博碩士論文 965911007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:44.200.194.255
姓名 吳佳俊(Chia-chun Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 部分平行低密度同為元檢查碼解碼器設計
(A Partially Parallel Low-Density Parity Check Code Decode)
相關論文
★ 用於類比/混和訊號積體電路可靠度增強的加壓測試★ 應用於電容陣列區塊之維持比值良率的通道繞線法
★ 高速無進位除法器設計★ 以正交分頻多工系統之同步的高效能內插法技術
★ 增強CMOS鎖相迴路可靠度★ 適用於地面式數位電視廣播系統之平行架 構記憶體式快速傅立葉轉換處理器設計
★ 對於長解碼長度可降低其記憶體使用的低密度同位檢查碼解碼器設計★ 單級降壓式功因修正轉換器之探索
★ 設計具誤差消除機制之串疊式三角積分調變器★ 交換電容式類比電路良率提升之設計方法
★ 使用分級時序記憶實作視角無關手勢辨識問題★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器
★ 低記憶體需求及效能改善的低密度同位元檢查碼解碼器架構★ 混合式加法器設計
★ 非線性鋰電池之充放電模型★ 降壓型轉換器之控制在市電併聯型光伏系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
LDPC解碼演算法是使用訊息傳遞(Message passing);要獲得高效率的解碼情況下,在解碼硬體實現上必須使用大量的記憶體來儲存交換的訊息,而所需的記憶體大小跟同位元矩陣(H matrix)中1的數目有關。換句話說,當同位元矩陣架構越大的話則所需要的記憶體也會增加。
部分平行架構的兩種記憶體使用方法,共享記憶體架構與獨立型記憶體架構已普遍實施於LDPC解碼器。過去的研究提出了一種替代的方法,大大減少了記憶體大小的需求。在本論文中,提出使用移位暫存器用來取代記憶體,並以資料取回電路,進一步提
高吞吐量。結果顯示,本論文LDPC碼解碼器,在碼長為1536和編碼率為1 / 2,頻率為380MHz時吞吐率可達到124 Mbps。
摘要(英) Abstract
LDPC decoding algorithm is a result of the use of Message passing Concept way, obtain efficient decoding circumstances, the realization of the decoder hardware, with plenty of memory to store the messages exchanged, required memory size with the same H matrix contains the number of 1. In other words, When the H Structure, then the greater the need will increase memory.
Two partially parallel architectures have been commonly implemented for LDPC decoders: Share-memory architecture and Individual-memory architecture. Our previous study has presented an alternative approach that significantly reduces the memory size requirement. In this study, shift-registers are employed to replace memory to simplify the data retrieval scheme and to further improve the throughput. Results show that the a LDPC decoder, with a code length of 1536 and a code rate of 1/2, can achieves the data rate up to 166 Mbps at the maximum clock frequency of 460 MHz.
關鍵字(中) ★ 低密度同位元檢查碼解碼設計
★ 檢查碼
關鍵字(英) ★ Low-Density Parity Check Code Decode
★ LDPC
論文目次 目錄
摘要.....i
Abstract.....ii
圖目錄.....v
表目錄.....vii
一、緒論.....1
1.1研究動機.....1
1.2低密度同位檢查碼(LDPC)簡介.....2
1.3LDPC編碼方式.....5
1.4類迴旋H矩陣 (Quasi-Cyclic H matrix).....6
二、LDPC解碼演算法.....8
2.1LDPC解碼演算法(LDPC Decode Algorithm).....8
2.2訊息傳送演算法(Message Passing Algorithm).....8
2.2.1積和演算法(Sum-product Algorithm).....9
2.2.2對數型積和演算法(Log-Likelihood Ratio for Sum-Product Algorithm, LLR-SPA).....14
2.2.3最小和演算法(Min-Sum Algorithm).....15
三、解碼器硬體架構.....17
3.1 LDPC解碼架構.....17
3.1.1完全平行架構(Fully parallel Architecture).....17
3.1.2序列架構(Serially Architecture).....18
3.1.3部分平行架構(Partially parallel Architecture).....19
3.1.4探討.....21
3.2CNFU與BNFU 架構.....22
3.2.1對數型積和演算法硬體架構.....22
3.2.2最小和演算法硬體架構.....23
3.3減少記憶體方法(Memory reduction method ).....25
3.3.1改良型最小和演算法(Modify Min-Sum Algorithm).....25
3.3.2記憶體排列方式(Memory arrangement).....28
四、提出的架構設計與電路實現.....31
4.1資料取回結構Data Retrieval Scheme.....31
4.1.1資料取回結構問題.....31
4.1.2資料取回方式.....32
4.2 提出的資料取回結構.....33
4.2.1提出的移位暫存器流程.....33
4.2.3提出的解碼方塊圖.....36
4.2.4提出的CSR演算法.....37
4.2.5 CSR探討.....39
4.3硬體架構.....39
4.3.1整體解碼架構(Overall decoding architecture).....39
4.3.2處理器(Process Unit, PU).....40
4.3.3最小值搜索(Minimum Value Find,MVF).....42
4.3.4提出的記憶體排列方式.....44
4.3.5環型移位暫存器(Circular Shift Register,CSR).....45
4.4實驗結果(Experimental Results).....45
五、結論與未來工作..... 49
5.1總結與結論.....49
5.2未來工作.....50
參考文獻.....51
參考文獻 [1] C. Berrou, A. Glavieux, P. Thitimajshima, ” Near Shannon limit error- correcting coding
and decoding: Turbo codes,” IEEE Proc. ICC’93, pp. 1064-1070, May 1993.
[2] R. G. Gallager, “ Low density parity check codes,” IEEE Trans. Information Theory, vol. 8, pp. 21–28, Jan. 1962.
[3] D. J. MacKay and R. M. Neal, “Good codes based on very sparse matrices,” Proceedings of the 5th IMA Conference on Cryptography and Coding, pp. 100–111
[4] Se-Hyeon Kang, In-Cheol Park, ‘‘ Loosely coupled memory-based ecoding architecture
for low density parity check codes,” pp. 1045 – 1056, May 2006
[5] M.Fossorier,et al. “ Reduced complexity iterative decoding of low-densityparity-check
codes based on belief propagation,” IEEE Trans. Comm., pp. 673-680, May 1999.
[6] G. D. Forney, “ Codes on graphs: Normal realizations,” IEEE Trans.onInformation
Theory, vol. 47, no. 2, pp. 520-548, Feb. 2001
[7] F. R. Kschischang, B. J. Frey and H. A. Loeliger, “ Factor graphs and the sum- product algorithm,” IEEE Trans. on Information Theory, vol. 47, no.2, pp. 498- 519, Feb.2001.
[8] Vukobratovic, D. , Senk, V. , “ On the Optimized Patent-Free LDPC Code Design for Content Distribution Systems,” Digital Object Identifier 10.1109/ISWCS.2007, pp. 365 - 369, Oct. 2007
[9] Saeedi, H.; Banihashemi, A. , ” Design of Irregular LDPC Codes for BIAWGN Channels with SNR Mismatch,“ Transactions on Communications, Vol. 57, pp.6-11, Jan. 2009
[10] Li, Z.; Chen, L.; Zeng, L.; Lin, S.; Fong, W. , ” Efficient Encoding of Quasi-Cyclic Low-Density Parity-Check Codes,” Transactions on Communications, Vol. 53, pp.1973 – 1973, Nov. 2005
[11] J. Rosenthal and P.O. Vontobel. ,” Constructions of regular and irregular LDPC codes using Ramanujan graphs and ideas from Margulis,” Allerton Conference on Communication, Control and Computing, pp. 248-257, Oct.2000.
[12] Mansour, M.M. Shanbhag, N.R., “ Low-power VLSI decoder architectures for LDPC codes,” International symposium on Low power electronics and design, pp.84 – 289, 2002
[13] M. Karkooti and J. R. Cavallaro, ” Semi-Parallel Reconfigurable Architectures for Real-Time LDPC Decoding,” Proceedings of the International Conference on Information Technology: Coding and Computing, Vo. 1, pp.579 – 585, 2004
[14] J. Heo. , “ Analysis of Scaling Soft Information on Low Density Parity Check Codes,” Electronics Letters, Vol. 39, pp. 219-221, Jan 2003
[15] Spagnol, C., Marnane, W., Popovici, E.,“ Circuit Theory and Design, 2005. Proceedings of the 2005 European Conference,” Volume: 1, pp. 289-292, vol. 1, Aug 2005
[16] T. Ishikawa, K. Shimizu, T. Ikenaga and S. Goto, ” High-Throughput LDPC Decoder
for Long Code-Length,” International Symposium on VLSI Design, Automation and Test, pp.1-4, Apr. 2006.
[17] Zhongfeng Wang Zhiqiang Cui,“ A Memory Efficient Partially Parallel Decoder Architecture for QC-LDPC Codes,” Very Large Scale Integration (VLSI) Systems, pp.729-733, Nov 2005
[18] Chin-Long Wey, Ming-Der Shieh, Shin-Yo Lin, “ Algorithms of Finding the First Two Minimum Values and Their Hardware Implementation,” IEEE Transactions On Circuits And Systems, Vol. 55, pp. 3430 – 3437, Dec. 2008
[19] C.-K. Liau and C.L. Wey, “ A Partially Parallel Low-Density Parity Check Code Decoder with Reduced Memory for Long Code-Length,” VLSI Design/CAD Symposium, Aug. 2007
[20] A. Blanksby and C. J. Howland, “A 220mW 1-Gbit/s 1024-Bit Rate-1/2 Low Density Parity Check Code Decoder,” in Proc. IEEE CICC, LasVegas, NV, USA, pp. 293-6, May 2001.
[21] A. Blanksby and C. J. Howland, “A 690mW 1-Gbit/s 1024-b Rate-1/2 Low -Density Parity-Check Code Decoder,” IEEE Journal of Solid-State Circuits, vol.37, no. 3, pp. 404-412,March 2002.
[22] Y. Kou, S. Lin and M. P. C. Fossorier, “Low-Density Parity-Check Code Based on
Finite Geometries: A Rediscovery and New Results,” IEEE Trans. Inform. Theory, vol. 47, pp2711-2736,Nov. 2001
[23] J. Zhang and M. P. C. Fossorier, “A Modified Weighted Bit-Flipping Decoding of Low-Density Parity-Check Codes,” IEEE Comm. Lett., vol. 8, pp. 165-167, Mar. 2004.
[24] M. Miladinovic and M. P. C. Fossorier, “Improved bit-flipping decoding of low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 51, pp. 1594-1606, Apr. 2005.
[25] J. Chen and M. P. C. Fossorier, “Density evolution for two improved BP-Based decoding algorithms of LDPC codes,” IEEE Comm. Lett., vol. 6, pp. 208-210, Mar. 2002.
[26] J. Chen and M. P. C. Fossorier, “Near optimum universal belief propagation based decoding of low-density parity check codes,” IEEE Comm. Lett., vol. 50, pp. 406-414, March 2002.
[27] G.. Caire, G. Tarico and E. Biglieri, “Bit-Interleaved coded modulation,” IEEE Trans. Inform. Theory., Vol. 44, pp. 927-946, 1998.
[28] R.M.Tanner,“A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory, vol. 27, pp. 533-547, Sept. 1981.
指導教授 魏慶隆(Chin-Long Wey) 審核日期 2009-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明