K. Guha, T. J. Kwon, J. Lee, and Y. Y. Hsu, “A survey and challenges in routing and data dissemination in vehicular ad hoc networks,” Wireless Communications and Mobile Computing, vol. 11, no. 7, pp. 787–795, 2011.
[17]. S. Kumari, “Survey on routing protocols in VANET,” International Journal of Wired and Wireless Communications, vol. 2, no. 1, pp. 7–11, 2013.
[18]. F. Li and Y. Wang, “Routing in vehicular ad hoc networks: a survey,” IEEE Vehicular Technology Magazine, vol. 2, no. 2, pp. 12–22, 2007.
[19]. Y. W. Lin, Y. S. Chen, and S. L. Lee, “Routing protocols in vehicular ad hoc networks: a survey and future perspectives,” Journal of Information Science and Engineering, vol. 26, no. 3, pp. 913–932, 2010.
[20]. Y. Xia, C. K. Yeo, and B. S. Lee, “Hierarchical cluster based routing for highly mobile heterogeneous MANET,” in International Conference on Network and Service Security 2009 (N2S’09), 2009, pp. 1–6.
[21]. R. A. Santos, R. M. Edwards, A. Edwards, and D. Belis, “A novel cluster-based location routing algorithm for inter-vehicular communication,” in 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2004 (PIMRC 2004), 2004, vol. 2, pp. 1032–1036.
[22]. Y. Luo, W. Zhang, and Y. Hu, “A new cluster based routing protocol for VANET,” in 2010 Second International Conference on Networks Security Wireless Communications and Trusted Computing (NSWCTC), 2010, vol. 1, pp. 176–180.
[23]. T. Song, W. Xia, T. Song, and L. Shen, “A cluster-based directional routing protocol in VANET,” in 2010 12th IEEE International Conference on Communication Technology (ICCT), 2010, pp. 1172–1175.
[24]. Y. S. Chen, Y. W. Lin, and S. L. Lee, “A mobicast routing protocol in vehicular ad-hoc networks,” Mobile Networks and Applications, vol. 15, no. 1, pp. 20–35, 2010.
[25]. S. Shivshankar and A. Jamalipour, “Content-based routing using multicasting for vehicular networks,” in 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), 2012, pp. 2460–2464.
[26]. S. Shivshankar and A. Jamalipour, “Spatio-temporal multicast grouping for content-based routing in vehicular networks: a distributed approach,” Journal of Network and Computer Applications, vol. 39, pp. 93–103, 2014.
[27]. H. Wang, T. Zhu, S. Lei, W. Yang, and Y. Wang, “CMTG: a content-based mobile tendency geocast routing protocol in urban vehicular networks,” International Journal of Distributed Sensor Networks.
[28]. C. Maihofer, “A survey of geocast routing protocols,” IEEE Communications Surveys & Tutorials, vol. 6, no. 2, pp. 32–42, 2004.
[29]. S. Allal and S. Boudjit, “Geocast routing protocols for vanets: survey and geometry-driven scheme proposal,” Journal of Internet Services and Information Security (JISIS), vol. 3, no. 1/2, pp. 20–36, 2013.
[30]. A. Bachir and A. Benslimane, “A multicast protocol in ad hoc networks inter-vehicle geocast,” in the 57th IEEE Semiannual Vehicular Technology Conference, 2003 (VTC 2003-Spring), 2003, vol. 4, pp. 2456–2460.
[31]. H. P. Joshi, M. L. Sichitiu, and M. Kihl, “Distributed robust geocast multicast routing for inter-vehicle communication,” in Proceedings of WEIRD workshop on WiMax, Wireless and Mobility, 2007, pp. 9–21.
[32]. C. Maihofer and R. Eberhardt, “Geocast in vehicular environments: caching and transmission range control for improved efficiency,” in 2004 IEEE Intelligent Vehicles Symposium, 2004, pp. 951–956.
[33]. C. Maihöfer, T. Leinmüller, and E. Schoch, “Abiding geocast: time–stable geocast for ad hoc networks,” in Proceedings of the 2nd ACM international workshop on Vehicular ad hoc networks, 2005, pp. 20–29.
[34]. W. K. Wolterink, G. Heijenk, and G. Karagiannis, “Constrained geocast to support cooperative adaptive cruise control (CACC) merging,” in 2010 IEEE Vehicular Networking Conference (VNC), 2010, pp. 41–48.
[35]. G. Zhang, W. Chen, Z. Xu, H. Liang, D. Mu, and L. Gao, “Geocast routing in urban vehicular ad hoc networks,” in Computer and Information Science 2009, Springer, 2009, pp. 23–31.
[36]. A. Lakas and M. Shaqfa, “Geocache: sharing and exchanging road traffic information using peer-to-peer vehicular communication,” in Proceedings of 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), 2011, pp. 1–7.
[37]. S. Allal and S. Boudjit, “GeoSUZ: A Geocast Routing Protocol in Sub-ZORs for VANETs,” in Advanced Infocomm Technology, Springer, 2013, pp. 319–329.
[38]. H. Rahbar, K. Naik, and A. Nayak, “DTSG: Dynamic time-stable geocast routing in vehicular ad hoc networks,” in 2010 The 9th IFIP Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), 2010, pp. 1–7.
[39]. M. Alsabaan, K. Naik, and A. Nayak, “Applying vehicular ad hoc networks for reduced vehicle fuel consumption,” in Recent Trends in Wireless and Mobile Networks, Springer, 2010, pp. 217–228.
[40]. M. Alsabaan, K. Naik, T. Khalifa, and A. Nayak, “Vehicular networks for reduction of fuel consumption and CO 2 emission,” in Proceedings of 2010 8th IEEE International Conference on Industrial Informatics (INDIN), 2010, pp. 671–676.
[41]. C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers,” in ACM SIGCOMM Computer Communication Review, 1994, vol. 24, pp. 234–244.
[42]. P. Jacquet, P. Mühlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot, “Optimized link state routing protocol for ad hoc networks,” in Proceedings of IEEE International Multi Topic Conference, 2001.2001, pp. 62–68.
[43]. C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in Proceedings of Second IEEE Workshop on Mobile Computing Systems and Applications, 1999. WMCSA’99, 1999, pp. 90–100.
[44]. D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless networks,” in Mobile computing, Springer, 1996, pp. 153–181.
[45]. R. S. Raw, D. K. Lobiyal, and S. Das, “An analytical approach to position-based routing protocol for vehicular ad hoc networks,” in Recent Trends in Computer Networks and Distributed Systems Security, 2012, pp. 147–156.
[46]. A. Fonseca and T. Vazao, “Applicability of position-based routing for VANET in highways and urban environment,” Journal of Network and Computer Applications, vol. 36, no. 3, pp. 961–973, 2013.
[47]. S. M. Bilal, C. J. Bernardos, and C. Guerrero, “Position-based routing in vehicular networks: a survey,” Journal of Network and Computer Applications, vol. 36, no. 2, pp. 685–697, 2013.
[48]. J. Bernsen and D. Manivannan, “Unicast routing protocols for vehicular ad hoc networks: A critical comparison and classification,” Pervasive and Mobile Computing, vol. 5, no. 1, pp. 1–18, 2009.
[49]. C. Lochert, M. Mauve, H. Füs sler, and H. Hartenstein, “Geographic routing in city scenarios,” ACM SIGMOBILE Mobile Computing and Communications Review, vol. 9, no. 1, pp. 69–72, 2005.
[50]. M. Jerbi, R. Meraihi, S. M. Senouci, and Y. Ghamri-Doudane, “GyTAR: improved greedy traffic aware routing protocol for vehicular ad hoc networks in city environments,” in Proceedings of the 3rd International Workshop on Vehicular Ad Hoc Networks, 2006, pp. 88–89.
[51]. J. Zhao and G. Cao, “VADD: Vehicle-assisted data delivery in vehicular ad hoc networks,” IEEE Transactions on Vehicular Technology, vol. 57, no. 3, pp. 1910–1922, 2008.
[52]. T. Li, Y. Li, and J. Liao, “A contention-based routing protocol for vehicular ad hoc networks in city environments,” in 29th IEEE International Conference on Distributed Computing Systems Workshops, 2009 (ICDCS Workshops’ 09), 2009, pp. 482–487.
[53]. S. H. Cha, K. W. Lee, and H. S. Cho, “Grid-based predictive geographical routing for inter-vehicle communication in urban areas,” International Journal of Distributed Sensor Networks, vol. 2012, 2012.
[54]. T. Y. Wu, Y. B. Wang, and W. T. Lee, “Mixing greedy and predictive approaches to improve geographic routing for VANET,” Wireless Communications and Mobile Computing, vol. 12, no. 4, pp. 367–378, 2012.
[55]. V. Naumov and T. R. Gross, “Connectivity-aware routing (CAR) in vehicular ad-hoc networks,” in Proceedings of 26th IEEE International Conference on Computer Communications (INFOCOM 2007), 2007, pp. 1919–1927.
[56]. J. Tian, L. Han, and K. Rothermel, “Spatially aware packet routing for mobile ad hoc inter-vehicle radio networks,” in Proceedings of 2003 IEEE Intelligent Transportation Systems, 2003, vol. 2, pp. 1546–1551.
[57]. B. C. Seet, G. Liu, B. S. Lee, C. H. Foh, K. J. Wong, and K. K. Lee, “A-STAR: A mobile ad hoc routing strategy for metropolis vehicular communications,” in Proceedings of Networking 2004, 2004, pp. 989–999.
[58]. Y. S. Chen, Y. W. Lin, and C. Y. Pan, “DIR: diagonal-intersection-based routing protocol for vehicular ad hoc networks,” Telecommunication Systems, vol. 46, no. 4, pp. 299–316, 2011.
[59]. V. Namboodiri and L. Gao, “Prediction-based routing for vehicular ad hoc networks,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 2332–2345, 2007.
[60]. T. Taleb, E. Sakhaee, A. Jamalipour, K. Hashimoto, N. Kato, and Y. Nemoto, “A stable routing protocol to support ITS services in VANET networks,” IEEE Transactions on Vehicular Technology, vol. 56, no. 6, pp. 3337–3347, 2007.
[61]. R. He, H. Rutagemwa, and X. Shen, “Differentiated reliable routing in hybrid vehicular ad-hoc networks,” in Proceedings of IEEE International Conference on Communications, 2008 (ICC’08), 2008, pp. 2353–2358.
[62]. J. Jeong, S. Guo, Y. Gu, T. He, and D. Du, “TBD: Trajectory-based data forwarding for light-traffic vehicular networks,” in Proceedings of 29th IEEE International Conference on Distributed Computing Systems, 2009 (ICDCS’09), 2009, pp. 231–238.
[63]. F. De Rango, F. Veltri, and S. Marano, “Hierarchical trajectory-based routing protocol for Vehicular Ad Hoc Networks,” in Proceedings of International Symposium on Performance Evaluation of Computer and Telecommunication Systems, 2008 (SPECTS 2008), 2008, pp. 189–196.
[64]. J. Jeong, S. Guo, Y. Gu, T. He, and D. H. Du, “TSF: Trajectory-based statistical forwarding for infrastructure-to-vehicle data delivery in vehicular networks,” in Proceedings of 2010 IEEE 30th International Conference on Distributed Computing Systems (ICDCS), 2010, pp. 557–566.
[65]. L. D. Chou, J. Y. Yang, Y. C. Hsieh, D. C. Chang, and C. F. Tung, “Intersection-based routing protocol for VANETs,” Wireless personal communications, vol. 60, no. 1, pp. 105–124, 2011.
[66]. C. Tee and A. Lee, “Adaptive reactive routing for VANET in city environments,” in Proceedings of 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks (ISPAN), 2009, pp. 610–614.
[67]. S. U. N. Haifeng, L. U. O. Guangchun, and C. Hao, “JTAR: junction-based traffic aware routing in sparse urban VANETs,” IEICE transactions on communications, vol. 95, no. 3, pp. 1007–1010, 2012.
[68]. F. J. Martinez, C. K. Toh, J. C. Cano, C. T. Calafate, and P. Manzoni, “A survey and comparative study of simulators for vehicular ad hoc networks (VANETs),” Wireless Communications and Mobile Computing, vol. 11, no. 7, pp. 813–828, 2011.
[69]. F. J. Martinez, C. K. Toh, J.-C. Cano, C. T. Calafate, and P. Manzoni, “A survey and comparative study of simulators for vehicular ad hoc networks (VANETs),” Wireless Communications and Mobile Computing, vol. 11, no. 7, pp. 813–828, 2011.
[70]. The Network Simulator – NS2. [Online]. Available: http://www.isi.edu/nsnam/
ns/, Accessed on: Feb. 12, 2015.
[71]. OTcl. [Online]. Available: http://otcl-tclcl.sourceforge.net/otcl/, Accessed on: Feb. 13, 2015.
[72]. Cygwin. [Online]. Available: https://www.cygwin.com/, Accessed on: March. 3, 2015.
[73]. EstiNet. [Online]. Available: http://www.estinet.com/, Accessed on: March. 3, 2015.
[74]. Jist/SWANS. [Online]. Available: http://jist.ece.cornell.edu/, Accessed on: March. 6, 2015.
[75]. GTNetS. [Online]. Available: http://www.ece.gatech.edu/research/labs/MANIA
CS/GTNetS/, Accessed on: March. 3, 2015.
[76]. X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: a library for parallel simulation of large-scale wireless networks,” in Proceedings of Twelfth Workshop on Parallel and Distributed Simulation, 1998. PADS 98, 1998, pp. 154–161.
[77]. NS3. [Online]. Available: http://www.nsnam.org/, Accessed on: March. 8, 2015.
[78]. OMNeT++. [Online]. Available: http://omnetpp.org/, Accessed on: March. 8, 2015.
[79]. VanetMobiSim. [Online]. Available: http://vanet.eurecom.fr/, Accessed on: March. 8, 2015.
[80]. CANU Mobility Simulation Environment (CanuMobiSim). [Online]. Available: http://canu.informatik.uni-stuttgart.de/mobisim/, Accessed on: March. 12, 2015.
[81]. Traffic Software Integrated System - Corridor Simulation (TSIS-CORSIM). [Online]. Available: http://mctrans.ce.ufl.edu/featured/tsis/, Accessed on: March. 12, 2015.
[82]. QualNet. [Online]. Available: http://web.scalable-networks.com/content/qualnet, Accessed on: March. 12, 2015.
[83]. SUMO – Simulation of Urban MObility. [Online]. Available: http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/, Accessed on: March. 14, 2015.
[84]. OpenStreetMap. [Online]. Available: http://www.openstreetmap.org, Accessed on: March. 14, 2015.
[85]. F. K. Karnadi, Z. H. Mo, and K. Lan, “Rapid generation of realistic mobility models for VANET,” in IEEE Wireless Communications and Networking Conference, 2007 (WCNC 2007), 2007, pp. 2506–2511.
[86]. STRAW (STreetRAndom Waypoint). [Online]. Available: http://www.aqualab.cs.northwestern.edu/9-projects/144-straw-street-random-waypoint-vehicular-mobility-model-for-network-simulations-e-g-car-networks, Accessed on: March. 14, 2015.
[87]. JiST / SWANS: Java in Simulation Time / Scalable Wireless Ad Hoc Network Simulator. [Online]. Available: http://jist.ece.cornell.edu/, Accessed on: March. 14, 2015.
[88]. C3 for Car-to-Car Cooperation Project. [Online]. Available: http://www.aqualab.cs.northwestern.edu/9-projects/111-c3-car-to-car-cooperation-for-vehicular-ad-hoc-networks, Accessed on: March. 14, 2015.
[89]. F. J. Martinez, J. C. Cano, C. T. Calafate, and P. Manzoni, “Citymob: a mobility model pattern generator for VANETs,” in IEEE International Conference on Communications Workshops, 2008 (ICC Workshops’ 08), 2008, pp. 370–374.
[90]. M. C. C. Hung, K. C. J. Lin, C. F. Chou, and C. C. Hsu, “EFFORT: energy-efficient opportunistic routing technology in wireless sensor networks,” Wireless communications and mobile computing, vol. 13, no. 8, pp. 760–773, 2013.
[91]. C. E. Weng and T. W. Lai, “An energy-efficient routing algorithm based on relative identification and direction for wireless sensor networks,” Wireless personal communications, vol. 69, no. 1, pp. 253–268, 2013.
[92]. N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, “Energy-efficient routing protocols in wireless sensor networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp. 551–591, 2013.
[93]. S. Ghahramani, Fundamentals of probability with stochastic process, Pearson Education India, 2005.
[94]. I. Sen and D. W. Matolak, “Vehicle–vehicle channel models for the 5-GHz band,” IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 2, pp. 235–245, 2008.
[95]. N. Wisitpongphan, F. Bai, P. Mudalige, V. Sadekar, and O. Tonguz, “Routing in sparse vehicular ad hoc wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 8, pp. 1538–1556, 2007.
[96]. U.S Department of Transportation, Federal Highway Administration. [Online]. Available: http://www.fhwa.dot.gov/research/
[97]. D. Gross, J. F. Shortle, J. M. Thompson, C. M. Harris, Fundamentals of queueing theory, in: Wiley, New Jersey, 2008, pp. 123-152.
[98]. D. C. Li, L. D. Chou, L. M. Tseng, Y. M. Chen, and K. W. Kuo, “A bipolar traffic density awareness routing protocol for vehicular ad hoc networks,” Mobile Information Systems. DOI: 10.3233/MIS-140200
[99]. T. Taleb, E. Sakhaee, A. Jamalipour, K. Hashimoto, N. Kato, and Y. Nemoto, “A stable routing protocol to support ITS services in VANET networks,” IEEE Transactions on Vehicular Technology, vol. 56, no. 6, pp. 3337–3347, 2007.
[100]. L. Zhao, F. Li, and Y. Wang, “Hybrid position-based and DTN forwarding in vehicular ad hoc networks,” in Proceedings of 2012 IEEE Vehicular Technology Conference (VTC Fall), 2012, pp. 1–5.
[101]. P. C. Cheng, K. C. Lee, M. Gerla, and J. Härri, “GeoDTN+ Nav: geographic DTN routing with navigator prediction for urban vehicular environments,” Mobile Networks and Applications, vol. 15, no. 1, pp. 61–82, 2010.
[102]. MirroLink. [Online]. Available: http://www.mirrorlink.com/, Accessed on: July. 9, 2015.
[103]. Apple CarPlay. [Online]. Available: http://www.apple.com/ios/carplay/, Accessed on: July. 9, 2015.
[104]. Android Auto. [Online]. Available: https://www.android.com/auto/, Accessed on: July. 9, 2015.
[105]. J. Ward, S. Worrall, G. Agamennoni, and E. Nebot, “The Warrigal dataset: multi-vehicle trajectories and v2v communications,” IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 3, pp. 109–117, 2014.
[106]. Apache Storm. [Online]. Available: http://hortonworks.com/hadoop/storm/, Accessed on: July. 6, 2015.
[107]. H. J. Hao, “Big Data Based Congestion Prediction for Real-time Highway Traffic”, M.S. thesis, Department of Computer Science and Information Engineering, National Central University, Zhongli, Taoyuan, 2015.
[108]. Apache Spark. [Online]. Available: https://spark.apache.org/, Accessed on: July. 6, 2015.
[109]. D. C. Li, L. D. Chou, K. W. Kuo, “An Intelligent Traffic Density Aware Routing Protocol in Vehicular Ad Hoc Networks.” Proceedings of the 8th Workshop on Wireless, Ad Hoc and Sensor Networks (WASN 2012), August 29 – 30, 2012, Taipei, Taiwan.
指導教授 周立德(Li-Der Chou) 審核日期 2015-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明