博碩士論文 966204002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.14.6.194
姓名 宋芝萱(Chih-Hsuan Sung)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 台灣地區強地動預估式之自然隨機誤差分析
(Aleatory Variability of Ground-motion Predition Equations Deduced from a Huge Dataset in Taiwan)
相關論文
★ 台灣中部德基至梨山地區岩石劈理位態分布特性之研究★ 台北盆地松山層土壤性質之空間分析
★ 新店溪之地形研究★ 運用類神經網路進行隧道岩體分類
★ 大肚溪流域河階地形研究★ 台南台地暨鄰近地區之台南層及其構造運動
★ 台灣東北部地區隱沒帶地震強地動衰減式之研究★ 運用類神經網路進行地震誘發山崩之潛感分析
★ 地形地質均質區劃分與山崩因子探討★ 由世界應力量測資料探討不同地體構造區的應力特性
★ 921集集地震造成之地表變形模式★ 運用模糊類神經網路進行山崩潛感分析—以台灣中部國姓地區為例
★ 運用判別分析進行山崩潛感分析之研究 – 以臺灣中部國姓地區為例★ 運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例
★ 台灣西南平原末次冰期以來之地層及構造運動★ 利用近年大規模地震的強震資料修正Newmark經驗式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究建立適合台灣地區機率式地震危害度分析使用的強地動預估式,以中央氣象局的自由場強地動觀測網計畫之強震資料,篩選出地震矩規模大於4.0之150 個地殼地震,共計19,887筆強震資料進行分析。以混合效應模型(mixed-effect model)及最大概似法(maximum likelihood estimation)當作迴歸模型,透過非線性的迴歸分析來探討地動值與震源、路徑及場址間的關係,並以地震學理論為基礎建立預估式,考慮規模、地震波傳播距離、場址特性及震源機制等參數,完成適合台灣地區在各週期之地殼地震強地動預估式。
本研究利用變動視窗法(Spatial-correlation Mobile Window)、路徑玫瑰圖法(Pah Diagram)、半變異圖法(Semi-variogram)、CI法及震央距離法等方式進行事件間變異性與記錄間變異性的分析與拆解。在分析事件間變異性上,以變動視窗法最為合理,而紀錄間變異性的拆解則以路徑玫瑰圖有最好的結果,並且是唯一可以將路徑間變異性從紀錄間變異性中完整拆解出來的方法,也使的每筆強震紀錄都可以擁有各自的事件內自然隨機誤差。最後合併變動視窗法與路徑玫瑰圖法求得最小之單一路徑標準差σSP,可較總標準差σT降低約40%-55%。
另外也建立特定條件之強地動關係式,其中包含單站(single station)、單震源(single source)及單震源對陣列(single source to an array)的條件。結果發現,使用特定條件之預估式求得之單站標準差σSS、單一路徑標準差σSP及事件內的自然隨機變異性σ0皆比一般預估式的拆解更低。最後在機率式地震危害度分析中套用總標準差、單站標準差及單一路徑標準差,結果顯示只考慮自然隨機誤差的的危害度曲線(2475年再現期),比過去只考慮總標準差評估出的強地動值降低約20%,再現期越長評估出的強地動值差異也越大。
摘要(英) In this study, we use 19,887 records for 150 crustal earthquakes with moment magnitudes greater than 4.0 obtained from the Taiwan Strong-Motion Instrumentation Program network to build the Taiwan ground-motion prediction equations (GMPEs) for peak ground acceleration and spectral accelerations. The nonlinear regression analysis of ground-motion prediction model is the mixed-effect model with maximum likelihood method. Though this regression analysis to discuss the relationship of source, path, and site.
This paper describes the approaches for the presentation of the components of the error in ground-motion estimates for future earthquakes: (1) spatial-correlation mobile widow, (2)path diagram, (3) semi-variogram, (4) closeness index and (5) the distance of epicenter. Comparing the results with those obtained with the same data, but using the closeness index, semi-variogram and the distance of epicenter approaches, show that we get a lower path-to-path sigma with the combination of the spatial-correlation mobile window and the path diagram methods. For peak ground acceleration and spectral accelerations at periods of 0.3 s, 1.0 s, and 3.0 s, the path-to-path standard deviations obtained in the new approaches are 40%–55% smaller than the total standard deviation.
We also set up the ground-motion prediction equations for the single station, single source and single source to an array in this study. When we use these specific conditions GMPEs to analyze the variance, we can obtain the smaller single-station sigma, single-path sigma, and intra-event aleatory variability than general GMPEs. If we only use aleatory variability in PSHA, then the resultant hazard level would be 20% lower than the traditional one in 2475 year.
關鍵字(中) ★ 強地動預估式
★ 路徑效應
★ 標準差
★ 單站
★ 機率式地震危害度分析
關鍵字(英) ★ GMPE
★ path effect
★ sigma
★ single station
★ PSHA
論文目次 中文摘要 i
Abstract ii
致謝 iii
目 錄 v
表 目 錄 ix
圖 目 錄 xi
符號說明 xviii
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 2
1-2-1 GMPE相關研究-採用更多的參數 3
1-2-2 殘餘值分析、場址項固定及變異數拆解之研究 8
1-3 研究流程與內容 12
第二章 資料蒐集與處理 13
2-1 強震資料蒐集 13
2-1-1資料挑選規則 13
2-1-2 規模參數 13
2-1-3 震源機制參數 14
2-1-4 測站場址參數 14
2-1-5 地動參數建立 15
2-2 強震資料處理 15
2-3 相關研究之強地動資料比較 16
第三章 研究方法 29
3-1 衰減模型之優化 29
3-1-1 考慮規模與距離項 29
3-1-2 增加場址項 30
3-1-3 增加震源機制項 30
3-1-4 規模平方項 31
3-1-5 挑選本研究之預估式雛型 31
3-2 預估式迴歸分析方法 32
3-2-1 最大概似法 32
3-2-2 混合效應模型 36
3-3 殘餘值分析 39
3-4 變異數拆解 40
3-4-1 變異數拆解流程 40
3-4-2 路徑相似指數(CI index) 42
3-4-3 震央距離法 42
3-4-4 半變異圖法(Semi-variogram) 43
3-4-5 變動視窗法(Spatial-correlation mobile-window method) 43
3-4-6 路徑玫瑰圖(Path diagram) 44
3-5 特定條件之變異數拆解 49
3-5-1 單一測站強地動預估式 49
3-5-2 單一地震強地動預估式 50
3-5-3 單震源對陣列之強地動預估式 50
第四章 地殼震源強地動預估式建立 58
4-1 本研究之預估式分析 58
4-2 國內外預估式之比較 61
第五章 殘餘值分析及變異數拆解結果 67
5-1 殘差值分析 67
5-2 事件間變異性拆解 73
5-2-1 變動視窗法(Spatial-correlation mobile-window method) 73
5-2-2 震央距離法 74
5-2-3 半變異圖法(Semi-variogram) 74
5-2-4 三種方法之比較 75
5-3 紀錄間變異性拆解 81
5-3-1 路徑玫瑰圖(Path diagram) 81
5-3-2 路徑相似性參數(CI index) 82
5-3-3 半變異圖法(Semi-variogram) 83
5-3-4 三種方法之比較 83
5-4 國內外變異性拆解之比較 90
5-4-1 事件間變異數的拆解 90
5-4-2 紀錄間變異數的拆解 91
5-4-3 單一測站標準差與單一路徑標準差 91
第六章 特定條件之變異數拆解 95
6-1 單一測站強地動預估式 95
6-1-1 單站之殘餘值與變異數分析 96
6-1-2 變動視窗法 97
6-1-3 半變異圖法 97
6-2 單一震源強地動預估式 108
6-2-1 單震源之殘餘值與變異數分析 108
6-2-2 變動視窗法 109
6-2-3 半變異圖法 109
6-3 單震源對陣列之強地動預估式 119
6-3-1 單震源對陣列之殘餘值與變異數分析 119
6-3-2 半變異圖法 120
6-3-3 變動視窗法 120
第七章 討論 125
7-1 路徑玫瑰圖法與CI法 125
7-2 單站之路徑效應與自然的隨機變異性 129
7-3 非彈性衰減 133
7-4 變動視窗法與半變異圖法 135
7-5 特定條件之變異數 137
7-6 自然的隨機誤差與知識的不確定性 139
7-7 地震危害度分析之應用 141
第八章 結論與建議 143
參考文獻 145
附錄A 156
附錄B 166
附錄C 183
附錄D 200
附錄E 224
附錄F 233
附錄G 250
參考文獻 Abrahamson, N. A. and K. M. Shedlock, (1997). Overview, Seism. Res. Lett., 68, 1, 9-23.
Abrahamson, N. A., and R. R. Youngs (1992). A stable algorithm for regression analyses using the random effects model, Bull. Seism. Soc. Am., 82, 505–510.
Abrahamson, N. A. (1988). Statistical properties of peak ground accelerations recorded by the SMART 1 array, Bull. Seism. Soc. Am. 78, 26–41.
Abrahamson .N, and Silva .W (2008).Summary of the Abrahamson & Silva NGA Ground-Motion Relations, Earthquake Spectra, 24(1), 67–98.
Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on Automatic Control 19 (6), 716–723.
Al-Atik, L., N. Abrahamson, F. Cotton, F. Scherbaum, J. Bommer, and N. Kuehn, (2010). The variability of ground-motion prediction models and its components, Seismol. Res. Lett. 81, no. 5, 794–801.
Ambraseys N.N. and J.J. Bommer, (1995). Attenuation relations for use in Europe: an overview. In: A.S. Elnashai, Editor, Proceedings of Fifth SECED Conference on European Seismic Design Practice, 67–74.
Anderson, J. G. (2000). Expected Shape of Regressions for Ground-Motion Parameters on Rock, Bull. Seism. Soc. Am. 90, S43-52.
Anderson, J. G. and J. N. Brune (1999a). Probabilistic seismic hazard assessment without the ergodic assumption, Seism. Res. Let., 70, 19-28.
Anderson, J. G. and J. N. Brune (1999b) . Methodology for using precarious rocks in Nevada to test seismic hazard model, Bull. Seism. Soc. Am, 89 (2), 456-467.
Anderson, J. G., and Y. Uchiyama (2011). A methodology to improve ground-motion prediction equations by including path corrections, Bull. Seismol. Soc. Am. 101, 1822–1846.
Atkinson, G. M.(2006)Single-station sigma, Bull. Seism. Soc. Am. 96, 446-455.
Bell, J. W., J. N. Brune, T. Liu, M. Zreda, and J. C. Yount (1998). Dating precariously balanced rocks in seismically active parts of California and Nevada, Geology 26, 495-498.
Bommer, J. J., and N. A. Abrahamson (2006). Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates?, Bull. Seismol. Soc. Am. 96, 1976–1977.
Boore .D .M, and Atkinson .G. M. (2008).Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-Damped PSA at Spectral Periods between 0.01 s and 10.0 s , Earthquake Spectra, 24(1), 99–13.
Boore, D.M., and Joyner, W.B. (1982). The empirical prediction ofground motion. Bull. Seism. Soc. Am., 72 (6), S43–S60 (part B).
Boore, D.M., Joyner, W.B., and Fumal, T.E. (1997). Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: A summary of recent work, Seism. Res. Lett., 68, 128–153.
Borcherdt, R. D., (1994a). Estimates of site-dependent response spectra for design(methodology and justification), Earthquake Spectra 10, 617-653.
Borcherdt, R. D., (1994b). An integrated methodology for estimates of site-dependent response spectra, seismic coefficients for site dependent building code provisions, and predictive GIS maps of strong ground shaking, in Proceedings of Seminar on New Developments in Earthquake Ground Motion Estimation and Implications for Engineering Design Practice, Applied Technology Council ATC 35-1, 10-1~10-44.
Brillinger, D. R., and H. K. Preisler(1985)Further analysis of the Joyner-Boore attenuation data, Bull. Seism. Soc. Am. 75, 611-614.
Brune, J. N. (1996). Precariously balanced rocks and ground-motion maps for southern California, Bull. Seism. Soc. Am., 86, 43–54.
Campbell, K. W. (1981). Near-source attenuation of peak horizontal acceleration, Bull. Seism. Soc. Am. 71, 2039-2070.
Campbell K.W. (1985). Strong motion attenuation relations: a ten-year perspective. Earthquake Spectra. 1 4, 759–804
Campbell K.W., (2002a). A contemporary guide to strong-motion attenuation relations. In: W.H.K. Lee, H. Kanamori, P.C. Jennings and C. Kisslinger, Editors, International Handbook of Earthquake and Engineering Seismology, Academic Press, London.
Campbell K.W., (2002b). Engineering models of strong ground motion. In: W.F. Chen and C. Scawthorn, Editors, Handbook of Earthquake Engineering, CRC Press, Boca Raton, FL, USA chap. 5 .
Campbell K.W., (2002c). Strong-motion attenuation relations. In: W.H.K. Lee, H. Kanamori, P.C. Jennings and C. Kisslinger, Editors, International Handbook of Earthquake and Engineering Seismology, Academic Press, London chap. 60 .
Campbell .K .W, and Bozorgnia .Y. (2008). NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s , Earthquake Spectra, 24(1), 139–171.
Chang, T. Y., F. Cotton, and J. Angelier (2001). Seismic Attenuation and Peak Ground Acceleration in Taiwan, Bull. Seism. Soc. Am., 91, 1229-1246.
Chen, Y. H., and C.-C. P. Tsai (2002). A new method for estimation of the attenuation relationship with variance components, Bull. Seism. Soc. Am., 92, 1984–1991.
Chiou B. S.-J. Chiou and Youngs R. R. (2006). PEER-NGA Empirical Ground Motion Model for the Average Horizontal Component of Peak Acceleration and Pseudo-Spectral Acceleration for Spectral Periods of 0.01 to 10 Seconds, PEER report, http://peer.berkeley.edu/products/rep_nga_models.html.
Chiou .B .S .J, and Youngs .R .R. (2008). An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra , Earthquake Spectra, 24( 1), 172–215.
Chiu, H. C. and S. D. Ni (1993). The attenuation of peak ground acceleration, Syposium on Taiwan Strong Motion Instrumention Program, 60-66.
Chiu Hung-Chie (1997). Stable baseline correction of digital strong-motion data”, Bull. Seism. Soc. Am., Vol 87, pp. 932 – 944.
Cornell, C. A. (1968). Engineering seismic risk analysis. Bull. Seism. Soc. Am., 58 (5), 1,583–1,606.
Crouse, C. B. (1991). Ground-motion attenuation equation for earthquake on Cascadia subduction-zone earthquake, Earthquake Spectra, 7, 210-236.
Darragh, B., Silva, W., Gregor, N. (2005). Strong Motion Record Processing for the PEER Center, accessed via http://www.cosmos-eq.org/recordProcessingPapers.html.
Dawood, H M., and A. Rodriguez-Marek (2013). A method for including path effects in ground-motion prediction equations: an example using the mw 9.0 tohoku earthquake aftershocks, Bull. Seism. Soc. Am., 103, 1360–1372.
Douglas, J. (2003). Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates, Earth-Science Reviews, 61, 43-104.
Douglas, J., (2002). Errata of and additions to ESEE Report No. 01-1: ‘A comprehensive worldwide summary of strong-motion attenuation relationships for peak ground acceleration and spectral ordinates (1969 to 2000)’. SM Report, Department of Civil and Environmental Engineering, Imperial College, London, October.
Douglas, J., (2001). A comprehensive worldwide summary of strong-motion attenuation relationships for peak ground acceleration and spectral ordinates (1969–2000). ESEE Report 01-1, Department of Civil and Environmental Engineering, Imperial College, London. Jan.
Douglas J (2011) Ground-motion prediction equations 1964-2010, Final report, BRGM/RP-59356-FR, PEER 2011/102, 444 pages, 9 illustrations.
Frankel, A., Harmsen, S., Mueller, C., Barnhard, T., Leyendecker, E. V., and Perkins, D.(1997). USGS national seismic hazard maps: uniform hazard spectra, de-aggregation, and uncertainty, Proceedings of FHWA/NCEER Workshop on the National Representation of Seismic Ground Motion for New and Existing Highway Facilities, NCEER Technical Report 97-0010, 39-73.
Fukushima, Y. and T. Tanaka (1990). A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan, Bull. Seism. Soc. Am. , 80, 757-783.
Hanks, T.C., Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research 84, 2348-2350.
Heaton, T., Tajima, F., Mori, A.W. (1986). Estimating ground motions using recorded accelerograms. Surveys in Geophysics 8, 25-83.
Idriss, I.M. (1978). Characteristics of earthquake ground motions. Proceedings of the ASCE Geotechnical Engineering Division Speciality Conference: Earthquake Engineering and Soil Dynamics, vol. III, pp. 1151–1265.
Idriss .I .M. (2008). An NGA Empirical Model for Estimating the Horizontal Spectral Values Generated By Shallow Crustal Earthquakes , Earthquake Spectra, 24( 1), 216–242.
Joyner, W. B., and D. M. Boore, (1981). Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 imperial valley, California, earthquake, Bull. Seism. Soc. Am. 71, 2011-2038.
Joyner W.B. and D.M. Boore, (1988). Measurement, characterization, and prediction of strong ground motion. In: Proceedings of Earthquake Engineering and Soil Dynamics II. Geotechnical Division, ASCE, 43–102.
Joyner W.B. and D.M. Boore, (1996). Recent developments in strong motion attenuation relationships. In: Proceedings of the 28th Joint Meeting of the US–Japan Cooperative Program in Natural Resource Panel on Wind and Seismic Effects, pp. 101–116
Joyner, W. B., and D. M. Boore (1993). Methods for regression analysis of strong-motion data, Bull. Seismol. Soc. Am., 83, 469–487.
Jerome Sacks, William J. Welch, Toby J. Mitchell and Henry P. Wynn (1989). Design and Analysis of Computer Experiments, Statistical Science, Vol. 4, No. 4, pp. 409-423
Kao, H., P.-R. Jian, K.-F. Ma, B.-S. Huang, and C.-C. Liu, (1998). Moment-tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision, Geophys. Res. Lett., 25, 3619-3622.
Kawakami, H. and Mogi, H. (2003). “Analyzing Spatial Intraevent Variability of Peak Ground Accelerations as a Function of Separation Distance”, Bull. Seism. Soc. Am., Vol. 93, No. 3, pp. 1079–1090.
Kao, H., and P.-R. Jian, (1999). Source parameters of regional earthquakes in Taiwan: July 1995-December 1996, Terr. Atmos. Oceanic Sci., 10, 585-604.
Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., and Kuo, K. W. (2012) Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT: Engineering Geology, 129, p. 68-75.
Lee, C. T. and B. R. Tsai, (2008). Mapping Vs30 in Taiwan. Terr. Atmos. Ocean. 19, 671-682.
Lee, C. T., C. T. Cheng, C. W. Liao, and Y. B. Tsai, (2001). Site Classifications of Taiwan Free-Field Strong-Motion Stations, Bull. Seism. Soc. Am., 91, 1283-1297.
Lee, C. T., P. S. Lin, B. S. Hsieh, and C. H. Sung, (2012). Regional Arias intensity attenuation relationship for Taiwan with considering Vs30. Bull. Seism. Soc. Am., 102(1), 129-142.
Lin, P.-S., and Lee, C.-T. (2008). Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan. Bull. Seism. Soc. Am., 98(1), 220–240.
Lin, P.S., L Chiou, B., Abrahamson, N., Walling, M., Lee, C.T. and Cheng, C. T., (2011a). Repeatable Source, Site, and Path Effects on the Standard Deviation for Empirical Ground-Motion Prediction Models, Bull. Seism. Soc. Am., 101(5), 2281-2295.
Lin, Po-Shen, Chyi-Tyi Lee, Chin-Tung Cheng, and Chih-Hsuan Sung, (2011b). Response spectral attenuation relations for shallow crustal earthquakes in Taiwan, Engineering Geology, 121, 150-164.
Liu K. S. and Y. B. Tsai., (2005). Attenuation Relationships of Peak Ground Acceleration and Velocity for Crustal Earthquakes in Taiwan, Bull. Seism. Soc. Am., 95, 1045–1058.
Liu, K. S., T. C. Shin, and Y. B. Tsai. (1999). A free field strong motion network in Taiwan: TSMIP, TAO, 10, 377-396.
Luzi, L., D. Bindi, R. Puglia, F. Pacor, and A. Oth (2014). Single-station sigma for italian strong-motion stations, Bull. Seismol. Soc. Am., 104, 467–483.
Loh CH, Hwang CS and Jean YW, (2000). Seismic demand based on damage control model-considering basin effect and source effect. Soil Dynamics and Earthquake Engineering, 17, 335-345.
Mohraz, B.(1976). A study of earthquake response spectra for different geological conditions, Bull. Seism. Soc. Am. 66, 915-935.
Molas, G.. L. and F. Yamazaki (1995). Attenuation of earthquake ground motion in Japan including deep focus event, Bull. Seism. Soc. Am., 85, 1343-1358.
Morikawa, N., T. Kanno, A. Narita, H. Fujiwara, T. Okumura, Y. Fukushima, and A. Guerpinar, (2008). Strong motion uncertainty determined from observed records by desnse network in Japan, J. Seism., 12, 529–546.
Rodriguez-Marek, A., Montalva, G. A., Cotton, F. and Bonilla, F., (2011). Analysis of Single-Station Standard Deviation Using the KiK-net Data. Bull. Seism. Soc. Am., 101(3), 1242-1258.
Rodriguez-Marek, A., F. Cotton, N. Abrahamson, S. Akkar, L. Al Atik, B. Edwards, G. Montalva, and H. Dawood (2013). A model for single-station standard deviation using data from various tectonic regions, Bull. Seism. Soc. Am., 103, 3149–3163.
Rodriguez-Marek, A., E. M. Rathje, J. J. Bommer, F. Scherbaum, and P. J. Stafford (2014). Application of Single-Station Sigma and Site-Response Characterization in a Probabilistic Seismic-Hazard Analysis for a New Nuclear Site, Bull. Seism. Soc. Am., 104, no. 4, 1601-1619.
Ronald L. Iman, Jon C. Helton (1988). An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models, Risk Analysis, 8(1), 71–90.
Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and the R Core Team (2015). nlme: Linear and nonlinear mixed effects models, R package version 3.1-122.
Shakal, A.F., Huang, M.J., Graizer, V.M. (2005) CSMIP Strong-Motion Data Processing, accessed via http://www.cosmos-eq.org/recordProcessingPapers.html.
Stephens, C.D., Boore, D.M.(2005). ANSS/NSMP Strong-Motion Record Processing and Procedures, accessed via http://www.cosmos-eq.org/recordProcessingPapers.html.
Searle, S. R., (1971). Linear Models, John Wiley and Sons, New York, 532p.
Seed, H. B., C. Ugas, and J. Lysmer, (1976). Site-dependent spectra for earthquake-resistant design, Bull. Seism. Soc. Am. 66, 221-243.
Theodulidis, N. and P. Y. Bard, (1995). Horizontal to vertical spectral ratio and g logical conditions: An analysis of strong motion data from Greece and Taiwan (SMART-1). Soil Dyn. Earthq. Eng., 14, 177-197, doi: 10.1016/0267- 7261(94)00039-J.
Trifunac, M. D. and A. G. Brady (1975). A study on the duration of strong earthquake ground motion, Bull. Seism. Soc. Am. 65, 581-626.
Trifunac, M. D., and A. G. Brady (1976). Correlations of peak acceleration, velocity and displacement with earthquake magnitude, distance and site conditions, Earthquake Eng.Struct.Dyn. 4, 455-471.
Tsai, C. C., C. H. Loh and Y. T. Yeh, (1987). Analysis of earthquake risk in Taiwan based on seismotectonic zones, Memor. of Geol. Soc. of China, 9, 413-446.
Tsai, C. P., Y. Chen, and C. Liu, (2006). The path effect in ground-motion variability: an application of the variance-components technique, Bull. Seism. Soc. Am. 96, 1170-1176
Tsai, Y. B. and B. A. Bolt, (1983). An analysis of horizontal peak ground acceleration and velocity from SMART 1 array data, Bull. Inst. EarthSciences, 3, 105-126.
Villani, M and N. Abrahamson (2015). Repeatable site and path effects on the ground-motion sigma based on empirical data from southern California and simulated waveforms from the Cybershake platform, Bull. Seism. Soc. Am., 105, 2681–2695.
Walling, M. A. (2009). Non-ergodic probabilistic seismic hazard analysis and simulation spatial of variation in ground motion, Ph.D. Thesis, University of California, Berkeley, California.
Wen, K.L. and Y.T. Yeh (1984) Seismic velocity structure beneath the SMART1 array. Bull. Inst. Earth Sci., 4, 51-72
W.E. Walker, P. Harremoës, J. Rotmans, J.P. van der Sluijs, M.B.A. van Asselt, P. Janssen and M.P. Krayer von Krauss (2003). Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support, Integrated Assessment, 4(1).
Wu Y. M., T. C. Shin, and C. H. Chang, (2001). Near Real-Time Mapping of Peak Ground Acceleration and Peak Ground Velocity Following a Strong Earthquake, Bull. Seism. Soc. Am., 91, 1218–1228
Youngs, R. R., S. J. Chiou, W. J. Silva, and J. R. Humphrey(1997)Strong ground motion attenuation relationships for subduction zone earthquakes, Seism. Res. Lett. 68, 58-73.
Yucca Mountain Project, Fact Sheet, Office of Civilian Radioactive Waste Management, U.S. Department of Energy, November 2003.
Zoback, M. L., (1992). First- and second-order patterns of stress in the lithosphere: The world stress map, J. Geophys. Res., 97, b8, 11703-11728.
吳芳儒,2006屏東地震系列經驗強地動預估式,國立台灣大學地質科學研究所碩士論文,2008。
李錫堤、馬國鳳、秦葆珩,1999,美濃水庫設計地震評估成果報告,台灣省政府水利處,4-1~4-25。
辛在勤,台灣地區地震預警之初探訪,氣象學報 42卷 2期 118頁,1998。
林柏伸,台灣東北部地區隱沒帶地震強地動預估式之研究,國立中央大學應用地質研究所碩士論文,2002。
林柏伸,台灣地區強地動預估式研究與路徑效應分析,國立中央大學地球物理研究所博士論文,2009。
茅聲燾,地震之工程危害度研究及其應用。中國土木水利學刊,第五卷第一期,第35-40頁,1978。
倪顯德、邱宏智,台灣地區強地動最大加速度值衰減之統計模型探討,第三屆台灣地區地球物理研討會論文集,95-105,1991。
陳子鍠,台灣地區最大加速度衰減之研究,國立中央大學地球物理研究所碩士論文,72頁,1991。
黃正耀,台灣地區強地動特性及地震危害度參數之評估,國立中央大學地球物理研究所碩士論文,1995。
黃文紀,羅東強震儀陣列區微地動之來源與特性,國立中央大學地球物理研究所碩士論文,1986
趙曉玲,利用921 地震序列之強地動資料對台灣強地動衰減模式與反應譜速估之研究,國立中央大學地球物理研究所碩士論文,128頁,2001。
劉坤松,台灣地區強震地動衰減模式之研究,國立中央大學地球物理研究所博士論文,1999。
劉坤松、吳健富、吳坤瑞,台灣東北部地區地動加速度衰減模式之初步研究,台灣地區強地動觀測計畫研討會(二)論文摘要,63-72,1996。
羅俊雄,強地動特性及耐震評估有關之參數,電信與運輸系統之耐震安全評估與補強準則,2-3,1996。
鄭錦桐,台灣地區地震危害度的不確定性分析與參數拆解,國立中央大學地球物理研究所博士論文,2002。
指導教授 李錫堤(Chyi-Tyi Lee) 審核日期 2016-10-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明