博碩士論文 966202004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.16.47.14
姓名 徐魁江(Kui-jiang Xu)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 台灣地區參考莫荷面傾角變化的探討
(Spatial Dip Angle Variation of TRMDM (Taiwan Reference Moho Discontinuity Model))
相關論文
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣東北部外海地震之三維強地動模擬
★ 利用三維有限差分法模擬與分析台北盆地的場址放大效應★ 台北盆地的場址效應放大效應-譜比法應用於強震資料與理論分析的探討
★ 震波走時於台灣三維參考速度模型評估、地震定位及地利地區深部速度構造的研究★ 台灣西南部地殼變形與地震活動相關性研究
★ 台灣西南外海多頻道震測之甲烷水合物與海洋精細構造成像研究★ 透地雷達特性分析應用於油品污染物探測
★ 測井資料的分析於兩處海底甲烷冰蘊藏區: 北阿拉斯加埃爾伯特山和墨西哥灣綠色峽谷的實際應用★ 台灣西南海域下枋寮盆地甲烷水合物之AVO分析
★ 台灣西南下枋寮盆地天然氣水合物調查同中點集的AVA/AVO模擬、分析和逆推★ 台灣南部的體波與表面波波場逆推:應用於TAIGER T4b寬角度折射/反射資料
★ 中國西南陸坡天然氣水合物沈積環境特徵的AVO和淺部構造量化分析★ Pre-Stack Diffraction Stack Depth Migration of Active Source Short-offset Marine and Long-offset Seismic Data
★ 以部分波場逆推及模擬對沿TAIGER T6測線的台灣北部地區進行深部構造成像★ 台灣西南近海Formosa Ridge天然氣水合物和游離氣岩石物理參數估算
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文使用2006 至2008 中央研究院、中央氣象局所建置之永久寬頻地震觀測網與TAIGER計畫臨時寬頻地震紀錄,共104個測站,且選取約有五百個遠震地震事件。將遠震記錄進行資料處理,以得到各測站的接收函數,並針對接收函數其莫荷面對應的Ps轉型波相進行探討,根據其極性與到時隨後方位角的變化,進而估算測站下方莫荷面的深度與傾斜方向。
假設一厚度為35公里且向南傾斜的層面模型,模擬當地震發生在不同的後方位角時所產生的模擬地震紀錄與接收函數,並觀察波形隨著後方位角的變化。模擬結果得知,這些合成接收函數在徑向分量之波形,以後方位角為180°為基準呈對稱關係,且P波及Ps轉型波的振幅變化恰相反,即當Ps波的振幅最大時,P波的振幅卻是最小。而切向接收函數波形,則以後方位角180°為基準呈反對稱,且P波及Ps轉型波極性相反。徑向或切向接收函數波形都可觀察得知P波振幅隨後方位角改變的變化較Ps轉型波更為明顯。以上接收函數的波形特性與原則,則可以幫助實際資料的判讀。
根據Ps轉形波到時來分析全台莫荷面的起伏,由北到南的趨勢可以看出,在台灣最東北角有最淺的莫荷面,其深度為泰平分校(TIPB)測站的21公里至五分山(WFSB)測站28公里,其中全台最淺的莫荷面深度為泰平分校(TIPB)測站的21公里。其形成機制可由沖繩海槽的弧後擴張來解釋。根據台灣北部十個測站的分析結果,可以得知在臺灣北部(北緯24.6°~25°,東經121.1°~121.6°)的莫荷面深度為TGN05測站的27公里至TGN12測站的33公里。相對的在中央山脈北段(北緯24°~24.5°,東經121.3°~121.8°)則有較深的莫荷面,其深度為寧安橋(NACB)測站的42公里至TGN09測站的53公里。這是由於菲律賓海板塊向北隱沒,在隱沒邊界的地殼由於擠壓撓曲而增厚,故使得莫荷面加深。並由於擠壓後形成的地殼隆起,造成台灣北部的莫荷面變淺。在臺灣中部(北緯24°,東經121°)則有最深的莫荷面,其深度為TGC06測站的50公里至雙龍(SSLB)測站的56公里,其中值得一提的是,全台最深的莫荷面深度為雙龍(SSLB)測站的56公里,且莫荷面有向東變淺的趨勢。其形成機制可由弧陸碰撞的岩石圈增厚來解釋。台灣南部(北緯23.5°以南)的平均莫荷面深度則約為35公里,與全球平均的莫荷面深度一致。根據台灣北部六個測站其Ps轉形波極性可以得知,台灣北部的莫荷面有偏向南傾斜的趨勢。此結果與利用全台Ps轉型波到時分布,進而估算出的莫荷面深度分布的結果一致。
由接收函數疊加剖面及波形模擬結果得知,金門站其徑向接收函數Ps轉型波到時為4.1秒,PpPmS復反射轉形波到時為13秒,可以估算其測站下方莫荷面深度約為34公里。由切向接收函數其P波與0.5秒處的Ps轉型波極性變化可知,在測站下方三公里處有一向西北傾斜的速度不連續面。澎湖站的徑向接收函數,其初達P波到時不是在0秒處,而是向後移了0.5秒。在約3秒與4.5秒處中Ps1與Ps2轉型波相其所反映的速度構造。可以解釋為由於測站下方有岩漿侵入,使地殼產生部份融熔所形成的鐵鎂質岩漿沉澱之上下界分別對應的速度不連續面。
摘要(英) Receiver function (RF) waveform observation, analysis and simulation approaches are used to investigate the crustal thickness and main crustal structure discontinuity beneath each broadband station in Taiwan. The main goal of this study is to resolve the spatial depth and dip angle variations of Moho discontinuity. The proposed Taiwan Reference Moho Discontinuity Model (TRMDM) is based on the analysis of teleseismic data collected by stations deployed and maintained by the Institute of Earth Sciences (BATS) and Central Weather Bureau (BBCWB) with additional five temporary broadband arrays deployed along east-west and north-south transect lines across island organized under TAIGER (TAiwan Integrated GEodynamic Research) project. More than 500 teleseismic events from Incorporated Research Institutions for Seismology (IRIS) report were recorded by 104 BB stations during 2006-2008. The data selection criteria are that the teleseismic events with mb ≧ 5.5 and epicentral distance is from 30 to 95 degree.
From synthetic modeling studies of RF profile for uniform dip, planar interface with sufficient velocity contrast, the radial component shows symmetric waveform variation with back azimuth angle. That is, the amplitude variation with back azimuth angle of P- phase has inverse relationship with Ps phase. For the same polarity, the maximum amplitude of P- phase will corresponds to minimum amplitude for Ps- phase. For transverse component, the anti-symmetric property, coincidence of amplitude variation and inverse polarity change between P- and Ps- phase varying with back azimuth angle can help to determine the dipping direction. In addition, for both components, the amplitude variation with incidence angle for direct P phase is more apparent than the changes in Ps phase.
For teleseismic data analysis, interpretation and identification of Moho conversion phase from stacked RF through different stacking criteria and travel-time picks were performed. Time-to-depth conversion on the manually picked Ps phase arrival time, determination of dipping direction and angle variation of TRMDM beneath each station are studied. The single stacked RF trace from all incoming plane waves and stacked four traces from four major directions impinging upon each station are examined and compared their waveform, amplitude, polarity and arrival time variations in order to determined their dipping angle and direction. Ps arrival time information is used to constrain Moho depth.
Relative thin crust (21-24-28 km) in the northernmost corner (TIPB-TWBB-WFSB) of the island may correspond to slab budge and/or back-arc opening of Okinawa trough. In northern Taiwan, the Moho depth derived from ten stations indicates that: Moho depth varying from 27 km (TGN05) to 33 km (TGN12) in region covers latitude 24.6o to 25o and longitude 121.1o to 121.6o. In the region close to the northern end of central mountain range, between latitude 24o to 24.5o and longitude 121.3o to 121.8o, significant deeper Moho depth varying from 42 km (NACB) to 53 km (TGN09). In the northern end of the backbone range close to Ilan and Hualien county border, the northeastward subduction and flexure bending of the Phillipine Sea plate causing crustal thickening while thin crust behind the plate bending corresponding to in the northernmost Taiwan. At southwestern end of Shuieh Shan and close to central Taiwan, Moho reaches depth of 50 km (TGC06) to its maximum of 56 km (Shunglong station, SSLB) and become shallow towards east coast. The mechanism involving significant Moho depth variations may attributes to lithospheric thickening due to arc-continent collision in central Taiwan. In southern Taiwan (south of latitude 23.5o), average Moho depth is 35 km which is consistence with average global Moho depth. In northern Taiwan, analyzing polarity variations of six BB stations show clear southward dipping of Moho surface which is consistent with result derived from Ps arrival time.
Simulation of common-receiver RF stacking profile at each station provide more detailed information on their spatial azimuthal variation of Moho discontinuity beneath Taiwan island. For Kimen (KMNB) and Matsu (MATB) stations, the clear Ps and PpPmS phases, at 4.1 and 13 sec respectively, show that the average Moho depth is around 34 km. At Kimen station a northwestward dipping shallow interface at depth of 3 km (0.5 sec) is identified from transverse component. At Penhu (PHUB) station, although an obvious 0.5 second shift occurred for P- arrival, the clear arrivals at 3.0 and 4.5 seconds (Ps1 and Ps2) may indicate partial melting of felsic basaltic magma intrusion produce high elastic impedance contrasts in the upper and lower intrusive boundary. Further detail analyses on the conversion phase for other stations are required in the future. The proposed TRMDM can be further constrained base on the broadband data available from TEC data center.
關鍵字(中) ★ 接收函數
★ 莫荷面
★ 傾斜
關鍵字(英) ★ dip
★ receivver function
★ moho
論文目次 目錄
中文摘要 Ⅰ
英文摘要 Ⅲ
誌謝 Ⅴ
目錄 Ⅵ
圖目錄 Ⅸ
表目錄 XII
第一章 緒論 1
1.1 研究動機以及目的 1
1.2 台灣地體構造研究回顧 2
1.3 國外接收函數研究回顧 4
1.4 台灣接收函數研究回顧 5
1.5 本文內容 6
第二章 研究原理與方法 11
2.1 接收函數原理 11
2.2 水平速度不連續面對波形的影響 13
2.3 傾斜速度不連續面對波形的影響 13
2.3.1 前人研究 13
2.3.2 傾斜界面之理論模擬與統整 15
2.4雙層速度不連續面對波形的影響 16
2.4.1 康拉德面與莫荷面均為水平界面 16
2.4.2 傾斜康拉德面與水平莫荷面 17
2.4.3 水平康拉德面與傾斜莫荷面 18
2.4.4 康拉德面與莫荷面均為傾斜界面 18
2.4.5 雙層不連續面對波形影響的總結 19
2.5極淺層速度不連續面對波形的影響 19
2.5.1 水平的極淺層構造 20
2.5.2 傾斜的極淺層構造 20
2.5.2 極淺層構造對接收函數波形影響的總結 21
2.6 PS波到時與莫何面深度的探討 21
第三章 傾斜莫荷面的探討 49
3.1 地震事件選取 49
3.2地震事件分布 49
3.3疊加區域的選取 50
3.4 資料的等級劃分 51
3.5 全臺PS轉型波到時與莫荷面的分析 52
3.5.1 全臺Ps轉型波到時分布 52
3.5.2 全臺莫荷面分布 53
3.6 PS轉型波到時與極性分析 55
3.6.1 個別測站討論 55
3.6.2 Ps波到時與傾角分析 59
第四章 接收函數疊加剖面 80
4.1 疊加區域選取 80
4.2 個別測站探討 80
4.3 實際接收函數波形模擬 83
4.3.1 金門(KMNB)站 83
4.3.2 澎湖(PHUB)站 85
第五章 結論 99
參考文獻 102
參考文獻 Ai, Y., D. Zhao, X. Gao, and W. Xu, The crust and upper mantle discontinuity structure beneath Alaska inferred from receiver functions, Phys. Earth Planet. Inter., 150, 339-350, 2005.
Angelier, J., Preface. Geodynamics of the Eurasia-Philippine Sea plate boundary, Tectonophysics, 125, IX-X, 1986.
Ammon, C.J., G. E. Randall and G. Zandt, On the non-uniqueness of receiver function inversions, J.Geophys. Res., 95, 15303-15318, 1990.
Ammon, C.J., The isolation of receiver effects from teleseismic P waveforms, Bull. Seism. Soc. Am., 81, 2504-2510, 1991.
Burdick, L. J., and C. A. Langston, Modeling crustal structure through the use of converted phases in teleseismic body-wave forms, Bull. Seism. Soc. Am., 67, 677-691, 1977.
Cassidy, J. F., Numerical experiments in broadband receiver function analysis, Bull. Seism. Soc. Am., 82,1453-1474, 1992.
Cassidy, J. F., and R. M. Ellis, S-wave velocity structure of the northern Cascadia subduction zone, J. Geophys. Res., 98, 4407-4421, 1993.
Cassidy, J. F., A comparison of the receiver structure beneath stations of the Canadian National Seismograph Network, Can. J. Earth Sci., 32, 938-951, 1995.
Cheng, W.B., Crustal structure of the high magnetic anomaly belt, Western Taiwan, and its implications for continental margin deformation, Marine Geophy. Res., 25, 79-93, 2004.
Chevrot, S. and N. Girardin, On the detection and identification of converted and reflected phases from receiver functions. Geophys. J. Int., 141, 801-808, 2000.
Freire, S. L. M. and T. J. Ulrych, Application of singular value decomposition to vertical seismic profiling. Geophysics., 53, 778-785, 1988.
Gurrola H., G. E. Baker, and J. B. Minster., Simultaneous time-domain deconvolution with application to the computation of receiver functions, Geophys. J. Int., 120, 537-543, 1995.
Hu, G., and W. Menke, Formal inversion of laterally heterogeneous velocity structure from P-wave Polarization Data, Geophys. J. Int., 110, 63-69, 1992.
Hsu, S. K. and Sibuet J. C., Is Taiwan the result of arc-continent or arc-arc collision? Earth Planet. Sci Lett., 136, 315-324, 1995.
Kim K. H., J. M. Chiu, H. Kao, Q. Liu, and Y. H. Yeh, A preliminary study of crustal structure in Taiwan region using receiver function analysis, Geophys. Int. J., 159, 146-164, 2004.
Kim K. H., J. M. Chiu, J. Pujol, K. C. Chen., B. S. Huang., Y. H. Yeh and P. Shen, Three-dimensional Vp and Vs structure models associated with the active subduction and collision tectonics in the Taiwan region, Geophys. Int. J., 162, 204-220, 2005.
Langston, C. A., The effect of Planar dipping structure on source and receiver responses for constant ray parameter, Bull. Seism. Soc. Am., 67, 1029-1050, 1977.
Langston, C. A., Structure under Mount Rainier, Washington, Inferred from teleseismic body waves, J. Geophys. Res., 84, 4749-4762, 1979.
Last, R. J., A. A. Nyblade, and C. A. Langston, Crustal structure of the East African Plateau from receiver functions and Rayleigh wave phase velocities, J. Geophys. Res., 102, 24469-24483, 1997.
Levin, V., and J. Park, P-SH conversions in a Flat-layered Medium with Anisotropy of arbitrary orientation, Geophys. J. Int. 131, 253-266, 1997.
Lin, C. H. Active continental subduction and exhumation: Taiwan orogeny, Terra Nova, 14, 281-287, 2002.
Lin, J. Y., S. K. Hsu, and J. C. Sibuet, Melting features along the western Ryukyu slab edge (northeast Taiwan): Tomographic evidence, J. Geophys. 85 Res., 109, B12402, 2004.
Ma, K.-F., J-H Wang and D. Zhao, 3-D Seismic Velocity Structure of the Crust and Uppermost Mantle beneath Taiwan, Jour. of Phy. Earth, 44, 85-105, 1996.
Ma, K.F., and D. R. Song, Pn velocity and moho depth in Taiwan, J.Geol. Soc. China, 40, 167-184, 1997.
Nicholson, T., M. Bostock, and J. F. Cassidy, New constrains on subduction zone structure in northern Cascadia, Geophys. J. Int., 161, 849-859, 2005.
Owens, T. J., G. Zant, and S.R. Taylor, Seismic evidence for an ancient rift beneath the Crumberland Plateau, Tennessee: A Detailed analysis of broadband teleseismic P waveforms, J. Geophys. Res., 89, 7783-7795, 1984.
Owens, T. J., Crustal structure of the Adirondacks determined from broadband teleseismic waveform modeling, J. Geophys. Res., 92, 6391-6401, 1987.
Peng, X. and E. D. Humphreys, Moho dip and crustal anisotropy in northwestern Nevada from teleseismic receiver functions, Bull. Seism. Soc. Am., 87, 3, 745–754, 1997.
Phinney, R. A., Structure of the Earth’s crust from spectral behavior of long-period body waves, J. Geophys. Res., 69, 2997-3017, 1964.
Rau, R. J., F. T. Wu, Tomographic imaging of lithospheric structures under Taiwan, Earth Planet. Sci. Lett., 133, 517-532, 1995.
Saul, J., M. R. Kumar, and D. Sarkar, Lithospheric and upper mantle structure of the Indian Shield, from teleseismic receiver functions, Geophys. Res. Lett., 27, 2357-2360, 2000.
Sheehan, A. F., G. A. Abers, A. L. Lerner-Lam, and C. H. Jones, Crustal thickness variations across the Rocky Mountain Front from teleseismic receiver functions, J. Geophys. Res., 100, 20391-20404, 1995.
Shih, R. C., C. H. Lin, H. L. Lai, Y. H. Yeh, B. S. Hwang, and H. Y. Yen, Preliminary crustal structures across central Taiwan from modeling of the onshore-offshore wideangle seismic data, TAO, 9, 317-328, 1998.
Suppe, J., Mechanics of mountain building and metamorphism in Taiwan, Mem. Geol. Soc. China, 4, 67-89, 1981.
Suppe, J., Kinematics of are-continent collision, flipping of subduction, and back-are spreading near Taiwan. Mem. Geol. Soc. China, 6, 21-33, 1984.
Teng, L.S., Geotectonic evolution of late Cenozoic arccontinent collision in Taiwan, Tectonophysics 183, 57–76, 1990.
Teng, L. S., C. T. Lee, Y. B. Tsai, and L. Y. Hsiao, Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan, Geology, 28, 155-158, 2000.
Tomfohrde D. A. and Nowack, R. L., Crustal structure beneath Taiwan using frequency-band inversion of receiver function waveforms, Pure appl. Geophys., 157, 737-764, 2000.
Yen, Y. H., R. C. Shin, C. H. Lin, C. C. Liu, H. Y. Yen, B. S. Huang, C. S. Liu, P. Z. Chen, C. S. Huang, C. J. Wu, and F. T. Wu, Onshore/Offshore wide-angle deep seismic profiling in Taiwan, TAO., 9, 301-316, 1998.
Yu, S. B., H. Y. Chen and L. C. Kuo, Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59, 1997.
Wu, F. T., Rau, R. –J. and david Salzberg, Taiwan orogeny: thin skinned or lithospheric collision? Tectonophysics, 274, 191-220, 1997.
Wu, Y. M., Chang, C. H., Zhao, L., J. Bruce H. Shyu, Chen, Y. G., Kerry Sieh, and J. P. Avouac, Seismic tomography of Taiwan: Improved constraints from a dense network of string motion stations, J. Geophy. Res., VOL. 112, B08312, doi:10.1029/2007JB004983, 2007.
Zhu, L. P., T. J. Owens, and G. E. Randall, Lateral Variation in Crustal Structure of the Northern Tibetan Plateau Inferred from Teleseismic Receiver Functions, Bull. Seism. Soc. Am., 85, 6, 1531–1540, 1995.
Zhu, L. P.and Hiroo Kanamori, Moho depth variation in southern California from teleseismic receiver functions, J. Geophys. Res., 105, 2969–2980, 2000.
林哲民,利用接收函數法推估蘭陽平原淺層速度構造,國立中央大學地球物理研究所,碩士論文,2003年。
高弘、張建興和陳榮裕,台灣地區寬頻地震站之接收函數分析,中央氣象局地震技術報告,第33 卷,87-136,2000。
陳燕玲,台灣地區三維速度構造與隱沒構造之相關探討,國立中央大學地球物理研究所,碩士論文,1995年。
廖彥喆,利用接收函數法分析台灣深部地殼構造,國立中央大學地球物理研究所,碩士論文,2005年。
鄧屬予,台灣新生代大地構造,台灣大地構造,49-93,2002。
指導教授 陳浩維(How-Wei Chen) 審核日期 2009-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明