博碩士論文 966202001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.191.13.255
姓名 陳冠廷(Kuan-Ting Chen)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 南海北坡高解析水深調查與淺層地質的構造分析
(Seafloor structure analysis with high resolution bathymetry survey in the northern margin of the South China Sea)
相關論文
★ 台灣基隆外海近海床地質構造與噴氣現象的探討★ 南海北部地殼構造與深海沈積物波之研究
★ 西菲律賓海盆西部的海床構造分析★ 南海北部之磁力異常特徵分析
★ 利用底質剖面儀及EK60聲納資料研究台灣北部近海的可能活動構造★ 台灣恆春半島南部海域海底地形及構造研究
★ 南海東北部海洋地殼構造之研究★ 台灣地區岩石圈之浮力與重力位能的探討
★ 以地震層析法推求台灣北部地區的速度構造並探討流體的可能分佈★ 聯合尤拉解迴旋與解析訊號法求取磁源參數之研究
★ 南海最北部地磁與地形之研究★ 班達海岩心MD012380之磁學研究: 80萬年來赤道暖池區之古環境變遷
★ 台灣至呂宋島間馬尼拉海溝的震測研究: 從正常隱沒到初期碰撞抬昇的上部地殼構造★ 利用接收函數法分析台灣深部地殼構造
★ 板塊邊界地震引起之重力位能變化★ 南海北部地體構造之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 南中國海(South China Sea)位處東亞區域,為西太平洋最大的邊緣海之一,其東界為馬尼拉海溝,西、南、北界皆為歐亞大陸板塊所圍繞,而其南北緣則屬於被動大陸邊緣(passive continental margin)的架構。根據Tapponnier等人提出的新生代東亞地體構造運動模型,因為印度板塊向北撞擊歐亞大陸板塊造成中南半島向東南脫出及紅河斷裂帶的形成導致了南海的南北向張裂。南海海洋地殼磁力條帶的定年研究指出南海張裂起始約在37個百萬年前,結束於15個百萬年前。
本研究以高解析多音束(multibeam)水深為主,配合淺部地層剖面資料為輔,針對南海北坡的被動大陸邊緣區域進行了較詳細的地球物理調查與分析。其中在海床面上發現了許多大陸邊緣海床特徵,如大陸斜坡上的海底峽谷(submarine canyon)、火成物質形成的條狀地形高區、海底火山群、海床的侵蝕崩塌構造(slump structure)、大規模的海底山崩(submarine landslide)等。條狀火成地形高區與海底火山群分別位於大陸斜坡坡腳及東沙島一帶,經由震測資料與前人研究的結果比對後,我們發現部份火成地形高區是沿著張裂構造侵入的入侵火成岩體,因此其走向與張裂的正斷層構造平行,另一部份的火成地形高區其走向則與張裂構造不一致,因此我們認為條狀火成地形高區乃是海洋地殼張裂後的火成入侵作用所形成;而海底火山群我們則認為其形成與區域的火成活動造成的地殼抬昇有關,
可能為東沙隆起時期的產物(~ 5 Ma)。另外海床上的侵蝕崩塌構造與海底山
崩其成因為海底峽谷的侵蝕作用及斜坡上的重力作用。
地下剖面的部份,在淺層底質剖面(sub-bottom profile)中我們發現了廣泛分布於淺層沉積物中的聲波透明帶層(acoustic transparent layer),其分布位置皆位於地形坡度由高坡度急遽轉變為低坡度處如大陸斜坡坡底與海底峽谷底部,根據對其分布位置以及沉積特性的分析,我們認為其成因為海底碎屑流(debris flow)的堆積。震測剖面的部份我們使用了九條單頻道震測剖面,來自美國國家地球物理資料庫NGDC,以及引用前人研究所發表的20條多頻道震側剖面,除了比對地表特徵外,我們也利用了這些剖面重新定義了南海北坡的基盤面深度及沉積物厚度,將兩者與當地構造比對後皆有不錯的吻合度。
在東沙隆起的西南緣大陸斜坡,其海床上我們發現了一系列的串狀麻坑構造(pockmark structure),其外型之巨大為世所罕見(直徑數百至千餘公尺)。麻坑所在的區域位於中國大陸南海天然氣開發的重點海域『神狐區』,根據中國大陸的鑽井研究指出這一帶的海底地層蘊藏著豐富的天然氣水合物資源,因此我們判斷研究區域內的麻坑構造其形成原因與地層中的游離天然氣向上移棲而破壞海床面有關。另外我們將麻坑的大小走向與麻坑所在區域的地形參數相互比對,發現多數的麻坑構造其形貌受到地形參數如坡度及斜坡走向影響,可能與大陸斜坡上的侵蝕滑陷(slump)活動有關,當斜坡發生侵蝕滑陷活動時,地層中的游離天然氣層其上方荷重壓力隨即改變,游離天然氣因此沿著荷重壓力最小處(海床上的侵蝕滑陷痕跡)向上移棲破壞,形成了大規模的串狀麻坑,且其外型與分布位置與侵蝕滑陷構造一致,此一發現也間接證實了南海北坡區域所蘊藏的天然氣能源潛力。
摘要(英) South China Sea (SCS) is located in the East Asia, which is one of marginal seas in western Pacific. The northern and southern margin belong to passive continental margin and the eastern boundary of SCS is located along the Manila Trench. According to Tapponnier et al., the collision of Indian Plate and the Eurasia Plate was started in early-middle Cenozoic and caused the southeastward escape of Indochina block, eastern escape of China block and formed the left-lateral Red River Fault zone. The block and fault movements could cause the spreading of SCS. Based on the result of magnetic lineation dating, SCS started spreading in 37 Ma and stopped in 15 Ma.
The major method of this study is using multibeam bathymetry to identify the detailed seabed features on the northern margin of SCS. The seabed features including submarine canyons, lineate topographic highs, submarine volcanoes, slumping structures and submarine landslides. The lineate topographic highs are located near foot of the continental slope. Comparing seismic profiles with the past studies, we believe the volcanism highs were formed by the post-rifting mantle magma intrusion. The grouping volcanoes are locating at the Dongsha Rise area. Dongsha Rise movement was a zone of igneous activity, the igneous activity made the crust uplift and created submarine volcanoes in this area. We propose that the volcanoes were formed in the same igneous activity with Dongsha Rise (~ 5 Ma). The submarine canyon erosion formed the slump structures on the continental slope.
Based on sub-bottom profiles, we have several acoustic transparent zones (ATZ) in the shallow sediment in our study area. All the ATZ are located in three places: continental slope foots, channel of submarine canyons and foot around the volcanism highs. We believe that the deposition of debris flow can account for the ATZ layers. We have used 9 single-channel seismic profiles (SCS) from NGDC (National Geophysical Data Center) and 20 multi-channel seismic profiles (MCS) in order to compare with bathymetry and the structures. In the other hand, we made newly sediment thickness and basement depth distribution figures by these seismic profiles.
In the southwestern slope of Dongsha Rise, we have found a lot of lineate pockmarks. The sizes of pockmarks are variant, about hundreds to thousand meters in diameter. According the drilling studies, this area could have a rich potential of gas hydrate. Hence, we suggest that the pockmarks are related to the free gases. By calculating the parameters of pockmarks shape and bathymetry, we noticed that the slope gradient and contour trends of bathymetry control the size and the trend of most of pockmarks. Besides, there are many slumpings and two landslide structures in the same area. We suggest that the slumping structures may reduce the weighting of the underneath gas-hydrate, and therefore release the gas. The upward migration of free gas may finally form the pockmark structures on the seafloor.
關鍵字(中) ★ 南中國海
★ 海底火山
★ 麻坑構造
★ 東沙隆起
★ 淺層底質剖面
★ 多音束水深
關鍵字(英) ★ sub-bottom profile
★ Dongsha Rise
★ pockmark
★ submarine volcano
★ multibeam bathymetry
★ South China Sea
論文目次 中文摘要 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ i
英文摘要 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ iii
誌 謝 ……………………………………………………………… v
目 錄 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ vi
表 目 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ ix
圖 目 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ x
第一章 緒論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 1
1-1 南海基本地體架構 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 1
1-2 南海的形成與年代 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 2
1-3 南海張裂形式 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 3
1-4 本文研究區域與前人研究 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 4
1-5 研究目的 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 5
第二章 資料收集與處理方法 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 11
2-1 多音束水深 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 11
2-1-1 多音束水深基本原理 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 11
2-1-2 資料特性 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 13
2-1-3 水深處理方法 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 14
2-2 淺層底質剖面 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 14
2-2-1 基本原理與儀器設計 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 15
2-2-2 資料處理及展示 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 15
2-3 震測剖面 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 16
第三章 結果 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 31
3-1 海床特徵 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 31
3-1-1 整體地形架構 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 31
3-1-2 馬尼拉海溝、海底峽谷及沉積物波(東區) ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 32
3-1-3 海底山群(西區) ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 33
3-1-4 條狀地形高區(西區) ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 34
3-1-5 海底峽谷(西區) ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 35
3-1-6 海底山崩與麻坑構造(西區) ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 37
3-2 地下剖面 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 38
3-2-1 淺層底質剖面 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 38
3-2-2 深部震測剖面 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 41
3-3 小結 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 42
第四章 討論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 75
4-1 海底火山群與條狀地形高區 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 75
4-2 淺層底質剖面的聲波透明帶 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 77
4-3 沉積物厚度、基盤深度與構造的關聯 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 79
4-4 麻坑構造成因與天然氣資源的關聯 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 80
第五章 結論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 108
參考文獻 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 111
附 錄 水深資料處理流程 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 117
參考文獻 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 138
參考文獻 Amante, C. and B. W. Eakins, ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce, Boulder, CO, August 2008.
Ben-Avraham, Z., and Uyeda, S.: The evolution of the China Basin and the Mesozonic paleogeography of Borneo, Earth Planet. Sci. Lett., 18, 365-376, 1973.
Bowin, C., Lu, R. S., Lee, C. S., and Schouten, H.: Plate convergence and accretion in Taiwan-Luzon region, AAPG Bull., 62, 1645-1672, 1978.
Briais, A., Patriat, P., and Tapponnier, P.: Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia, Journal of Geophysical Research, 98, 6299-6328, 1993.
Ceramicola, S., Civile, D., Caburlotto, A., Cova, A., Cotterle, D., Diviacco, P., Caffau, M., Praeg, D., Accettella, D., Colizza, E., Critelli, S., Cuppari, A., Dominici, R., Fanucci, F., Morelli, D., Muto, F., Ramano, C., Ramella, R.,: Features of mass wasting along the submarine slopes of the Ionian Calabrian margin, In: volume 7: Extended abstracts, International conference on seafloor mapping for geohazard assessment, 87-89, 10-13th May 2009, Forio D’Ischia, Italy.
Chand, S., Rise, L., Ottesen, D., Dolan, M. F. J., Bellec, V. and Bøe, R.: Pockmark-like depressions near the Goliat hydrocarbon field, Barents Sea: Morphology and genesis, Marine and Pereoleum Geology, 26, 1035-1042, 2009.
Clift, P. D., Lin, J., and Party, O. L. S.: Patterns of extension and magmatism along the continent-ocean boundary, South China margin. In: Non-volcanic rifting of continental margins: a comparison of evidence from land and sea (Ed. by R.C. Wilson et al.), Geological Society, 187, 489-510, 2001.
Cuppari, A., Fanucci, F., Morelli, D., Collizza, E., Lenaz, D., Accettella, D. and Wardell, N.: Morphostructural features and sedimentary processes of the Ionian Calabrian inner margin., In: Consiglio di Presidenza della FIST(Eds), Epitome 02.864, Geoitalia 2007, 12-14th September 2007, Rimini.
Dimitrov, L. and Woodside, J.: Deep sea pockmark environments in the eastern Mediterranean, Marine Geology, 195, 263-276, 2003.
Gay, A., Lopez, M., Berndt, C. and Séranne, M.: Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin, Marine Geology, 244, 68-92, 2007.
Hovland, M. and Judd, A.: Seabed pockmarks and seepages, Graham & Trotman, ISBN 0-86010-948-8, 1988
Hovland, M., Talbot, M. R., Qvale, H., Olaussen, S. and Aasberg, L.: Methane-related Carbonate Cements in Pockmarks of the North Sea, Journal of Sedimantary Petroleum, 57, 881-892, 1987.
Hovland, M., Gardner, J. V. and Judd, A. G.: The significance of pockmarks to understanding fluid flow processes and geohazards, Geofluids, 2, 127-136, 2002.
Hsu, S. K., Liu, C. S., Shyu, C. T., Liu, S. Y., Sibuet, J. C., Lallemand, S., Wang, C., and Reed, D.: New gravity and magnetic anomaly maps in the Taiwan-Luzon region and their preliminary interpretation, TAO, 9, 509-532, 1998.
Hsu, S. K., and Sibuet, J. C.: Is Taiwan the result of arc-continent or arc-arc collision?, Earth Planet. Sci. Lett., 136, 315-324, 1995.
Hsu, S. K., Yeh, Y. C., Doo, W. B., and Tsai, C. H.: New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications, Marine Geophysical Researches, 25, 29-44, 2004.
Jones, E. J. W.: Marine Geophysics, John Wiley & Sons, Ltd, ISBN 0-471-98693-3, 1999.
Kido, Y., Suyehiro, K., and Kinoshita, H.: Rifting to Spreading Process along the Northern Continental Margin of the South China Sea, Marine Geophysical Researches, 22, 1-15, 2001.
Li, C. F., Zhou, Z. and Li, J.: Magnetic zoning and seismic structure of the South China Sea ocean basin, Marine Geophysics Researches, 29, 223-238, 2008.
Lin, A. T., and Watts, A. B.: Origin of the west Taiwan basin by orogenic loading and flexure of a rifted continental margin, Journal of Geophysical Research, 107, 2185-2204, 2002.
Lüdmann, T., and Wong, H. K.: Neotectonic regime on the passive continental margin of the northern South China Sea, Tectonophysics, 311, 113-138, 1999.
Lüdmann, T., Wang, H. K., and Wang, P.: Plio-Quaternary sedimentation processes and neotectonics of the northern continental margin of South China Sea, Marine Geology, 172, 331-358, 2001.
Max, M. D., and Dillon, W. P.: Oceanic methane hydrate: character of the Blake Ridge stability zone and potential for methane extraction, Journal of Petroleum Geology, 21, 343–358, 1998.
McKenzie, D. P.: Some remarks on the development of sedimentary basins, Earth and Planetary Science Letters 40, 25-32, 1978.
Mutter, J. C., Talwani, M., and Stoffa, P. L.: Origin of seaward dipping reflectors in oceanic crust off the Norwegian margin by 'subaerail sea-floor spreading, Geology, 10, 353-357, 1982.
Naudts, L., Greinert, J., Artemov, Y., Staelens, P., Poort, J., Rensbergen, P. V. and Batist, M. D.: Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea, Marine Geology, 227, 177-199, 2006.
Naudts, L., Greinert, J., Artemov, Y., Beaubien, S. E., Borowsky, C. and Batist, M. D.: Anomalous sea-floor backscatter patterns in methane venting areas, Dnepr paleo-delta, NW Black Sea, Marine Geology, 251, 253-267, 2008.
Nissen, S. S., Hayes, D. E., Buhl, P., Diebold, J., Bochu, Y., Weijun, Z., and Yongqin, C.: Deep penetration seismic soundings across the northern margin of the south China Sea, Journal of Geophysical Research, 100, 22407-22433, 1995a.
Nissen, S. S., Hayes, D. E., Bochu, Y., Weijun, Z., Yongqin, C., and Xiaupin, N.: Gravity, heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea, Journal of Geophysical Research, 100, 22447-22483, 1995b.
Pilcher, R. and Argent, J.: Mega-pockmarks and linear pockmark trains on the West African continental margin, Marine Geology, 244, 15-32, 2007.
Sibuet, J. C., and Hsu, S. K.: How was Taiwan created?, Tectonophysics, 379, 159-186, 2004.
Sibuet, J. C., Hsu, S. K., Pichon, X. L., Formal, J. P. L., Reed, D., Moore, G., and Liu, C. S.: East Asia plate tectonics since 15 Ma: constraints from the Taiwan region, Tectonophysics, 344, 103-134, 2002.
Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., and Cobbold, P.: Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine, Geology, 10, 611-616, 1982.
Tapponnier, P., Peltzer, G., and Armijo, R.: On the mechanics of the collision between India and Asia, in Coward M.P. and Ries, A.C. (eds.), Collision Tectonics, Geol. Sco. Spec. Publ., 19, 115-157, 1986.
Taylor, B., and Hayes, D. E.: The tectonic evolution of the South China Basin, in: D.-E. Hayes (Ed.), The tectonic and geologic evolution of Southeast Asian seas and islands, 1, Am. Geophys. Union., Washington, DC., 89-104, 1980.
Taylor, B., and Hayes, D. E.: Origin and history the South China Sea. In: Hayes, D.E. (Ed.), The tectonic and geologic evolution of Southeast Asia seas and Islands, 2, Am. Geophys. Union, Washington, DC, 23-56, 1983.
Tsai, C. H., Hsu, S. K., Yeh, Y. C., Lee, C. S. and Xia, K.: Crustal thinning of the northern continental margin of the South China Sea, Marine Geophysical Researches, 25, 63-78, 2004.
Wernicke, B.: Uniform-sense normal simple shear of the continental lithosphere, J. Earth Sci., 22, 108-125, 1985.
Wu, N., Yang, S., Zhang, H., Liang, J., Wang, H., Su, X. and Fu, S.: Preliminary discussion on gas hydrate reservoir system of Shenhi Area, north slope of South China Sea, Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada, July 6-10, 2008.
Yan, P., Zhou, D., and Liu, Z.: A crustal structure profile across the northern continental margin of the South China Sea, Tectonophysics, 338, 1-21, 2001.
Yang, T., Jiang, S. Y., Yang, J. H., Lu, G., Wu, N. Y., Liu, J. and Chen, D. H.: Dissolved inorganic carbon (DIC) and its carbon isotopic composition in sediment pore water from the Shenhu Area, Northern South China Sea, Journal of Oceanography, 64, 303-310, 2008.
Yeh, Y. C., and Hsu, S. K.: Crustal structures of the northernmost South China Sea: Seismic reflection and gravity modeling, Marine Geophysical Researches, 25, 45-61, 2004.
蔡慶輝: 南海北部地殼構造與深海沈積物波之研究. 國立中央大學地球物理研究所博士論文, 台灣中壢, 2007.
葉一慶: 南海東北部海洋地殼構造之研究. 國立中央大學地球物理研究所碩士論文, 台灣中壢, 2001.
葉一慶: 南海北部地體構造之研究. 國立中央大學地球物理研究所博士論文, 台灣中壢, 2006.
Caraibes Help Manual, v3.4, Institut français de recherche pour l'exploitation de la mer (IFREMER), 2009.
Seafalcon 11 Operator Manual, Thomson Marconi Sonar.
指導教授 許樹坤(Shu-Kun Hsu) 審核日期 2009-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明