博碩士論文 965403001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:13.58.101.151
姓名 孫郁婷(Yu-Ting Sun)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 異質網路之同步與干擾管理研究
(A Study of Synchronization and Interference Management in Heterogeneous Network)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 在中上衰落通道中分集結合技術之二階統計特性★ 先進長程演進系統中載波聚合技術的初始同步
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 通訊是發送端透過某種格式來傳遞訊息給接收端來達到某個目的。要讓傳送端與接收端成功建立連線,同步的技術是最基本也是不可或缺的。後四代/第五代網路將結合多種存取技術並朝向多網共存的異質網路邁進。推測未來的相關應用發展大致會以現今的第四代無線通訊系統做延伸,故本論文以第四代無線通訊技術為主,並以異質網路架構為輔,來做橫向的整合應用研究。內容涵括LTE系統的初始同步技術、多路徑訊號的頻率偏移問題以及優化系統降低干擾的資源整合研究。首先針對發展中的LTE系統規格做探討。在實際環境中,由於訊號傳遞的路徑以及通訊設備硬體製造的限制都會帶來訊號損耗或干擾問題。利用LTE系統中專門設計給同步處理用的訊號,加入對實際環境問題的考量提出相關解決方案。之後把探討的架構延伸到異質網路中合作式通訊上。合作式通訊把許多設備互相串連起來,因此傳遞路徑較傳統通訊複雜許多。本論文第二部分討論多對一路徑的情況下,不同的設備因各自的震盪器準確度不同而產生不同的頻率誤差。為了降低硬體的解調成本,利用頻譜估測的方法來處理多頻率誤差的問題。最後,探討隨著各種行動服務及應用的興起而崛起的裝置對裝置通訊技術。裝置間通訊存在各種干擾問題,如何管理異質網路干擾問題將會是未來的發展重點。本論文以資源分配演算法探討裝置間通訊與蜂巢式網路間的干擾問題。
摘要(英) Communication requires a transmitter to use some format to transmit messages to a
receiver for some purpose. Synchronization is the fundamental and indispensable technology
that successfully establishes this link. B4G/5G wireless networks will combine types of
access technologies with the goal of creating coexisting multi-network environments, which
are also referred to as heterogeneous networks. Future development will be based on the
extension of 4G wireless communication systems. This dissertation comprises horizontally
integral research for an application structure based on 4G wireless technology that is assisted
using a heterogeneous network. Research topics include the initial synchronization in the
Long Term Evolution (LTE) system, the frequency offset problem in multi-link circumstances
and resource allocation for suppressing interference and system optimization. The
development of the LTE system is discussed first. In practice, signal consumption and
interference would arise from the signal transmission path and the limit of device hardware.
Related solutions have been proposed through the use of a synchronization signal, which is
designed in a LTE system, and practical environments were considered. The discussed
iii
framework is extended to cooperative communication in a heterogeneous network. Many
devices would be strung together using cooperative communication; therefore, transmitting
paths are complex compared with conventional communications. In the second part, different
devices have different frequency errors due to their individually imprecise oscillators in a
multi-input, single-output scenario. The problem of multi-frequency errors was addressed
using spectral estimation to reduce the cost of the demodulated hardware. Finally,
device-to-device (D2D) communication, which will be used in various types of mobile
services and applications, is discussed. Management of the interference problem will be a key
issue in the future because there are many types of interferences in D2D communications. In
this dissertation, a resource allocation algorithm was proposed to analyze the interference
between D2D communication and cellular networks.
關鍵字(中) ★ 同步
★ 頻率偏移
★ 異質網路
★ 長程演進
★ 蜂巢搜尋
關鍵字(英) ★ synchronization
★ frequency offset
★ heterogeneous network
★ LTE
★ cell search
論文目次 Contents
Chapter 1 1
Introduction 1
1.1 HETEROGENEOUS NETWORKS 1
1.2 RESEARCH ISSUES 2
1.2.1 Initial synchronization for LTE systems 2
1.2.2 Multiple CFOs in cooperative communications 3
1.2.3 Interference management in D2D communications 3
1.3 CHAPTER ARRANGEMENT 4
Chapter 2 6
Improved Synchronization for LTE Sector Search 6
2.1 BACKGROUND AND PRELIMINARY 6
2.1.1 Background 6
2.1.2 Related works 9
2.1.3 Preliminary 10
2.2 SIGNAL MODEL AND SYSTEM DESCRIPTION 11
2.3 SECTOR SEARCH 14
2.3.1 Coarse timing synchronization 15
2.3.2 Fine timing synchronization and fractional frequency offset estimation 18
2.3.3 Integral frequency offset and sector search 19
2.4 SIMULATIONS 22
2.4.1 Simulation parameters and environments 22
2.4.2 Coarse timing acquisition 23
2.4.3 Fractional frequency offset detection 27
2.4.4 Coarse frequency-offset detection and sector identification 28
2.5 SUMMARY 32
Chapter 3 33
Multi-Frequency-Offset Estimation in Cooperative Communications 33
3.1 BACKGROUND AND PRELIMINARY 33
3.1.1 Background 33
3.1.2 Related works 34
3.1.3 Preliminary 36
3.2 SCENARIOS INCLUDING MULTIPLE CFOS 37
3.2.1 CA 37
3.2.2 Relay networks 37
3.2.3 D2D communication 38
3.3 SYSTEM DESCRIPTION AND SIGNAL MODELING 41
3.3.1 Training sequence arrangement 42
3.3.2 Effective CFO 42
3.4 MULTIPLE CFOS ESTIMATION 44
3.5 SIMULATIONS 46
3.6 SUMMARY 51
Chapter 4 52
Interference Management in D2D Communication 52
4.1 BACKGROUND AND PRELIMINARY 52
4.1.1 Background 52
4.1.2 Related works 55
4.1.3 Preliminary 55
4.2 SYSTEM DESCRIPTION 56
4.3 RESOURCE ALLOCATION BASED ON USI 58
4.4 SIMULATIONS 61
4.5 SUMMARY 65
Chapter 5 66
Conclusion 66
References 67
Publication List 74
參考文獻 [1] H. Setiawan and H. Ochi, ‘‘Common wireless communication services recognition for GSM, UMTS and LTE vis synchronization channels detection,” in Proc. IEEE International Symposium on Communications and Information Technology, Icheon, KOR, pp. 1280-1285, Sep. 2009.
[2] E. Dahlman, S. Parkvall, J. Skold and P. Beming, 3G Evolution HSPA and LTE for Mobile Broadband, Academic Press, 2007.
[3] 3GPP TS 36.300 v8.7.0, Technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description (Release 8), Dec. 2008.
[4] 3GPP TS 36.211 v8.5.0, Technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 8), Dec. 2008.
[5] G. Yuan, X. Zhang, W. Wang and Y. Yang, ‘‘Carrier aggregation for LTE-advanced mobile communication systems,” IEEE Commun. Mag., vol. 48, no. 2, pp. 88-93, Feb. 2010.
[6] M. Iwamura, K. Etemad, M.-H. Fong, R. Nory and R. Love, ‘‘Carrier aggregation framework in 3GPP LTE-advanced [WiMAX/LTE update],” IEEE Commun. Mag., vol. 48, no. 8, pp. 66-67, Aug. 2010.
[7] Y. Chen, X. Wen, W. Zheng and X. Lin, ‘‘Symbol timing estimation and sector detection algorithm based on LTE TDD system,” IEEE Network Infrastructure and Digital Content Conference, pp. 828-832, Nov. 2009.
[8] J. W. Lee and Y. H. Lee, ‘‘Rapid cell search in OFDM-based cellular systems,” in Proc. IEEE Vehicular Technology Conference, Stockholm, SWE, pp. 1273-1277, May. 2005.
[9] Y. Tsai and G. Zhang, ‘‘Time and frequency synchronization for 3GPP Long-Term Evolution systems,” in Proc. IEEE Vehicular Technology Conference, Dublin, IRL, pp. 1727-1731, May. 2007.
[10] Y. Tsai, G. Zhang, D. Grieco and F. Ozluturk, ‘‘Cell search in 3GPP Long-Term Evolution systems,” IEEE Veh. Technol. Mag., vol. 2, pp. 23-29, Jun. 2007.
[11] Y. B. Kim and K. H. Chang, ‘‘Complexity optimized CP length pre-decision metric for cell search,” in Proc. IEEE Personal, Indoor and Mobile Radio Communication Conference, Tokyo, JPN, pp. 859-899, Sep. 2009.
[12] H. Setiawan and H. Ochi, ‘‘A low complexity physical-layer identity detection for 3GPP Long Term Evolution,” in Proc. IEEE Advanced Communication Technology Conference, Dublin, IRL, pp. 8-13, Feb. 2010.
[13] Y. B. Tang and W. C. Ge, ‘‘Symbol synchronization algorithm based on pseudo-superimposed Zadoff-Chu in Advanced-LTE,” in Proc. IEEE Information Processing Asia-Pacific Conference, Shenzhen, CHN, pp. 140-143, Jul. 2009.
[14] K. Manolakis, D. M. Gutierrez Estevez, V. Jungnickel, W. Xu and C. Drewes, ‘‘A closed concept for synchronization and cell search in 3GPP LTE systems,” in Proc. IEEE Wireless Communications and Networking Conference, Budapest, HUN, pp. 1-6, Apr. 2009.
[15] J. J. van de Beek, M. Sandell and P.O. Borjesson, ‘‘ML estimation of time and frequency offset in OFDM systems,” IEEE Tran. Signal Process., vol. 45, no. 7, pp. 1800-1805, Jul. 1997.
[16] B. M Popovic, ‘‘Generalized chirp-like polyphase sequences with optimum correlation properties,” IEEE Trans. Inform. Theory, vol. 38, no. 4, pp.1406-1409, Jul. 1992.
[17] Y. K. Jeong, O.-S. Shin and K. B. Lee, ‘‘Fast slot synchronization for intercell asynchronous DS/CDMA systems,” IEEE Trans. Wireless Commun., vol. 1, no. 2, pp. 353-360, Apr. 2002.
[18] J.-C. Lin, ‘‘Noncoherent sequential PN code acquisition using sliding correlation for chip-asynchronous direct-sequence spread-spectrum communications,” IEEE Trans. Commun., vol. 50, no. 4, pp. 664-676, Apr. 2002.
[19] G. Giunta, A. Neri and L. Vandendorpe, ‘‘Initial code synchronization of W-CDMA mobile systems exploiting local phase coherence and Pisarenko estimation,” IEEE Trans. Commun., vol. 53, no. 1, pp. 48-52, Jan. 2005.
[20] Y.-P. E. Wang and T. Ottosson, ‘‘Cell search in W-CDMA,” IEEE Journ. Sel. Area. Commun., vol. 18, no.8, pp. 1470-1482, Aug. 2000.
[21] J.-C. Lin, ‘‘A frequency offset estimation technique based on frequency error characterization for OFDM communication on time-varying multipath fading channels,” IEEE Trans. Veh. Technol., vol. 56, no. 3, pp. 1209-1222, May 2007.
[22] J.-C. Lin, ‘‘Coarse frequency offset acquisition via subcarrier differential detection for OFDM communications,” IEEE Trans. Commun., vol. 54, no. 8, pp. 1415-1426, Aug. 2006.
[23] N. Levanon and E. Mozeson, Radar Signals, Wiley, 2004.
[24] W. C. Jakes, Microwave Mobile Communications, New York: Wiley, 1974.
[25] 3GPP TS 36.211 V8.3.0, Technical specification group radio access network; Evolved University Terrestrial Radio Access (E-UTRA); physical channels and modulation (Release 8), May 2005.
[26] A. Sendonaris , E. Erkip, and B. Aazhang, “User cooperative diversity. Part I. System description,” IEEE Trans. Commun., vol. 51, nos. 11, pp. 1927-1938, Nov. 2003.
[27] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: efficient protocols and outage behavior,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
[28] C.-H. Yu, O. Tirkkonen, K. Doppler, and C. Ribeiro, “On the performance of device-to-device underlay communication with simple power control,” in Proc. IEEE Vehicular Technology Conference, Barcelona, ESP, pp. 1-5, Apr. 2009.
[29] Y. Jiang, X. Zhu, E. Lim, and Y. Huang, “Joint semi-blind channel equalization and ICI mitigation for carrier aggregation based CoMP OFDMA systems with multiple CFOs,” in Proc. IEEE International Conference on Communciations, Budepest, HUN, pp. 4586-4590, June 2013.
[30] Y. Tsai, H. Huang, Y. Chen, and K. Yang, “Simultaneous multiple carrier frequency offsets estimation for coordinated multi-point transmission in OFDM systems,” IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4536-4568, Sep. 2013.
[31] Y. Yang, W. Huang, C. Li, H. Li, and G. L. Stuber, “A low-complexity transceiver structure with multiple CFOs compensation for OFDM-based coordinated multi-point systems,” IEEE Trans. Commun., vol. 63, no. 7, pp. 2658-2670, July 2015.
[32] P. A. Parker, P. Mitran, D. W. Bliss, and V. Tarokh, “On bounds and algorithms for frequency synchronization for collaborative communication systems,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3742-3752, Aug. 2008.
[33] A. S. Ibrahim and K. J. R. Liu, “Mitigating channel estimation error with timing synchronization tradeoff in cooperative communications,” IEEE Trans. Signal Process., vol. 58, no. 1, pp. 337-348, Jan. 2010.
[34] J.-C. Lin, “Maximum-likelihood frame timing instant and frequency offset estimation for OFDM communication over a fast Rayleigh-fading channel,” IEEE Trans. Veh. Technol., vol. 52, no. 4, pp. 1049-1062, Jul. 2003.
[35] O. Besson and P. Stoica, “On parameter estimation of MIMO flat-fading channels with frequency offsets,” IEEE Trans. Signal Process., vol. 51, no. 3, pp. 602-613, Mar. 2003.
[36] Y. Yao and T. S. Ng, “Correlation-based frequency offset estimation in MIMO system,” in Proc. IEEE Vehicular Technology Conference, Orlando, USA, vol. 1, pp. 438-442, Oct. 2003.
[37] T. H. Pham, A. Nallanathan, and Y. C. Liang, “Joint channel and frequency offset estimation in distributed MIMO flat-fading channels,” IEEE Trans. Wireless Commun., vol. 7, no. 2, pp. 648-656, Feb. 2008.
[38] A. A. Nasir, S. Durrani, and R. A. Kennedy, “Blind timing and carrier synchronization in decode and forward cooperative systems,” in Proc. IEEE Conference on Communications, Kyoto, JPN, pp. 1-6, June 2011.
[39] H. Mehrpouyan and S. D. Blostein, “Bounds and algorithms for multiple frequency offset estimation in cooperative networks,” IEEE Trans. Wireless Commun., vol. 10, no. 4, pp. 1300-1311, Apr. 2011.
[40] K. Balachandran, K. C. Budka, T. P. Chu, T. L. Doumi and J. H. Kang, “Mobile responder communication networks for public safety,” IEEE Commun. Mag., vol. 44, no. 1, pp. 56-64, Jan. 2006.
[41] 3GPP TR 22.803 V2.0.0, Technical specification group SA; feasibilily study for Proximity Services (ProSe) (Release 12), Nov. 2012.
[42] D. Lee, W. Hwang, K. Won, and H.-J. Choi, “A carrier frequency synchronization method for device-to-device communication network,” in Proc. Asia-Pacific Conference on Communication, Denpasar, IDN, pp. 239-244, Aug. 2013.
[43] Z. Cao, U. Tureli, and Y.-D. Yao, “Deterministic multiuser carrier-frequency offset estimation for interleaved OFDMA uplink,” IEEE Trans. Commun., vol. 52, no. 9, pp. 1585-1594, Sept. 2004.
[44] M. S. Corson, R. Laroia, J, Li, V. Park, T. Richardson, and G. Tsirtsis, “Toward proximity-aware internetworking,” IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 26-33, Dec. 2010.
[45] F. Baccelli, N. Khude, R. Laroia, J. Li, T. Richardson, S. Shakkottai, S. Tavildar, and X. Wu, “On the design of device-to-device autonomous discovery,” in Proc. IEEE Conference on Communication Systems and Networks, Bangalore, IND, pp. 1-9, Jan. 2012.
[46] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and A. Jovicic, “FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc networks,” IEEE/ACM Trans. Netw., vol. 21, no. 4, pp. 1215-1228, Aug.. 2013.
[47] 3GPP TS 22.278 V12.7.0, Technical specification group SA; Service requirements for the Evolved Packet System (EPS), Jun. 2015.
[48] 3GPP TS 22.115 V12.3.0, Technical specification group SA; Sservice aspects; charging and billing, Mar. 2015.
[49] 3GPP TS 21.905 V12.0.0, Technical specification group SA; Vocabulary for 3GPP Specifications, Jun. 2013.
[50] 3GPP TR 23.703 V2.0.0, Technical specification group SA; Study on architecture enhancements to support Proximity-based Services (ProSe) (Release 12), Mar. 2014.
[51] 3GPP TS 23.303 V12.7.0, Technical specification group SA; Proximity-based services (ProSe); Stage 2, Dec. 2015.
[52] 3GPP TR 33.833 V1.0.0, Technical specification group SA; Study on security issues to support Proximity Services, Jun. 2014.
[53] 3GPP TR 36.843 V12.0.0, Technical specification group SA; Study on LTE Device to Device Proximity Services - Radio Aspects, Mar. 2014.
[54] 3GPP TS 24.333 V12.4.0, Technical specification group CT; Proximity-services Management Object (MO), Dec. 2015.
[55] 3GPP TS 24.334 V12.5.0, Technical specification group CT; Proximity-services (ProSe) User Equipment (UE) to Proximity-services (ProSe) Function aspects (PC3); Stage 3, Dec. 2015.
[56] M. S. Corson, R. Laroia, J, Li, V. Park, T. Richardson, and G. Tsirtsis, “Toward proximity-aware internetworking,” IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 26-33, Dec. 2010.
[57] F. Baccelli, N. Khude, R. Laroia, J. Li, T. Richardson, S. Shakkottai, S. Tavildar, and X. Wu, “On the design of device-to-device autonomous discovery,” in Proc. IEEE Conference on Communication Systems and Networks, Bangalore, IND, pp. 1-9, Jan. 2012.
[58] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and A. Jovicic, “FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc networks,” IEEE/ACM Trans. Netw., vol. 21, no. 4, pp. 1215-1228, Aug.. 2013.
[59] Y. Tao, J. Sun, and S. Shao, “Radio resource allocation based on greedy algorithm and successive interference cancellation in device-to-device communication,” in Proc. IET Conference on Information and Communication Technologies, Beijing, CHN, pp. 452-458, Apr. 2013.
[60] H. Sun, M. Sheng, X. Wang, Y. Zhang, J. Liu, and K. Wang, “Resource allocation for maximizing the device-to-device communication underlaying LTE-Advanced networks,” in Proc. IEEE/CIC Workshops on Communication in China, Xi′an, CHN, pp. 60-64, Aug. 2013.
[61] C. Li, B. Li, B. Lan, Y. Zhang, and T. Wang, “Uplink power control for device-to-device communication underlaying cellular networks,” in Proc. International Conference on Communications and Networking in China, Guilin, CHN, pp. 256-259, Aug. 2013.
[62] D. V. Son, D. Quang, and O. S. Shin, “Grouped device-to-device communication underlaying cellular networks,” in Proc. International Conference on ICT Convergence, Jeju, KOR, pp. 36-37, Oct. 2013.
[63] M. Zulhasnine, C. Huang, and A. Srinvasan, “Efficient resource allocation for device-to-device communication underlaying LTE network,” in Proc. IEEE Conference on Wireless and Mobile Computing, Networking and Communications, Niagara Falls, ON, CAN, pp. 368-375, Oct. 2010.
[64] J. S. Wu, S.F. Yang, C. M. Hsu, J. Y. Tu, and J. R. Jiang, “User satisfaction-based scheduling algorithm for uplink transmission in long term evolution system,” in Proc. IEEE Conference on Parallel and Distributed Systems, Singapore, pp. 930-935, Dec. 2012.
[65] S. Wen, X. Zhu, X. Ahang, and D. Yang, “Qos-aware mode selection and resource allocation scheme for device-to-device communication in cellular networks,” in Proc. IEEE Conference on Communication Workshops, Budapest, HUN, pp. 101-105, June 2013.
[66] S. Hakola, T. Chen, J. Lehtomaki, and T. Koskela, “Device-to-device communication in cellular network – Performance analysis of optimum and practical communication mode selection,” in Proc. IEEE Wireless Communication and Networking Conference, Sydney, AUS, pp. 1-6, Apr. 2010.
指導教授 林嘉慶(Jia-Chin Lin) 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明