博碩士論文 966204001 詳細資訊


姓名 吳文傑(Wen-Jie Wu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 應力歷史相關之沉積岩孔隙率模型
(Stress-history dependent porosity model of sedimentary rock)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自Athy於1930年提出孔隙率隨深度變化之方程式,開啟了孔隙率隨深度變化相關之研究。為考慮力學壓密作用,許多研究提出孔隙率隨有效應力變化之方程式,大致上遵循指數律(exponential law)或冪次律(power law)。除了有效應力對孔隙率之影響,應力歷史對地質材料之力學行為影響亦甚巨,本研究以室內三軸均向壓縮詴驗,嘗詴建立沉積岩之應力歷史相依孔隙率模式。本研究採用詴體來自TCDP之鑽井,利用高圍壓三軸均向壓縮孔隙量測儀,以獲得車籠埔斷層上下盤之沉積岩孔隙率隨有效圍壓變化之加壓解壓曲線,考慮岩石對應力之「記憶性」,以應力歷史相依孔隙率模式,計算TCDP鑽井穿過地層之孔隙率,並與井測值進行比較。最後,以井測波速計算之統體模數與孔隙率模型推求之統體模數隨深度之變化進行比較,結果發現,根據室內三軸詴驗獲得之應力歷史相依孔隙率模型,可合理模擬地層孔隙率及波速隨深度變化之趨勢。
摘要(英) The proposed porosity-depth relationship has been widely studied since the well known Athy’s law was proposed in 1930. Regarding to the effect of mechanical compaction, porosity-effective stress relationships have forms of exponential law or power law. Besides the effective stress, stress history also plays an important role on the mechanical behavior of geological materials. This study proposed a stress-history dependent porosity model of sedimentary rock based on laboratory work. The samples are assembled from TCDP boreholes. The porosities varied with effective confining pressure are derived, and showing the estimated porosity-depth relation fit in TCDP borehole log data. Final, the bulk modulus from seismic velocity of well logging also well reproduced based on the suggested model. It indicates that the stress-history dependent porosity model can simulate the relationships between porosity/velocity and depth in formations.
關鍵字(中) ★ 統體模數
★ 孔隙率
★ 最大預壓密應力
★ 應力歷史
★ 台灣車籠埔深鑽計畫
關鍵字(英) ★ stress history
★ preconsolidation stress
★ porosity
★ bulk modulus
★ TCDP
論文目次 摘要 ................................................................................................................ i
ABSTRACT .................................................................................................. ii
誌謝 .............................................................................................................. iii
目錄 .............................................................................................................. iv
圖目錄 .......................................................................................................... vi
表目錄 .......................................................................................................... ix
符號說明 ....................................................................................................... x
第一章 緒論 ................................................................................................. 1
1.1 研究動機與目的 ....................................................................... 1
1.2 研究方法 ................................................................................... 1
1.3 論文架構 ................................................................................... 2
第二章 文獻回顧 ......................................................................................... 4
2.1 沉積岩孔隙率–深度關係 ......................................................... 4
2.2 地質材料之最大預壓密應力 ................................................... 7
2.3 孔隙率應力相依模型 ............................................................. 11
2.4 波速(P-wave velocity)與深度之關係 ..................................... 14
2.5 岩石壓縮性與統體模數(bulk modulus) ................................. 15
2.6 台灣車籠埔深鑽計畫(TCDP)概述 ........................................ 19
第三章 研究方法 ....................................................................................... 22
3.1 孔隙率量測 ............................................................................. 22
3.2 實驗詴體 ................................................................................. 26
3.3 應力歷史相依孔隙率模型及最大預壓密應力 ..................... 30
v
3.4 由地質剖面評估沉積岩之最大預壓密應力 ......................... 34
3.5 孔隙率隨深度之變化 ............................................................. 37
3.6 岩石統體模數隨深度之變化 ................................................. 38
第四章 結果與討論 ................................................................................... 40
4.1 決定最大預壓密應力之方法 ................................................. 40
4.1.1 根據孔隙率實驗所得之最大預壓密應力 ...................... 40
4.1.2 根據地質剖面獲得之最大預壓密應力 .......................... 46
4.2 孔隙率與深度之關係 ............................................................. 49
4.3 應力歷史相關統體模數 ......................................................... 54
第五章 結論與建議 ................................................................................... 56
文獻回顧 ..................................................................................................... 57
附錄 ............................................................................................................. 67
A. Grapher自訂迴歸方程式 ....................................................... 67
B. 孔隙率實驗之詴體 ................................................................. 68
C. 各詴體孔隙率隨有效圍壓變化 ............................................. 69
D. 孔隙率實驗之標準作業程序 ................................................. 76
參考文獻 [1] Pine, R. J. and A. S. Batchelor, “Downward migration of shearing in joined rock during hydraulical injections”, International Journal of Rock Mechanics & Mining Science, Vol. 21, pp. 249-263, 1984.
[2] Tsang, C. F., “Introduction to coupled processes”, Coupled processes associated with nuclear waste repositories, C. F. Tsang (eds.), Academic Press, Orlando, 1987.
[3] Apps, J. and C. F. Tsang, “Preface”, Deep injection of disposal of hazardous industrial waste: scientific and engineering aspects, J. Apps and C. F. Tsang (eds.), Academic Press, San Diego, 1996.
[4] Brasier, F. M. and B. J. Kobelsky, “Injection of industrial wastes in the United States”, Deep injection of disposal of hazardous industrial waste: scientific and engineering aspects, J. Apps and C. F. Tsang (eds.), Academic Press, San Diego, 1996.
[5] Lewis, R. W. and B. A. Schrefler, The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd ed., Wiley, New York, 1998.
[6] Baria, R., J. Baumgartner, F. Rummel, R. J. Pine and Y. Sato, “HDR/HWR reservoirs: concepts, understanding and creation”, Geothermics, Vol. 28, pp. 533-552, 1999.
[7] Rutqvist, J., Y. S. Wu, C. F. Tsang and G. Bodvarsson “A modeling approach for analysis of coupled multiphase fluid flow, heat transfer and deformation in fracture porous rock”, International Journal of Rock Mechanics & Mining Science, Vol. 39, pp. 429-442, 2002.
[8] Rutqvist, J. and O. Stephansson, “The role of hydromechanical coupling in fractured rock engineering”, Hydrogeology Journal, Vol. 11, pp. 7-40, 2003.
[9] Rutqvist, J. and C. F. Tsang, “Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain”, Journal of Contaminant Hydrology, Vol. 62-63, pp. 637-652, 2003.
[10] Liu, H. H., J. Rutqvist and J. G. Berryman, “On the relationship between stress and elastic strain for porous and fractured rock”, International Journal of Rock Mechanics & Mining Sciences, Vol. 46, pp. 289-296, 2009.
[11] Mondol, N. H., K. Bjørlykke, J. Jahren and K. Høeg, “Experimental mechanical compaction of clay mineral aggregates – Change in physical properties of mudstones during burial”, Marine and Petroleum Geology, Vol. 24, pp. 289-311, 2007.
[12] Terzaghi, K., “Principles of soil mechanics: I – phenomena of cohesion of clays. IV – settlement and consolidation of clay”, Engineering News – Record, Vol. 95, No. 19, pp. 742-746, pp. 874-878, 1925.
[13] Athy, L. F., “Density, porosity and compaction of sedimentary rocks”, American Association of Petroleum Geologists Bulletin, Vol. 14, No. 1, pp. 1-24, 1930.
[14] Goulty, N. R., “Relationships between porosity and effective stress in shales”, First Break, Vol. 16, No. 12, pp. 413-419, 1998.
[15] Yang, Y. and A. C. Aplin “Definition and practical application of mudstone porosity – effective stress relationships”, Petroleum Geoscience, Vol. 10, No. 2, pp. 153-162, 2004.
[16] Jones, M. E. and M. A. Addis, “On changes in porosity and volume during burial of argillaceous sediments”, Marine and Petroleum Geology, Vol. 2, pp. 247-253, 1985.
[17] Bjørkum, P. A., E. H. Oelkers, P. H. Nadeau, O. Walderhaug and W. M. Murphy, “Porosity prediction in quartzose sandstones as a function of time, temperature, depth, stylolite frequency and hydrocarbon saturation”, American Association of Petroleum Geologists Bulletin, Vol. 82, No. 4, pp. 637-648, 1998.
[18] Bjørlykke, K., “Principal aspects of compaction and fluid flow in mudstones”, Muds and mudstone: physical and fluid – flow properties, Special Publication No. 158, A. C. Aplin et al. (eds.), Geological Society of London, London, 1999.
[19] Lander, R. H. and O. Walderhaug, “Predicting porosity through simulating sandstone compaction and quartz cemention”, American Association of Petroleum Geologists Bulletin, Vol. 83, No. 3, pp. 433-449, 1999.
[20] Storvoll, V., K. Bjørlykke and H. N. Mondol, “Velocity – depth trends in Mesozoic and Cenozoic sediments from the Norwegian shelf”, American Association of Petroleum Geologists Bulletin, Vol. 89, No. 3, pp. 359-381, 2005.
[21] Audet, D. M., “Compaction and overpressuring in Pleistocene sediments on the Louisiana Shelf, Gulf of Mexico”, Marine and Petroleum Geology, Vol. 13, No. 5, pp. 467-474, 1996.
[22] Saito, S. and D. Goldberg, “Evolution of tectonic compaction in the Barbados accretionary prism: estimate from logging-while-drilling”, Earth and Planetary Science Letters, Vol. 148, pp. 423-432, 1997.
[23] Van Sickel, W. A., M. A. Kominz, K. G. Miller and J. V. Browning, “Late Cretaceous and Cenozoic sea-level estimates: backstripping analysis of borehole data, onshore New Jersey”, Basin Research, Vol. 16, pp. 451-465, 2004
[24] Lin, A. T., A. B. Watts and S. P. Hesselbo, “Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region”, Basin Research, Vol. 15, pp. 453-478, 2003.
[25] Holtz, R. D. and W. D. Kovacs, An introduction to geotechnical engineering, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.
[26] Jamiolkowski, M., C. C. Ladd, J. T. Germaine and R. Lancellotta, “New development in field and laboratory testing of soils”, Theme Lecture, 11th international conference on Soil Mechanics and Foundation Engineering, pp. 57-153, San Francisco, 1985.
[27] Larson, W. E. and S. C. Gupta, “Estimating critical stress in unsaturated soils from changes in pore water pressure during confined compression”, Soil Science Society of America Journal, Vol. 44, pp. 1127-1132, 1980.
[28] Larson, W. E., S. C. Gupta and R. A. Useche, “Compression of agricultural soils”, Soil Science Society of America Journal, Vol. 44, pp. 450-457, 1980.
[29] Culley, J. L. B. and W. E. Larson, “Susceptibility to compression of a clay loam Haplaquoll”, Soil Science Society of America Journal, Vol. 51, pp. 562-567, 1987.
[30] Gupta, S. C. and R. R. Allmaras, “Models to access the susceptibility of soil to excessive compaction”, Advances in Soil Sciences, Vol. 6, pp. 65-100, 1987.
[31] Lebert, M. and R. Horn, “A method to predict the mechanical strength of agricultural soils”, Soil and Tillage Research, Vol. 19, pp. 275-286, 1991.
[32] Stone, J. A. and W. E. Larson, “Rebound of five one – dimensionally compressed unsaturated granular soils”, Soil Science Society of America Journal, Vol. 44, pp. 819-822, 1980.
[33] Gupta, S. C., A. Hadas and R. L. Schafer, “Modeling soil mechanical behavior during compaction”, Mechanical and related process in structured agricultural soils, W. E. Larson et al. (eds.), Kluwer Academic Publishers, Dordrecht, 1989 .
[34] Gregory, A. S., W. R. Whalley, C. W. Watts, N. R. A. Bird, P. D. Hallett and A. P. Whitmore, “Calculation of the compression index and precompression stress form soil compression test data”, Soil and Tillage Research, Vol. 89, pp. 45-57, 2006.
[35] Skempton, A. W., “The consolidation of clays by gravitational compaction”, Quarterly Journal of the Geological Society, Vol. 125, pp. 373-411, 1970.
[36] Jones, M. E. and M. A. Addis, “The application of stress path and critical state analysis to sediment deformation”, Journal of Structural Geology, Vol. 8, pp. 575-580, 1986.
[37] Maltman, A., The geological deformation of sediments, Chapman and Hall, London, 1994.
[38] Schneider, F., M. Bouteca and G. Vasseur, “Validity of the porosity/effective stress concept in sedimentary basin modeling”, First Break, Vol. 12, pp. 321-326, 1994.
[39] Aplin, A. C., Y. Yang and S. Hansen, “Assessment of beta, the compression coefficient of mudstones and its relationship to detailed lithology”, Marine and Petroleum Geology, Vol. 12, pp. 955-963, 1995.
[40] Dewhurst, D. N., A. C. Aplin, J. P. Sarda and Y. Yang, “Compaction-driven evolution of porosity and permeability in natural mudstones: an experimental study”, Journal of Geophysical Research, Vol. 103, No. B1, pp. 651-661, 1998.
[41] Dias Jr., M. S. and F. J. Pierce, “A simple procedure for estimating preconsolidation pressure from soil compression curves”, Soil Technology, Vol. 8, pp. 139-151, 1995.
[42] Casagrande, A., “The determination of the pre-consolidation load and its practical significance”, Proceeding of 1st International Conference of soil Mechanics, Vol. 3, pp. 60-64, 1936.
[43] Burmister, D. M., “The application of controlled test methods in consolidation testing”, Symposium on Consolidation Testing of Soils, Special Technical Publication No. 126, pp. 83-98, 54th Annual Meeting of the ASTM, New Jersey, 1951.
[44] Schmertmann, J. H., “The undisturbed consolidation behavior of clay”, Transactions of the American Society of Civil Engineers, Vol. 120, pp. 1201-1233, 1955.
[45] Sällfors, G., “Preconsolidation pressure of soft high plastic clays”, Department of Geotechnical Engineering, Chalmers University of Technology, Ph. D., 1975.
[46] Jose, B. T., A. Sridharan and B. M. Abraham, “Log – log method for determination of preconsolidation pressure”, Geotechnical Testing Journal, Vol. 12, pp. 230-237, 1989.
[47] Lambe, T. W. and R. V. Whitman, Soil mechanics, John Wiley & Sons, New York, 1969.
[48] Shi, Y. and C. Y. Wang, “Pore pressure generation in sedimentary basins: overloading versus aquathermal”, Journal of Geophysical Research, Vol. 91, No. B2, pp. 2153-2162, 1986.
[49] Yang, Y. and A. C. Aplin, “Permeability and petrophysical properties of 30 natural mudstones”, Journal of Geophysical Research, Vol. 112, B03206, 2007.
[50] Sclater, J. G. and P. A. F. Christie, “Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the central North Sea Basin”, Journal of Geophysical Research, Vol. 85, No. B7, pp. 3711-3739, 1980.
[51] Baldwin, B. and C. O. Butler, “Compaction curves”, American Association of Petroleum Geologists Bulletin, Vol. 69, No. 4, pp. 622-626, 1985.
[52] Dickinson, G., “Geological aspects of abnormal reservoir pressure in Gulf Coast Louisiana”, American Association of Petroleum Geologists Bulletin, Vol. 37, pp. 410-432, 1953.
[53] Hoholick, J. D., T. Metarko and P. E. Potter, “Regional variations of porosity and cement: St. Peter and Mount Simon Sandstones in Illinois Basin”, American Association of Petroleum Geologists Bulletin, Vol. 68, pp. 753-764, 1984.
[54] Schmoker, J. W. and R. B. Halley, “Carbonate porosity versus depth: a prediction relation for South Florida”, American Association of Petroleum Geologists Bulletin, Vol. 66, pp. 2561-2570, 1982.
[55] Hsu, J. Y., “Stress-dependent fluid flow properties of sedimentary rocks and overpressure generation”, Institute of Applied Geology, National Central University, thesis, 2007.
[56] Japsen, P., T. Mukerji and G. Mavko, “Constrains on velocity – depth trends from rock physics models”, Geophysical Prospecting, Vol. 55, pp. 135-154, 2007.
[57] Vernik, L., “Predicting lithology and transport properties from acoustic velocities based on petrophysical classification of siliciclastics”, Geophysics, Vol. 59, No. 3, pp. 420-427, 1994.
[58] Audet, D. M., “Modelling of porosity evolution and mechanical compaction of calcareous defiments”, Sedimentology, Vol. 42, pp. 355-373, 1995.
[59] Goff, J. A. and K. Holliger, “Nature and origin of upper crustal seismic velocity fluctuations and associated scaling properties: combined stochastic analyses of KTB velocity and lithology logs”, Journal of Geophysical Research, Vol. 104, No. B6, pp. 13169-13182, 1999.
[60] Japsen, P., “Regional velocity – depth anomalies, North Sea chalk: a record of overpressure and Neogene uplift and erosion”, American Association of Petroleum Geologists Bulletin, Vol. 82, No. 11, pp. 2031-2074, 1998.
[61] Japsen, P., “Overpressured Cenozoic shale mapped from velocity anomalies relative to a baseline for marine shale, North Sea”, Petroleum Geoscience, Vol. 5, pp. 321-336, 1999.
[62] Urmos, J. and R. H. Wilkens, “In situ velocities in pelagic carbonates: new insights from Ocean drilling Program Leg 130, Ontong Java Plateau”, Journal of Geophysical Research, Vol. 98, No. B5, pp. 7903-7920, 1993.
[63] Walsh, J. B., “The effect of cracks on the compressibility of rock”, Journal of Geophysical Research, Vol. 70, No. 2, pp.381-389, 1965.
[64] Mavko, G. and T. Mukerji, “Seismic pore space compressibility and Gassmann’s relation”, Geophysics, Vol. 60, No. 6, pp. 1743-1749, 1995.
[65] Han, D. H. and M. L. Batzle, “Gassmann’s equation and fluid-saturation effects on seismic velocities”, Geophysics, Vol. 69, No. 2, pp. 398-405, 2004.
[66] Gassmann, F., “Über die elastizität poröser medien”, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, Vol. 96, pp. 1-23, 1951.
[67] Berryman, J. G., “Origin of Gassmann’s equation”, Geophysics, Vol. 64, pp. 1627-1629, 1999.
[68] Lin, A. T., S. M. Wang, J. H. Hung, M. S. Wu and C. S. Liu, “Lithostratigraphy of the Taiwan Chelungpu-fault Drilling Project-A borehole and its neighboring region, central Taiwan”, TAO, Vol. 18, No. 2, pp. 223-241, 2007.
[69] Hung, J. H., Y. H. Wu, E. C. Yeh, J. C. Wu and TCDP Scientific Party, “Subsurface structure, physical properties, and fault zone characteristics in the scientific drill holes of Taiwan Chelungpu-fault Drilling Project”, TAO, Vol. 18, No. 2, pp. 271-293, 2007.
[70] Hung, J. H., K. F. Ma, C. Y. Wang, H. Ito, W. Lin and E. C. Yeh, “Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu fault Drilling Project”, Tectonophisics, Vol. 466, pp. 307-321, 2009.
[71] ISRM, “Rock characterization testing and monitoring”, ISRM Suggested Method, E. T. Brown (eds.), Pergamon Press, Oxford, United Kingdom, 1981.
[72] Tanikawa, W. and T. Shimamoto, “Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks”, Hydrology and Earth System Sciences Discussions, Vol. 3, pp. 1315-1338, 2006.
[73] Tanikawa, W., T. Shimamoto, W. K. Wey, W. Y. Wu, C. W. Lin and W. C. Lai, “Sedimentation and generation of abnormal fluid pressure in the focal area of 1999 Taiwan Chi-Chi earthquake”, Proceeding of the ISRM International Symposium , 3rd ARMS, pp. 553-557, Tokyo, Japan, 2004.
[74] Ho, C. S., “A introduction to the geology of Taiwan explanatory text of the geologic map of Taiwan”, MOEACGS, Taiwan, 1986.
[75] Wu, Y. H., E. C. Yeh, J. J. Dong, L. W. Kuo, J. Y. Hsu and J. H. Hung, “Core-log integration studies in hole–A of Taiwan Chelungpu–fault Drilling Project”, Geophysical Journal International, Vol. 174, pp. 949-965, 2008.
[76] Hsieh, S. H. and C. C. Hu, “Gravity and magnetic studies of Taiwan”, Petroleum Geology of Taiwan, Vol. 10, pp. 283-321, 1972.
[77] Blatt, H., R. J. Tracy and B. E. Owens, “Petrology – igneous, sedimentary, and metamorphic”, 3rd edition, W. H. Freeman and Company, New York, 2005.
[78] Mavko, G., T. Mukerji and J. Dvorkin, “The rock physics handbook – tools for seismic analysis in porous media”, Cambridge University Press, Cambridge, 1998.
指導教授 董家鈞(Jai-Jyun Dong) 審核日期 2009-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡